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Abstract: We consider the fractional order

. II m 1 t
Dg\t (u) + (—An)™ (u) = m/ o
with ~an

0<p <1,

supplemented initial

m>1.,p>1,

integral

|u(w 1P dw,

0<a<l,

equation with a time nonlocal nonlinearity

posed in (.,t) € H x (0,00)

data u(.,0) = uo(.),
and "D, denotes the caputo fractional

where

derivative of order /3, and Am is the Laplacian operator on the (2N + 1)-dimensional. Heisenberg group .

Then, we prove a blow up result for its solutions.
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1. Introduction

In this paper, we investigate the higher-order semilinear
parabolic equation with nonlocal in time nonlinearity of the
following form:

{‘D&() (—Ag)™ (u) = I Ju(t) 7,

1.1
n=(xz,y,7)€H, t >0 (1.1)

subject to the initial data

u(n,0) = uo (n),

Where I(‘f‘ ¥ is the Riemann-Liouville fractional integral of
order (0 < o < 1) defined for a continuous function ¢ (t),¢ >
0, . . 1

[ (-0 (),

I(a) /o

Here, I'(.) stands for the gamma function.

First, for the sake of the reader, we give some known facts
about the Heisenberg group H and the operator Apy. For
their proof and more information, we refer for example to
[1,4,5,11,19] . The Heisenberg group H , whose elements
are 1 = (x,y,7) is the Lie group (R?N*! o) with the group
operation ” o ” defined by

(I5)(8) =

nofj= (T +a,y+9,1+7+2<x,§>—<Zy>)),

where < .,. > is the usual inner product in R", The laplacian
Ap over H is obtained from the vector fields X; = 0, +2y;0,
and Y; = 0y, + 22;0;, by

N

S (),

i=1

Ay
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explicitly, we have

25=3 (g +
A natural group of dilitations on H is given by

&y(n) = (va,7y,7%7) s v >0,
whose Jacobian determinant is ¢ where

Q=2N+2

2 2 32

4 — 4.
o2 " Yomor ~ iagor

is the homogeneous dimension of H.

The operator Ay is a degenerate elliptic operator. It is invariant
with respect to the left translation of H and homogeneous with
respect to the dilatations d.,. More precisely, we have

Ag (u(n o))

The natural distance from 7 to the origin is

N 2\ 1

= (St )

i=1

Now,we call sub-elliptic gradient
Ve =(X,Y)=(Xy,..,

Xn,Y1,..,YN),

A remarkable property of the Kohn Laplacian is that a funda-
mental solution of —Ay with pole at zero is given by

C
I'(n) = m |AA =

where C) is a suitable positive constant.
A basic role in the functional analysis on the Heisenberg group
is played by the following Sobolev-type inequality

[l = el Vavl3, Yo € C5°(HY),
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where A* = 1\2—1\2 and c is a positive constant.
This inequality ensures in particular that for every domain €2
the function

[oll < [[Vavllz,

is a norm on C§°(£2). We denote by SE(Q) the closure of

Cg§°(£2) with respect to this norm; S} (£2) becomes a Hilbert
space with the inner product

< u,v >S(1):/ < Vyu, Vgv >,
Q

Fractional powers of sub-elliptic Laplacians. Here, we
recall a result on fractional powers of sub-Laplacian in the
Heisenberg group. Let N (¢, x) be the fundamental solution of
Ay + % . For all 0 < 8 < 4, the integral

F(lg)/()+oot5—1jv(t,x)dt,

£ 0.

Rg(x) =

converges absolutely for z
0,—2,—4, ...,then

If 8 < 0,8 #

B
2

r(3)

defines a smooth function in H — {0}, since t — N(t,2),
vanishes of infinite order as ¢ — 0 if 2 # 0. In addition, Rg
is positive and H-homogeneous of degree 5 — 4.

+o0 g,
Rp(x) = ; t2 7 N (t,x)dt,

Theorem:
For every v €
(—Ag)® € L?(H) and

(—Ag)" = /H (v(z o y) — v(x) - X(y) < Varo(a),y >) Roaa(v)dy,

S(H) (Schwartz’s class), we have

where x is the characteristic function of the unit ball
—1

B,(0,1), (p(z) = Ry_2 (x), 0 <a<2,pisan
H-homogeneous norm in H smooth outside the origin).

2. Preliminaries
2.1 Definition

(Riemann-Liouville fractional derivatives)

Let f € AC[a,b],—00 < a < b < +00,! The Riemann-
Liouville left- and right-sided fractional derivatives of order
a € (0,1) are, respectively, defined by

dloz

dt a\f

D3 f(t) = f@®)

:F(ll_a)(jt/a(t—r)o‘f(T)dT, t>a

llet AC|[a, b] be the space of functions f which are absolutely continuous
on [a,b].
AC™ [a,b] = { f : [a,b] = C and (D"~ ) (z) € ACla, b] (D = 75)}
In particular, AC? [a,b] = ACa, b],

(2.1)
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and
d
Djjy (1) = = 1 (1)
1 d [°
—m%/t (T—t)_af(T)dT, t<b (22)
2.2 Definition

(Riemann-Liouville fractional integrals)

Let f € L'(a,b),—00 < a < b < +o0, The Riemann-
Liouville left- and right-sided fractional integrals of order o €
(0,1) are, respectively, defined by

Igltf(t)zﬁ/ (t—7) O f(r)dr, t>a  (23)
and

b
I3, (1) = ﬁ / (r— )"0 f(r)dr, t<b  (24)

2.3 Definition

For 0 < a < 1, the Caputo derivative of order o for a
differentiable function f : [0,00) — R can been written as

cDa‘tf( )= ﬁ%/‘l (t—T)*("f/(T)dT, t>a

It is clear that

"Dy, f(t) = DY, [£(1) - FO)],

Finally, taking into account the following integration by
parts formula:
a\tg t)dt = / Dt|b

b
[+
2.4 Proposition

For0 < oo < 1,—00 < a < b < 400, we have the following
identities

(t) dt.

aday S () = f(t), t € (a,b)
for all f € L™(a,b),1 <r<oo
and
bf Dt|b fa
for all f € AC?[a,b], where D = &
For p>1land 0 <o < 1. Let
t p
1——) ., 0<t<T,
f(t) = ( T) (2.6)
0 t>T,
(l-—a+plp-1), AN
T7*(1- =
t\Tf() F(Q—Oé—p) T ;
and

/0 Ok

t|T ()|p =CT' pa
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3. Nonexistence Results
3.1 Definition

(Weak solution).Let 7" > 0, a locally integrable function
u e C([0,T), L, (Qr) N LY (Qr)) is called a local weak
solution of (1.1) in Q7 (Qr = H x [0, T]) subject to the initial
data ug € L}, (H) if the equality

loc

/ Uon‘T@der/ @I(D)“t|u|1”dw
Qr QT

:/Q qu‘T@dw—F/ u(—Ag)™pdw

, is satisfied for any ¢ be a smooth test function ¢ € C5°(Qr))
witn
o(,T)=0, >0, dw=dndt

and the solution is called global if T = +o0.

3.2 Theorem
Let p > 1, and
o (2N +2)3 +2m
PSPe=oN12)8+2m(1—-a)

(c for critical)
Then, (1.1) does not have a nontrivial global weak solution.

3.3 Proposition
Consider a convex function F' € C%(R). Assume that ¢ €
Cs°(R?N+1) | then

F(p)(=0a)"¢ > (—An)"F (%),
In particular, if F(0) =0 and ¢ € C5°(R*NV+1) then

[ F b0 2 0

R2N+1

Let us mention that hereafter we will use inequality (2.1) for

F(p)=¢', I>1, ¢ >0, in this case it reads
M (= Am) " > (—An)™¢, (1)

We need the following Lemma taken from [32].

3.4 Lemma

Let f € L'(R*M*1) and [gon, fdn > 0. Then there exists
a test function 0 < ¢ < 1, such that

/ N fedn = 0. 2
R2N+1

Proof of theorem :.

The proof is done by contradiction. Suppose that u is
a global bounded weak solution. First we Choose the test
function. For this aim, we shall use a non-negative smooth
function ¢ which was constructed in [20].
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#E) =9 \« if 1<§<2, (3)
0 uof &§22
2 4 4
wl(n)¢<w>7 n=(z,y,7) € H

t p
1) . 0<t<T,
0, t>T,

p>1

t
=D L.¢(nt)=¢ (DY ., —— ], R>0
o B1,) = 24 (1) tTRzﬁw(R?) >
Let, Q = H x [o,TR%m} :

Using the Definition 3.1, we obtain

0D D Bt | D2 0 0

- /62 UDZTR ZgL Dta|TR 223” 95(777 t)dndt

—Ag)"D* 4, G(n, t)dndt,
+/QU( H) tlTRsz(n )dn

A simple computation yields

D’ . (D> ..5)=D*",, 3 we obtain
tiITR B t|ITR P tiITR B

C(TR% )17(0&5) /

uo (n)dn + / @lulPdndt
H Q

. t
= / uph (D, oo (— )dndt
Q TR ?

t|/TR R#
t
—Ag)" @ ())D* 4, 0o (—5 )dndt,
+ [ By )i

The application of inequality (3.1)
loy (= Am) ™1 > (—Am) ™,

/ |u|P@dndt
Q

<1 /Q = () (— Ag) ™1 (7)D

implies that

t
@ m T om d dt
srrze $2 ()

a t
+ / uh (D 4, o (— )dndt,
Q tITRP RF

For estimating the second member of the above inequality,
we write
t

-1
“Ap)"o (D an ' dndt
e @) D8l i
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if we put
1 t
_ ~=+ -1 o m a 1— = t
= [t A (DT a( )6 dnr A= [ A e
According to e-Young inequality . N t /
A <D " (D” oo~ i,
XY <eX?+C(e)Y", p+p =pp, | R®
we have N ¢ /
B= [ AT (a0 sy pal )
B TR B RB
t
-1 m [
-A D* .. dndt < we get
/prl () (=2m)"¢1(n) t\TRTSDQ(RQZ;n) n g N
A= [ E DR
e/Q|u|pg5d77dt A P2 R tlTR%m% R
(lil)P m t IN*TP/ X/go(lip) AH pdn
+00 [ 7 I D ool 5 o " l(=Aa) e ()]
In the same way, we get — RF TS
T .
/wp (MDD, oo (—gr )dndt < ></ 0" (f) IDfi 2 () |7
Q HrRE T R
2N 42
6/ |u|P@dndt xRN
Q ’ ~ ~ ~ m B ~ _ ’ N
L < [0 (5 ol 1Y) [ A" (72 + fal* +131°) P didgar
+Ca(0) [ D ool 57 dnat
Q t|TR R _oT —%32]\’*2*%*;@5%

Now, when € is small, and C' = max {C1(€),Ca(e)} we
obtain
(I—p') (22 | =14 =2 a4 A4 (P e
[ i < [ 0 (3 ol 1Y) (A" (7 + Jal* +13l*) P didiar,
Q

o b
C{ [ A 00" D2 s a6
Q tTR P R
and
l a+p t pl L= 2m
+ M(n)Dt\TR%@(R%")‘ ¢ : R s b l
@ B= [ e (D (ol dt [
as 0 R B tiITR B R B H
' S5 = ¢ ' P 2m_2mpats) [T =2l "o
e (n,t)=¢" (n)ps” (RTﬁ)v p = 1 =R7 D /0 v () |D?‘;B<P2 (t) |P dt
we have 2N 42 U(22 o (a4 o 154 Jadids
/|u\”¢dndt< x R2NT /s¢ (72 + |z* + |g|*) didgd7
= 2
Q
L _711 t t , 17P(Qj'/3) 2N+2+2ﬂ—2mp(i+5)
c{ / AT 00 ()l ()" o1 (D a2 (—g I didt cr R T
Q R7 tTR # RF
X/sbl (72 + |2[* + |g|*) dzdgdr,
Q
+ [ AT EID ol anar |
o TR R T R TR ’
We apply the change of next variables 7 = Bz, I =%, in the last
=% t = —L, then we put
RP
Q= {ij= (2,97 €H 0<7+ 7"+ 5" <2} .
2m mpao
/ lufPgdndt < C{A+ By < CRAVT2F4 =365 ()
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Now,1f2N+2+7—B(
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2mpa
p—1)

<0&p<pe

by letting R — 400 in (3.4), we obtain

/ |u|Pdndt =0 = u =0,
Q

this is a contradiction.
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