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Abstract: - This article investigates the stability property of the boundary equilibria of an ecological model of
mutualism between two species with a mortal predator. The model was proposed by Srinivasarao Tote (On an
ecological model of mutualism between two species with a mortal predator, Applications andApplied Mathemat-
ics: An International Journal, 15(2)(2020): 1309-1322). We first give two numeric examples to show that the
main results of Tote may not be correct. Then, by applying the standard comparison theorem, we obtain a set of
sufficient conditions which ensure the global attractivity of the predator-washed state. We also demonstrate that
the second mutual species washed state is unstable. Our results complement and supplement the main results of
Srinivasarao Tote.
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1 Introduction
Srinivasarao Tote [1] proposed the following ecolog-
ical model of mutualism between two species with a
mortal predator:

dx

dt
= x(1− x+ α12y),

dy

dt
= ry(1− y + α21x)−

(1− p)yz

v1 + (1− p)y
,

dz

dt
= z

(
− v2 +

v3(1− p)y

v1 + (1− p)y

)
,

(1)

where x(t), y(t), and z(t) denote the population den-
sity of the two mutualism species and a predator
species at time t, respectively. The predator feeds
on the second mutualism species y according to the
Holling II functional response. The system admits
six equilibria: E1(0, 0, 0), E2(0, 1, 0), E3(1, 0, 0),
E4(x̂, ŷ, 0), E5(0, x̄, ȳ), and E6(x

∗, y∗, z∗). The au-
thor showed that E1, E2, and E3 are all unstable.
Concerned with the existence, locally asymptotical
stability, and global stability of E4 and E5, the author
obtained the following results (see Theorem 3.2-3.7
in [1] for more detailed expression).

Theorem A. Predator washed state E4 exists only
when α12α21 < 1, where

x̂ =
1 + α12

1− α12α21
, ŷ =

1 + α21

1− α12α21
. (2)

Theorem B. Second mutual species washed state E5

exists only when v3 > v2, (v3 − v2) > v1v2, where

y =
v1v2

(1− p)(v3 − v2)
,

z =
rv3v1[(1− p)(v3 − v2)− v1v2]

(1− p)2(v3 − v2)2
.

(3)

Theorem C. The boundary steady state E4 is always
stable in xy-direction.

TheoremD. The equilibrium pointE4 is globally sta-
ble in the interior R2

+ of the xy-plane.

Theorem E. The equilibrium point E4 is globally
asymptotically stable in the interior R3

+.

Theorem F. If v1v3 + v1v2 > (1 − p)(v3 − v2),
the boundary steady state E5(0, x̄, ȳ) is stable in yz-
plane.

Theorem G. Along the conditions stated in Theorem
3.5, the equilibrium point E5 is globally asymptoti-
cally stable in the interior R2

+ of the yz-plane.

Theorem H. Along the conditions stated in Theorem
3.5, the equilibrium point E5 is globally asymptoti-
cally stable in the interior of R3

+.

Now, fromTheoremA, C, D, and E, one could eas-
ily see that if those Theorems hold, it will follow that
E4 is globally stable if the inequality α12α21 < 1
holds. Such a result is too good to be true. Indeed,
let us consider the following example.
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Example 1.1. Consider the following system

dx

dt
= x(1− x+ 0.5y),

dy

dt
= ry(1− y + 0.5x)

− (1− 0.25)yz

0.5 + (1− 0.25)y
,

dz

dt
= z

(
− 0.25 +

0.5(1− 0.25)y

0.5 + (1− 0.25)y

)
.

(4)

Here, corresponding to system (1), we choose α12 =
α21 = 0.5, p = 0.25, v1 = 0.5, v2 = 0.25, v3 = 0.5.
By simple computation, we have α12α21 = 1

4 < 1,
That is, condition in TheoremA, C, D, and E is satis-
fied. It follows from TheoremA, C, D, and E, that the
predator washed state E4(

4
3 ,

4
3 , 0) is globally asymp-

totically stable in the interior R3
+. Numeric simula-

tions (Figures 1-3) show that in this case, E4(
4
3 ,

4
3 , 0)

is not globally asymptotically stable, since z(t) is not
approach to 0 as t → +∞.

Figure 1: Dynamic behaviors of the first com-
ponent x in system (4) with the initial condi-
tion (x(0), y(0), z(0)) = (0.5, 0.5, 0.5), (1, 1, 1),
(1.5, 1.5, 1.5), and (2, 2, 2), respectively.

On the other hand, from Theorems B, F, G, and
H, one could easily see that if those Theorems hold, it
will follow thatE5 is globally stable if the inequalities
v3 > v2, (1−p)(v3−v2) > v1v2, and v1v3+v1v2 >
(1 − p)(v3 − v2) hold. However, we say that this
is impossible. Indeed, let us consider the following
example.

Figure 2: Dynamic behaviors of the second
component x in system (4) with the initial condi-
tion (x(0), y(0), z(0)) = (0.5, 0.5, 0.5), (1, 1, 1),
(1.5, 1.5, 1.5), and (2, 2, 2), respectively.

Example 1.2. Consider the following system

dx

dt
= x(1− x+ 0.5y),

dy

dt
= ry(1− y + 0.5x)

− (1− 0.5)yz

0.25 + (1− 0.5)y
,

dz

dt
= z

(
− 0.25 +

0.5(1− 0.25)y

v1 + (1− 0.5)y

)
.

(5)

Here, corresponding to system (1), we choose α12 =
α21 = 0.5, p = 0.5, v1 = 0.25, v2 = 0.25, v3 = 0.5.
By simple computation, we have

v3 = 0.5 > 0.25 = v2,

(1− p)(v3 − v2) =
1
8 > 1

16 = v1v2,

v1v3 + v1v2 =
3
16 > 1

8 = (1− p)(v3 − v2).

That is, all the conditions in Theorems B, F, G, and H
are satisfied. It follows fromTheoremTheorems B, F,
G, and H that the second mutual species washed state
E5(0, x̄, ȳ) is globally asymptotically stable in the in-
terior R3

+. Numeric simulations (Figures 4-6) show
that in this case, E5(0, x̄, ȳ) is not globally asymptot-
ically stable, since x(t) is approach to 1 as t → +∞.

Above two examples show that at least Theorem
E and H in [1] may not be correct. Hence, we should
revisit the stability property of the equilibriumE4 and
E5. This paper aims to put forward some studies on
this direction. Indeed, we will prove the following
results.
Theorem 1.1 Assume that

α12α21 < 1 (6)
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Figure 3: Dynamic behaviors of the third com-
ponent x in system (4) with the initial condi-
tion (x(0), y(0), z(0)) = (0.5, 0.5, 0.5), (1, 1, 1),
(1.5, 1.5, 1.5), and (2, 2, 2), respectively.

and

−v2 +
v3(1− p)ŷ

v1 + (1− p)ŷ
< 0 (7)

are satisfied, then the predator washed state E4 is
globally attractive in the interior R3

+.

Remark 1.1. Theorem 1.1 shows that to ensure the
globally attractivity of E4, additional condition (7) is
needed.

Theorem 1.2 The second mutual species washed
state E5(0, x̄, ȳ) is unstable.

Remark 1.2. Theorem 1.2 shows that Theorem B
and H in [1] is incorrect.

The rest of the paper is organized as follows. We
will prove Theorem 1.1 in the next section. We end
this work with a brief discussion. For more works
on the predator-prey system or mutualism model, one
could refer to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22] and the references
cited therein.

2 Proof of the Main Results
Lemma 2.1[11] If a > 0, b > 0 and ẋ ≥ b− ax,
when t ≥ 0 and x(0) > 0, we have

lim inf
t→+∞

x(t) ≥ b

a
.

If a > 0, b > 0 and ẋ ≤ b− ax, when t ≥ 0 and
x(0) > 0, we have

lim sup
t→+∞

x(t) ≤ b

a
.

Figure 4: Dynamic behaviors of the first com-
ponent x in system (5) with the initial condi-
tion (x(0), y(0), z(0)) = (0.5, 0.5, 0.5), (1, 1, 1),
(1.5, 1.5, 1.5), and (2, 2, 2), respectively.

Now let us consider the system

dx

dt
= x(1− x+ α12y),

dy

dt
= ry(1− (1 + δ)y + α21x),

(8)

where δ ≥ 0 is nonnegative constant.

Lemma 2.2 Assume that α12α21 < 1, then system (8)
admits a unique positive equilibriumA(x̂δ, ŷδ), where

x̂δ =
α12 + 1 + δ

1 + δ − α12α21
,

ŷδ =
α21 + 1

1 + δ − α12α21
,

which is globally asymptotically stable.
Proof. Let us consider the following Lyapunov func-
tion

V (x, y) =
(
x− x̂− x̂δ ln

x
x̂δ

)
+

α12

rα21

(
y − ŷδ − ŷδ ln

y

ŷδ

)
,

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2022.21.37 Xiaoran Li, Qin Yue, Fengde Chen

E-ISSN: 2224-2678 341 Volume 21, 2022



Figure 5: Dynamic behaviors of the second
component y in system (5) with the initial condi-
tion (x(0), y(0), z(0)) = (0.5, 0.5, 0.5), (1, 1, 1),
(1.5, 1.5, 1.5), and (2, 2, 2), respectively.

Calculating the derivative of V along the solution of
the system (8), we have

dV

dt

=
(
1− x̂δ

x

)(
1− x+ α12y

)
x

+
α12

rα21

(
1− ŷδ

y

)(
1− (1 + δ)y + α21x

)
y

=
(
x− x̂δ

)(
− (x− x̂δ) + α12(y − ŷδ)

)
+
α12r

rα21

(
y − ŷδ

)(
− (1 + δ)(y − ŷδ)

+α21(x− x̂δ)
)
y

= −(x− x̂δ)
2

+2α12(x− x̂δ)(y − ŷδ)

−α12

α21
(1 + δ)(y − ŷδ)

2

= −(x− x̂δ, y − ŷδ)A

(
x− x̂δ
y − ŷδ

)
,

where

A =

(
1 α12

α12
α12

α21
(1 + δ)

)
.

According to the hypothesis α12α21 < 1, dV
dt < 0

strictly for all x, y > 0 except for the positive equi-

librium (x̂δ, ŷδ), where
dV
dt = 0. Thus, V (x, y) satis-

fies Lyapunov’s asymptotic stability theorem, and the
positive equilibrium (x̂, ŷ) of the system (8) is glob-
ally asymptotically stable. The proof of Lemma 2.2
is now complete.

Remark 2.1. For the case δ = 0, Srinivasarao

Figure 6: Dynamic behaviors of the third com-
ponent z in system (5) with the initial condi-
tion (x(0), y(0), z(0)) = (0.5, 0.5, 0.5), (1, 1, 1),
(1.5, 1.5, 1.5), and (2, 2, 2), respectively.

Tote [1] also attempted to demonstrate this conclu-
sion, for more information, see the proof of Theorem
3.4 in [1], however his argument is flawed because he

choose l1 = −rα21

α12
, which prevents V from being

positive definite.

Proof of Theorem 1.1. For ε > 0 enough small, from
(7), the continuity of the function ax

b+cx , and the sign-

preserving properties of the continuous function, the
following inequality holds:

−v2 +
v3(1− p)(ŷ + ε)

v1 + (1− p)(ŷ + ε)
< 0. (9)

From the first and second equations of the system (1)
and the positivity of the solution of the system (1), we
have

dx

dt
= x(1− x+ α12y),

dy

dt
≤ ry(1− y + α21x).

(10)

Now let us consider the system

dv1
dt

= v1(1− v1 + α12v2),

dv2
dt

= rv2(1− v2 + α21v1).

(11)

It follows from (6) and Lemma 2.2 that the positive
equilibrium A(x̂, ŷ) of the system (11) is globally
asymptotically stable, where

x̂ =
1 + α12

1− α12α21
, ŷ =

1 + α21

1− α12α21
. (12)
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That is, for any positive solution (v1(t), v2(t)) of the
system (11), one has

lim
t→+∞

v1(t) = x̂, lim
t→+∞

v2(t) = ŷ.

Let (x(t), y(t), z(t)) be any positive solution of sys-
tem (1) with positive initial condition (x0, y0, z0),
and let (v1(t), v2(t)) be the positive solution of sys-
tem (11) with the initial condition (v1(0), v2(0)) =
(x0, y0), then it follows from (10), (11) and the dif-
ferential inequality theory that

x(t) ≤ v1(t), y(t) ≤ v2(t) for all t ≥ 0,

and therefore that

lim sup
t→+∞

x(t) ≤ x̂, lim sup
t→+∞

y(t) ≤ ŷ. (13)

Thus, for aforementioned ε > 0, there exists a T1 > 0
such that

y(t) < ŷ + ε for all t ≥ T1. (14)

From the third equation of system (1), for t > T1, we
have

dz

dt
= z

(
− v2 +

v3(1− p)y

v1 + (1− p)y

)
≤ z

(
− v2 +

v3(1− p)(ŷ + ε)

v1 + (1− p)(ŷ + ε)

)
.

(15)

It then follows from (9) that

z(t) ≤ z(T ) exp
{
B(t− T )

}
→ 0 as t → +∞.

(16)
where

B = −v2 +
v3(1− p)(ŷ + ε)

v1 + (1− p)(ŷ + ε)
.

Hence, for aforementioned ε > 0, there exists a T2 >
T1, such that

z(t) <
v1

1− p
ε as t ≥ T2. (17)

From (17) and the first and second equation of system
(1), for t > T2, we have

dx

dt
= x(1− x+ α12y),

dy

dt
= ry(1− y + α21x)−

(1− p)yz

v1 + (1− p)y

≥ ry(1− y + α21x)−
(1− p)yz

v1

≥ ry(1− y + α21x)−
(1− p)y

v1
1− p

ε

v1
= ry(1− (1 + ε)y + α21x).

(18)

Now let us consider the system

dw1

dt
= w1(1− w1 + α12w2),

dw2

dt
= rw2(1− (1 + ε)w2 + α21w1).

(19)

It follows from (6) and Lemma 2.2 that the posi-
tive equilibrium A(x̂ε, ŷε) of system (19) is globally
asymptotically stable, where

x̂ε =
α12 + 1 + ε

1 + ε− α12α21
,

ŷε =
α21 + 1

1 + ε− α12α21
,

(20)

That is, for any positive solution (w1(t), w2(t)) of the
system (19), one has

lim
t→+∞

w1(t) = x̂ε, lim
t→+∞

w2(t) = ŷε.

Let (x(t), y(t), z(t)) be any positive solution
of system (1) with positive initial condition
(xT2

, yT2
, zT2

), and let (w1(t), w2(t)) be the positive
solution of system (19) with the initial condition
(w1(T2), w2(T2)) = (xT2

, yT2
), then it follows from

(18), (19) and the differential inequality theory that

x(t) ≥ w1(t), y(t) ≥ w2(t) for all t ≥ T2,

and therefore that

lim inf
t→+∞

x(t) ≥ x̂ε, lim inf
t→+∞

y(t) ≥ ŷε. (21)

(13) combines with (21) leads to

x̂ε ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ x̂,

ŷε ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ ŷ.
(22)

Noting that ε is any enough small positive constant,
letting ε → 0 in the (22) leads to

lim
t→+∞

x(t) = x̂, lim
t→+∞

y(t) = ŷ. (23)

So, (16) together with (22) shows that the predator
washed state E4 is globally attractive in the interior
R3

+.
This completes the proof of Theorem 2.1.

Proof of Theorem 1.2. It is enough to show that x(t)
is impossible approach to 0 as t → +∞. Indeed, not-
ing that the first equation in the system (1) is indepen-
dent of the predator species, from the positivity of the
solution and the first equation of the system (1), we
have

dx

dt
= x(1− x+ α12y) ≥ x(1− x). (24)
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Applying Lemma 2.1 to this inequality leads to

lim inf
t→+∞

x(t) ≥ 1.

Therefore, there exists a T > 0 such that

x(t) >
1

2
as t ≥ T.

This means that x(t) is impossible approach to 0 as
t → +∞.
The proof of Theorem 1.2 is now complete.

3 Numeric Simulations
Now let us consider the following example.

Example 3.1. Consider the following system

dx

dt
= x(1− x+ 0.5y),

dy

dt
= ry(1− y + 0.5x)

− (1− 0.25)yz

0.5 + (1− 0.25)y
,

dz

dt
= z

(
− 1 +

0.5(1− 0.25)y

0.5 + (1− 0.25)y

)
.

(25)

Here, corresponding to system (1), we choose α12 =
α21 = 0.5, p = 0.25, v1 = 0.5, v3 = 0.5, v2 = 1. By
simple computation, from α12α21 = 1

4 < 1, we have
x̂ = 2, ŷ = 2, thus,

−v2 +
v3(1− p)ŷ

v1 + (1− p)ŷ

= −1 +
0.5× 0.75× 2

0.5 + (1− 0.25)× 2

= 0.625 < 0.

(26)

That is, condition (6) in Theorem 1.1 is satisfied. It
follows from Theorem 1.1 that the predator washed
state E4(

4
3 ,

4
3 , 0) is globally attractive in the interior

R3
+. Numeric simulations (Figures 7-9) show that in

this case, E4(2, 2, 0) is globally attractive.

4 Discussion
Recently, Srinivasarao Tote [1] proposed an ecologi-
cal model of mutualism between two species with a
mortal predator. The authors investigated the local
and global stability of the equilibria. However, it may
be because the system is three-dimensional, and the
Lyapunov function constructed by the author is only
related to two variables, which leads to some very ab-
surd results. In this paper, with the help of the com-
parison principle of the differential equation, we gave

Figure 7: Dynamic behaviors of the first com-
ponent x in system (25) with the initial con-
dition (x(0), y(0), z(0)) = (3, 3, 3), (1, 1, 1),
(1.5, 1.5, 1.5), and (2, 2, 2), respectively.

sufficient conditions to ensure the global attractivity
ofE4, and proved thatE5 is impossible to be stable. A
more interesting fact: from the numerical simulation
of Example 1.1, the system (1.1) may have a periodic
solution, that is, the system may exhibit Hopf bifur-
cation in some situation, but we cannot strictly prove
this conjecture at present. This requires further work
in the future.

It must be noted that for the cooperative system
or commensalism system, so far, as far as the au-
thor knows, no limit cycle has been found (see [13]-
[22] and the references cited therein). After adding
the predator population to the system, the system can
have a periodic solution as was shown in Example
1.1, which is obviously a fascinating phenomenon.
It seems very necessary to consider the multi-species
ecological model including both predator and mutu-
alism relationship.
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