
 

 

 

 

 

 

Lotka-Volterra Model with Periodic Harvesting 
 

NORMA MUHTAR1,2, EDI CAHYONO1, R. MARSUKI ISWANDI2, MUHIDIN2 

1Department of Mathematics, FMIPA, Universitas Halu Oleo, INDONESIA 
2Department of Agriculture, Graduate Program, Universitas Halu Oleo, INDONESIA 

 

Abstract. A closed interaction of predator prey is considered. The interaction is expressed in the Lotka-Volterra 

model. Two types of Lotka-Volterra models are considered, with and without carrying capacity of the prey. The 

paper includes a periodic harvesting of predator and/or prey, a function of time which acts to the model. Hence, 

the model is in the form of a system of non-homogeneous equations. Dynamical properties of the models are 

investigated. The solutions are computed numerically. Such interaction is in the need of integrated farming on 

harvesting of predator and/or prey. In this model the number of population in the system is sensitive to the 

initial value, which can be applied to the integrated farming systems such that the system remains sustainable. 
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1 Introduction 
After the model was introduced by Lotka, [1], and 

Volterra [2], it attracted many researchers which 

resulted in many papers. Although Lotka used the 

model for studying a hypothetical chemical reaction 

where the chemical concentrations oscillate, and 

Volterra proposed the model to explain the increase 

of predator fish in the Adriatic Sea, currently it 

becomes a standard model, and the simplest model 

of predator-prey interaction. Often, it is discussed in 

standard textbooks of ordinary differential equations 

and mathematical modeling, e.g., [3], [5], [5]. For 

three population models, the effect on 

the population dynamics because of these 

parametric changes in the systems was studied 

within invariant surfaces and, in terms of stability, 

about equilibrium points, [6]. 

In general, the model is in the interest of 

ecology. The Nicholson formula which is derived 

from Lotka-Volterra used to determine the area of 

discovery if the percentage parasitism and adult 

parasite density are known, to construct as 

competition curve with relates the percentage 

parasitism to the fraction of the area covered by the 

parasites and as a component in a population model 

in which it represents parasite action, [7]. The 

Lotka-Volterra model also expresses the tropic 

interaction which considers the feeding rate as 

directly proportional to the product of the 

magnitudes of consumer supply and food supply, 

[8]. On the other hand, Lotka-Volterra assumed that 

the response of the populations would be 

proportional to the product of their biomass 

densities, [9]. 

However, it is also in the interest of theoretical 

physics where Lotka-Volterra method was regarded 

as the first principle in deriving 

hydrodynamic equations of motion from 

the equations of motion of the constituent particles, 

[10]. Advancement of the model has been conducted 

by considering several mathematical and physical 

aspects. Taylor and Crizer's modified Lotka-

Volterra model would be better than the classic 

model if in a biological situation the population had 

a non-linear effect on each other, 

[11]. Modified Lotka-Volterra competition model 

with a non-linear relationship between species, 

crowding effect has also been considered. Under the 

Lotka-Volterra competition equation with a 

nonlinear weak crowding effect, a stable coexistence 

of many species is plausible, [12], [13]. 

The effect of diffusion on the model has been 

discussed in papers, among others, [14], [15], 

[16]. Diffusion can make the system persistent 

regardless of the patch dynamics without diffusion. 

More recently, Slavik, [17], considered 

the Lotka-Volterra model on graphs, if both species 

can move along the edges of  the same connected 

graph G. In a more general model, we might 

consider two different connected graphs G1, G2, 

one for each species. 

This paper considers a Lotka-Volterra model 

with a source term. The source term is applied to 

one variable of the model or both variables. 

Considering the Lotka-Volterra model as the 

interaction model of  predator-prey, the source term 

may act as a harvesting scenario that applied merely 

to the prey, to the predator, or both. The right source 

term is important for optimal harvesting of the 

predator and/or the prey. 

Understanding of the Lotka-Volterra model is 

very important for applications in integrated farming 
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systems, especially to determine maximum 

production and optimality of the system, for 

example in an integrated farming system consisting 

of vegetables as prey and fish as predators, [18]. The 

sustainability of integrated farming systems 

is interesting to discuss. It is mainly because of the 

diversity of species and the potential for synergy 

from integrating crops with livestock. However, the 

ability of this system to maximize food production 

has not been widely discussed in the literature and 

needs to be explored further, [19]. 

 

 

2 Lotka-Volterra Model 
In this section a Lotka-Volterra model without 

carrying capacity will be discussed. Let 𝑥, 𝑦 be 

functions of time 𝑡 that represent the populations of 

prey and predator, respectively. Lotka-Volterra 

model, then, is given in the form [4]  

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝛽𝑥𝑦 

𝑑𝑦

𝑑𝑡
= 𝛿𝑥𝑦 − 𝛾𝑦 

(1) 

Parameter 𝛼 represents the intrinsic growth rate 

of prey, 𝛽 represents the rate at which predators 

destroy prey, 𝛿 is parameter for the rate at which 

predator population increases by consuming prey, 

and 𝛾 is the death rate of predators. 

System (1) has two critical points, i.e., the trivial 

equilibrium 𝐸0 = (0,0), and nontrivial equilibrium 

𝐸1 = (
𝛾

𝛿
,
𝛼

𝛽
). On the other hand, the Jacobian matrix 

of system (1) is 

𝐽(𝑥, 𝑦) = [
−𝛽𝑦 + 𝛼 −𝛽𝑥

𝛿𝑦 𝛿𝑥 − 𝛾
] (2) 

The Jacobian matrix evaluated at 𝐸0 has 

characteristic equation 

−(𝛼 − )(𝛾 + ) = 0, (3) 

which gives eigenvalues 1 = 𝛼, and 2 = −𝛾. 

Since 𝛼 and 𝛾 are greater than 0, this implies that 𝐸0 

is not stable. In fact, 𝐸0  it is a saddle point. 

For equilibrium point 𝐸1, the Jacobian matrix is 

in the form 

𝐽(𝐸1) =  

[
 
 
 0

−𝛽𝛾)

𝛿
𝛿𝛼

𝛽
0

]
 
 
 
. (4) 

 

The Jacobian 𝐽(𝐸1) has characteristic equation 

 

2 + 𝛼𝛾 = 0. (5) 

 

That gives the eigen value 3 = −√−𝛼𝛾 and 4 =

√−𝛼𝛾. Since 𝛼 and 𝛾  are greater than 0, so the 

eigen values are imaginary numbers, and 𝐸1 is a 

stable point. 

It now will evaluate the trajectory of points 

governed by system (1). Applying basic calculus by 

eliminating variable t from (1) one gets 

 
𝑑𝑦

𝑑𝑥
=

𝛿𝑥𝑦 − 𝛾𝑦

𝛼𝑥 − 𝛽𝑥𝑦
. (6) 

 

Solving (6), one has 

𝑉 = 𝛿𝑥 − 𝛾 ln 𝑥 + 𝛽𝑦 − 𝛼 ln𝑦 (7) 

where 𝑉 is any constant. 

Fig. 1 shows the graphics of (7) in 𝑥 − 𝑦 

Cartesian coordinate for various values of 𝑉. The 

parameters α = 2, β = 3, δ = 2, γ = 1.5 have been 

applied. There are three curves of system (7) 

representing 𝑉 = 5, 6, 8. Each curve represents a 

trajectory of point (𝑥(𝑡), 𝑦(𝑡)) for 𝑡 ≥ 0. Each 

trajectory is called an orbit. The orbits are closed 

curves. It is observed that the larger the value of 𝑉, 

the larger curve. 

 
Fig. 1: Graphics of (7), 𝑉 = 5, 6, 8. 

For further issue, the evolution of x and y 

corresponds to the value of V = 5, 6, 8 as shown in 

Fig. 1 will be presented. Since the analytical 

solutions of x and y are not straightforward, it will 

be shown the numerical solutions. To do so, an 

initial condition i.e., pairs of  (𝑥(0), 𝑦(0)) should 

be chosen. These pairs must satisfy (7) for 

corresponding value of V. Table 1 shows the pairs 

with corresponding value V. 
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Table 1.Value of 𝑥(0) and 𝑦(0)for corresponding V 

V x (0) y (0) 

5 0.6 0.3994110349 

6 1 0.17630435981 

8 1.5 0.06696007606 

 

Applying initial values as presented in Table 1, 

the solutions of x with respect to variable t for 

various value of V are presented in Fig. 2. 

 

 
Fig. 2: Solution curves for x of system (1), where 

𝑉 = 5 (red), 𝑉 = 6 (green), 𝑉 = 8 (blue).  

 

Similarly, the solutions of y with respect to 

variable t for various values of V are presented in 

Fig. 3. 

Based on Fig. 2 and Fig. 3, some observations 

can be made. The larger value of V implies the 

larger the amplitude of x and y. Similarly, the larger 

the value of V, the larger the period of x and y. 

Moreover, the period of x and y are the same, for the 

same value of V. 

For V = 5 it is observed that the amplitude of x is 

approximately 3.5, while the one of y is around 2.7. 

For V = 6, the amplitude of x is 2.2, on the other 

hand the one of y is around 1.7. Finally, for E = 8, 

the amplitude of x is 1.7 and the amplitude of y is 

about 1.1. 

For V = 5 it is observed that the periods of x and 

y are around 3.72. This means that point 

(𝑥(𝑡), 𝑦(𝑡)) requires 3.72 units of time to complete 

one cycle of  the red curve of Fig. 1. For V = 6, the 

period of x and y is approximately 4.08 units of 

time. Finally, for E = 8, the period of x and y is 

about 4.8 units of time. 

 

 
Fig. 3: Solution curves for y of system (1), where       

𝑉 = 5 (red), 𝑉 = 6 (green), 𝑉 = 8 (blue). 

 

Period of x as prey and y as predator in this 

model may provide information when the 

population prey and predator are at its maximum 

and minimum. Hence, this may be applied to predict 

the optimal harvesting. 

 

 

3 Lotka-Volterra Model with 

Carrying Capacity 
Carrying capacity is the ability of an ecosystem to 

support the life of organisms in it in a sustainable 

manner. Or in other words, the carrying capacity is 

the upper limit of population growth, because the 

population can no longer be supported by existing 

facilities, resources, and environment. The Lotka-

Volterra model in the previous section assumes that 

the environment provides unlimited resources for 

prey growth. In fact, they must compete among 

themselves for the resources. This underlies the 

addition of the environmental carrying capacity 

factor to the Lotka-Volterra model in this section. 

Lotka-Volterra model with carrying capacity is 

in the form 

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝛽𝑥𝑦 − 𝜇𝑥2 

𝑑𝑦

𝑑𝑡
= 𝛿𝑥𝑦 − 𝛾𝑦 

(8) 

with 𝜇 is a parameter related to the environment 

carrying capacity of the prey population. 
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System (8) has three equilibrium points, i.e., the 

trivial equilibrium 𝐸2 = (0,0), and two nontrivial 

equilibriums 𝐸3 = (
𝛼

𝜇
, 0) and 𝐸4 = (

𝛾

𝛿
,
𝛼𝛿−𝛾𝜇

𝛽𝛿
).  

 

The Jacobian of system (8) is 

𝐽 = [
−𝛽𝑦 − 2𝜇𝑥 + 𝛼 −𝛽𝑥

𝛿𝑦 𝛿𝑥 − 𝛾
] (9) 

 

The Jacobian matrix (9) evaluated at 𝐸2 has 

characteristic equation 

−(𝛾 + )(𝛼 − ) = 0 (10) 

which gives eigenvalues 5 = −𝛾 and 6 = 𝛼. 

Since 𝛼 and 𝛾 are greater than 0, this implies that 𝐸2 

is not stable. It is a saddle point. 

 

Evaluating the Jacobian matrix (9) at equilibrium 

point 𝐸3,it has characteristic equation 

−
(𝛼 + )(𝛼𝛿 − 𝛾𝜇 − 𝜇)

𝜇
= 0 (11) 

 

Equation (11) gives eigenvalues 7 = −𝛼 and 8 =
𝛼𝛿−𝛾𝜇

𝜇
. Since 𝛼 > 0, it implies 7 < 0. But there are 

three cases for 8: 

Case 1: 𝜇 <
𝛼𝛿

𝛾
.  

Case 2: 𝜇 =
𝛼𝛿

𝛾
. 

Case 3: 𝜇 >
𝛼𝛿

𝛾
. 

Case 1, 𝜇 <
𝛼𝛿

𝛾
 implies 8 > 0. Hence, the 

equilibrium 𝐸3 is not stable. On the other hand, Case 

2, 𝜇 =
𝛼𝛿

𝛾
 implies 

𝛼

𝜇
=

𝛾

𝛿
 and 

𝛼𝛿−𝛾𝜇

𝛽𝛿
= 0. Therefore, 

equilibrium 𝐸4 is nothing else, but the equilibrium 

𝐸3, meaning that 𝐸3 and 𝐸4 are the same points. 

Moreover, 8 = 0. Case 3 will be discussed later. 

 

Evaluating Jacobian matrix (9) at 𝐸4, it has 

characteristics equation 

𝛼𝛿𝛾 + 
2𝛿 − 𝛾2𝜇 + 𝜇𝛾

𝛿
= 0 (12) 

where the roots are the eigen values 

9 =
−𝜇𝛾 + √−4𝛼𝛿2𝛾 + 4𝛿𝛾2𝜇 + 𝜇2𝛾2

2𝛿
, and 

10 =
−𝜇𝛾 − √−4𝛼𝛿2𝛾 + 4𝛿𝛾2𝜇 + 𝜇2𝛾2

2𝛿
. 

Since 𝛼, 𝛿, 𝜇, 𝛾 > 0, base on the value of Re(9) 

and Re(10), there are 3 cases to consider: 

Case 1: 𝜇 <
𝛼𝛿

𝛾
.  

Case 2: 𝜇 =
𝛼𝛿

𝛾
. 

Case 3: 𝜇 >
𝛼𝛿

𝛾
. 

Case 1, 𝜇 <
𝛼𝛿

𝛾
 implies that Re(9) < 0 and 

Re(10) < 0. Hence, 𝐸4 it is a stable point. Case 2 

results in the collapse of 𝐸4 into 𝐸3. Moreover, 9 =

0 and 10 = −
𝜇𝛾

𝛿
= −𝛼 < 0. Observe that the eigen 

values are similar to the ones of Case 2 of 𝐸3. 

Investigate is stable point. Finally, Case 3 𝜇 >
𝛼𝛿

𝛾
 

implies 
𝛼𝛿−𝛾𝜇

𝛽𝛿
< 0 meaning that 𝐸4 lying in the 

fourth quadrant. Hence, the Case 3 is out of 

discussion of  this paper, since x and y must be non-

negative. 

For case 1 𝜇 <
𝛼𝛿

𝛾
, the orbit of model (8) cannot 

be obtained analytically as straight forward as for 

the previous model. Hence, it will be presented 

numerically. Fig. 4 shows the phase portrait of 

model (8) for the case 𝜇 <
𝛼𝛿

𝛾
. Initial values are 

presented in Table 2, and the parameters are  𝜇 =
0.3, α = 2, β = 3, δ = 2, γ = 1.5. Orbit of initial 

value (1.5,0.066) is red, of (1.7,0.1) is green, and of 

(2,0.4) is blue. Observe that all orbits tend to 𝐸4. 

 

Table 2. Initial value 

 x(0) y(0) 

Initial 1 1.5 0.066 

Initial 2 1.7 0.1 

Initial 3 2 0.4 
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Fig. 4: Phase portrait system (8) 

 

Fig. 5 shows the solution of x corresponds to the 

orbits of the same color as in Fig. 4. All solutions 

tend to the same value, i.e., x about 0.8. 

 
Fig. 5: Solution curves of x of system (8) correspond 

to the orbits in Fig. 4. 

 

Fig. 6 shows the solution of y corresponds to the 

orbits of the same color as in Fig. 4. All solutions 

tend to the same value, i.e., y about 0.6. 

 
Fig. 6: Solution curves of y of system (8) correspond 

to the orbits in Fig. 4. 

 

Phase portrait for case 2, 𝜇 =
8

3
, is presented in 

Figure 7. The initial values of the orbits are 

presented in Table 2. Orbit of initial value (1.5, 

0.066) is red, of (1.7,0.1) is green, and of (2,0.4) is 

blue. Observe that all orbits tend to 𝐸3 which is the 

same point as 𝐸4. 

Fig. 8 shows solutions of x (green) and y (red) 

where the initial condition is (2,0.4). In this case, x 

tends to be a carrying capacity parameter, while y 

becomes extinct. 

 

 

Fig. 7: Phase portrait for 𝜇 =
𝛼𝛿

𝛾
 

The solution of x (red) and y (green) for case 2 

correspond to the initial value in Table 2 are 

presented in Fig. 8. 

 
Fig. 8: Solution curve x (red) and y (green) for case 

2, 𝜇 =
𝛼𝛿

𝛾
. 

 

In its application to integrated farming systems, 

this can be used by farmers in determining the right 

time to renew the carrying capacity of the 
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environment, so that the prey does not become 

extinct. Extinction of prey can result in a decrease in 

the number of predators or even extinction due to a 

lack of food sources. 

 

 

4 Lotka-Volterra Model with periodic 

Harvesting of Predator 
In a predator-prey system, in addition to the 

interaction between prey and predators, it is possible 

to harvest only the predators, prey only or both prey 

and predators at the same time.  

In this section, the Lotka-Volterra model with a 

periodic harvesting of predators is considered. The 

model is in the form 

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝛽𝑥𝑦 

(13) 
𝑑𝑦

𝑑𝑡
= 𝛿𝑥𝑦 − 𝛾𝑦 − 𝜀𝑦(1 + sin𝜔𝑡) 

where 𝜀(1 + sin(𝜔𝑡)) is a harvesting function for 

the predator, which is always positive, 𝜀 is a 

parameter  related to the number of harvesting and 

𝜔 is the harvesting period. Fig. 9 shows a phase 

portrait of the system (13) for various initial values 

based on Table 2 and 𝜀 = 0.5, 𝜔 = 1. The red, 

green and blue curves use the initial values x(0) and 

y(0)  in Table 2 for initial 1, initial 2 and initial 3, 

respectively. The solutions of  x and y correspond to 

the orbits in Fig. 9 are presented in Fig. 10 and Fig. 

11, respectively. 

The number of peaks of green and red curves in 

Fig. 9 are 5, but the number of peaks of the blue 

curve is 6.This means that the ‘period’ of the blue 

curve is smaller than the ones of green and red 

curves. Observe that the peaks (the troughs) are not 

always at the same height. Similar phenomenon also 

happens for the y solution curves displayed in Fig. 

11. 

 

 
Fig. 9: Phase portrait system (13), where the initial 

values presented in Table 2 

 

 
Fig. 10: x solution of system (13) for the initial 

values presented in Table 2 
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Fig. 11: y solution of system (13) for initial values 

presented  in Table 2 

 

Periodic harvesting of predators does not make 

prey or predators extinct. In each period the 

maximum value decreases. The difference in 

determining the initial value affects the maximum 

population size for each period. This simulation is 

important to support the decision making of adding 

the initial value in the next period so that the 

maximum population number achieved in the next 

period remains the same as the initial period. 

 

 

5 Lotka-Volterra Model with Periodic 

Harvesting of Prey and Predator 
The Lotka-Volterra model with a periodic 

harvesting of prey and predator that depends on time 

is represented by 

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝛽𝑥𝑦 − 𝜌𝑥(1 + sin(Ω𝑡)) 

(14) 

 𝑑𝑦

𝑑𝑡
= 𝛿𝑥𝑦 − 𝛾𝑦 − 𝜀𝑦(1 + sin(𝜔𝑡)) 

where 𝜌 is a parameter related to the number of 

harvestings of prey, Ω is periodic time for x and  

𝜌(1 + sin(Ω𝑡)) is a harvesting function for prey. 

Phase portrait of the system (14), when 𝛼 =
2,    𝛽 = 3, 𝛿 = 2, 𝛾 = 1.5, 𝜀 = 0.5, 𝜌 = 0.2, 𝜔 =
1, Ω = 1 and the initial values of  x and y are given 

in     Table 2. Phase portrait system (14) with 

various initial values is shown in Fig. 12.The red,  

green, and blue curves use the initial values x(0) and 

y(0)  in Table 2 for initial 1, initial 2 and initial 3, 

respectively. 

The x and y solution of system (14) correspond 

to orbits presented in Fig. 12 are shown in Fig. 13 

and Fig. 14, respectively. Similar to the previous 

section, the number of peaks of green and red curves 

in Fig. 13 and Fig. 14 are 5, but the number of peaks 

of blue curves are 6. 

 

 
Fig. 12: Phase portrait of  system (14), for the initial 

values given in Table 2 

 

 
Fig. 13: x solution of system (14) with initial values 

given in Table 2 
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Fig. 14: y solution of system (14) with initial values 

given in Table 2 

 

Periodic harvesting of prey and predators 

simultaneously can provide multiple benefits to an 

integrated farming system, [20]. However, it can be 

seen in Fig. 12 that the harvesting of prey and 

predators at the same time can cause a decrease in 

the number of prey and predator populations in the 

following period. 

A sustainable seed supply is one of the keys to 

the success of an integrated farming system, [21], so 

that the farmer can decide when to add seeds as an 

initial value to get a maximum value of prey and 

predators in the next period will be the same as the 

previous period. The right time to add these seeds 

can be predicted using the simulation of system 

(14).  

Diversification of production between 

horticultural crops and livestock in an integrated 

manner, sustainable supply of inputs, and efficient 

use of natural resources are important factors in an 

integrated farming system, [21]. The supply of 

inputs to plants, in this case acting as prey, can be in 

the form of the carrying capacity of the environment 

which limits the development of prey. This is added 

to the model which is discussed in the following 

section. 

 

 

6 Lotka-Volterra Model with Periodic 

Harvesting of Predator and 

Carrying Capacity 
In systems (13) and (14) there is no self-competition 

for x, while in the real world the growth of a 

population is limited by the carrying capacity of the 

environment. Therefore, this section discusses the 

Lotka-Volterra model with harvesting on predators 

with the presence of parameters related to the 

carrying capacity of x population. 

Modification of system (13) by adding the 

carrying capacity of the environment that limits x is 

obtained Lotka-Volterra model with periodic 

harvesting of predator that depends on time may be 

represented by 
𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − μ𝑥2 − 𝛽𝑥𝑦 

(15) 

 𝑑𝑦

𝑑𝑡
= 𝛿𝑥𝑦 − 𝛾𝑦 − 𝜀𝑦(1 + sin𝜔𝑡) 

The initial value data from Table 2 are still 

considered. Corresponding orbits of system (15) 

with these initial values are displayed in Fig. 15. In 

this figure 𝜇 = 0.3 and t = 0, 1...,100. The red, green 

and blue curves use the initial values  x(0) and y(0)  

in Table 2 for initial 1, initial 2 and initial 3, 

respectively. 

The x solutions of the system (15) that 

correspond to the orbits in Fig. 15 are presented in 

Figure16. It can be seen in the portrait phase in Fig. 

15 that the portrait phase leads to a fixed phase 

trajectory. It can also be seen that in the solution 

curve in Fig. 16 and Fig. 17, the solution curve at 

about t between 20 and 40, the population size 

decreases and starts to form the same curves. 

To increase the population, carrying capacity 

improvements are needed and can be predicted 

using a simulation of the system (15) with parameter 

values adjusted to the types of livestock and plants 

that are integrated. 

 

 

Fig. 15: Phase portrait system (15) 
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Fig. 16: Solution curves for x of system (15), with 

initial value in Table 2 

 

 
Fig. 17: Solution curves for y of system (15), with 

initial value in Table 2 

 

 

7 Lotka-Volterra Model with Periodic 

Harvesting of Prey and Predator 

and Carrying Capacity 
Lotka-Volterra model with periodic harvesting of 

prey and predator that depends on time and carrying 

capacity of the environment that limits x can be find 

by modification of system (14) may be represented 

by 

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − μ𝑥2 − 𝛽𝑥𝑦 − 𝜌𝑥(1 + sin(Ω𝑡))  

(16) 

 
𝑑𝑦

𝑑𝑡
= 𝛿𝑥𝑦 − 𝛾𝑦 − 𝜀𝑦(1 + sin(𝜔𝑡)) 

Using the initial value data from Table 2,  𝜇 =
0.3 and t = 0, 1,..., 100 and the other parameters 

follow  parameters of the previous section then  

obtained phase portrait system (16) is shown in Fig. 

18. It can be seen in the portrait phase in Fig. 18, the 

portrait phase leads to a fixed phase trajectory. It 

can also be seen that in the solution curve in Fig. 19 

and Fig. 20, the solution curve at about t between 30 

and 40 begins to form the same curve. 

Periodic harvesting of prey and predators with 

limited carrying capacity of prey may double 

farmers' income, from prey harvesting and predator 

harvesting. However, the decline in the number of 

populations caused by the decrease of carrying 

capacity of the prey population can be corrected so 

that the prey and predator populations can increase 

again. In this system, the difference in the initial 

value affects the maximum population of the system 

in each period, but at certain times it becomes the 

same because of the influence of carrying capacity. 

 

 
Fig. 18: Phase portrait system (16) 
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Fig. 19: Solution curves for x of system (16), with 

initial value in Table 2. 

 

 
Fig. 20: Solution curves for y of system (16) with 

the initial value in Table 2 

 

Integration of several types of commodities may 

increase agricultural productivity, profitability and 

sustainability compared to the cultivation of one 

commodity. The use of residues and by-products 

adds value to integrated farming systems. Besides 

that, an integrated farming system may increase 

farm income and implement sustainable agriculture, 

[22], [23]. 

System (16) can be used to determine when to 

add carrying capacity and seeds as initial values so 

that a sustainable integrated farming system can be 

implemented. 

 

8 Concluding Remarks and Open 

Problem 
This research has modified several variations of the 

Lotka-Volterra models, namely modeling with 

carrying capacity, periodic harvesting of predator, 

periodic harvesting of prey-predator, periodic 

harvesting of predator with carrying capacity, and 

periodic harvesting of prey-predators with carrying 

capacity. Numerical simulation is to describe the 

consistency and behavior of these models using the 

same initial value. Modeling with carrying capacity 

illustrates that the higher the initial value for the 

predator, the stability is achieved in a short time, 

and vice versa. Modeling with periodic harvesting 

of predators provides an overview of monitoring 

harvest limits. This provides important information 

because it maintains the sustainability of the 

ecosystem. Harvesting criteria are needed, the 

predators are harvested and remain consistent in the 

ecosystem. Modeling for harvesting prey and 

predator provides an indicator the optimum 

harvesting is carried out, for example, harvesting in 

trajectory points. Other information is to provide 

scenarios for intervention of prey and predator. The 

harvesting of predator with carrying capacity in a 

steady state condition will still have interactions 

between prey and predator as well as dynamically 

based on the available capabilities. For periodic 

harvesting of prey-predator and carrying capacity 

modeling is sensitive to the initial value. These 

models provide an overview of optimal harvesting 

scenarios for further work. For example, we are 

determining the precision of the initial value to 

determine optimal yields. 
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