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1 Introduction  

The construction of the term sphenic polynomial 
(not yet used in mathematics, perhaps) is based on 
the closely related term sphenic number [1] from 
number theory, according to which  

Definition 1. A sphenic number is an integer 
representing a product of three different simple 
non-negative numbers. 

Sphenic numbers are free of squares [2] because 
all the prime factors must be varied. The concept of 
a sphenic polynomial (SP) is somewhat broader 
than the concept of a sphenic number. 

Definition 2. A sphenic polynomial is a 
polynomial that can represent a product of three 
irreducible polynomials, not necessarily distinct. 

It follows from the proposed definition that in 
sphenic polynomials, both two and three elements 
of the polynomial expansion can be the same. The 
removal in sphenic polynomials of the constraints 
in SPs typical for sphenic numbers expands the 
area of their possible applications.  

In this paper, the research object is polynomials 
nf  of a degree of one variable over the Galois field 

of characteristic 2p  . To write the polynomial, 

we will use the vector form — the set of 
coefficients 

k  of the polynomial, assuming 

1 1 0n n n kf −=      .  

Polynomials nf  of n-degree in vector form can 
perceive as ( 1)n + − digit numbers in the p −

number system. Let us pay attention to the 
following properties of products of numbers and 
polynomials, formulating them (to make the text 
structured) as Axioms. 

Axiom 1: The digit capacity of an arithmetic 
product of numbers does not exceed the sum of the 
digits of the product's factors. 

Axiom 2: The degree of a modular product of 
polynomials is equal to the sum of degrees of the 
product's factors. 

Let us illustrate the fundamental differences 
between products of numbers and products of 
polynomials (in vector form) by numerical 
examples. 

Example 1. Let (1)
21101f =  and (2)

2111f =  is 

a pair of irreducible polynomials and , (1)
1013d = , 
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(2)
107d =  — their numerical equivalents, here 

( ) ma  is the number a  in m − th number system. 

The products of numbers are formed by means 
of the usual arithmetic operations of multiplication 
( ) and subsequent addition of digits (+ ) with an 
inter-digit carry. For the chosen example, 

(1) (2)d d d=   the expanded form of which is: 

(1)

(2)

1101
111

1101
1101

1101

1011011

d

d

d

−


−

+

−

.                       (1)                                                              

 According to (1) 2 101011011 91d = = . 
Consequently, the multiplication of non-negative 
integers with carrying performs according to the 
rules of the natural number multiplication Table.  

The modular operations of multiplication 
p

  

and addition 
p

 , in which p − is a field 
characteristic, are used for the product of 
polynomials over the ( )GF p . If the operands are 
binary, the parameter p  can exclude. For the 
example under consideration, we obtain 

1101
111

1101
1101

1101

100011



 .                       (2) 

 From a comparison of expressions (1) and (2) 
we see that the results of calculations, let us denote 
them R  (at R lower indices are possible), are 
different, as they should be. In particular 

1 2 10 101011011 91 (13 7)R = = =  , whereas 2R =  

2 10100011 35= = .   

 Example 2. Let (1)
823d =  and (2)

812d = . We 

have (1) (2)
8 8 823 12 276R d d=  =  = . That is, the 

product of two-digit numbers is a three-digit octal 
number. Thus, the values of 1R  and R  confirm the 

definition formulated by Axiom 1.                                                          

One of the most critical issues related to 
polynomials 

nf  is the type of polynomial 
expansion (factorization). 

Definition 3. By the type of decomposition of a 
compound polynomial 

nf , we will understand [3] 

the number of k  and degree in , 1,i k= , of 

irreducible polynomials 
1 2
, , ,

kn n nf f f  (possibly 

repeated) whose product over forms a given 

polynomial 
nf  of degree 

1

k

i

i

n n
=

= . 

If a natural number is k − almost prime, it has 
k  prime factors [4]. Similarly, we shall call a 
polynomial 

nf  k − almost prime if it forms by the 
product of k  prime (irreducible) polynomials. 
Their multiplication, restoring 

nf , is performed 
over the field ( )GF p .  

For k − almost prime polynomials of n −

degree, let us introduce the notation [ ]k

nf . Thus, a 

polynomial 
nf  is prime if and only if it is 1−

almost prime, and semisimple if it is 2− almost 
prime [5]. The problem of factorization of 
semisimple polynomials [2]

nf  considers in [6].  

The main task of this paper is to develop 
efficient algorithms for the degree decomposition 
of sphenic polynomials [3]

nf  of one variable over 

Galois fields of arbitrary characteristics p .  
Vector (numeric) forms of sphenic polynomials, 

in general, represent p -th numbers, formed by the 
product of three prime polynomials. In this case, 
the multiplication of the multipliers carries out 
without inter-digit transfers, similar to that shown 
by transformation (2). Unfortunately, as mentioned 
above, this modular transformation has not yet 
found proper coverage in the literature. At the same 
time, as it seems to the author of this paper, such 
transformation can find worthy application in such 
a direction as the factorization of extra-large 
semisimple numbers. However, this assumption 
remains as a hypothesis, the confirmation of which 
will require additional research. 

Possible applications of the research results 
include the theory of factorization of integers [7], 
including factorization using polynomials [8], 
cryptography [9], and the algebraic theory of 
modular calculations [10, 11], etc. 
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2 Mathematical Foundations 

Let it [3]
nf  be a polynomial formed by the product 

over ( )GF p  three, not necessarily different, 
irreducible polynomials (IP) with a priori unknown 
degree ,x y  and z  such that   

[3]
p p

n x y zf f f f=   .                   (3) 

 Thus, the problem to be solved is reduced to the 
determination degrees of IPs jointly generating a 
sphenic polynomial [3]

nf . The mathematical basis 

for factorization of degrees of polynomials [3]
nf   

base on the results obtained earlier in [6, 12], a 
summary of which (taking into account the 
specificity of IPs) give below. 
 In the classic version, to determine the three 
unknown variables ,x y  and z , it is necessary to 
make a system of three equations, each functionally 
dependent on these variables. As the first equation, 
according to (3), we take 

x y z n+ + = .                          (4) 

 The second equation can be derived from the 
parameter introduced in [6, 12] and called the cycle 

period ( Cord  — cycle order) of the compound 
polynomial [3]

nf . Let us define this parameter. 

Definition 4. The cycle period [ ]Cord ( )k

nf  of 
an arbitrary k − almost prime polynomial will be 
named the number of non-repeating subtractions S  
computed on the linear-logarithmic scale of the 
group generated by the polynomial [ ]k

nf . 

Let us move on to an explanation of the term 
"linear-logarithmic group scale". For this purpose, 
we will need to involve two additional parameters: 
the order of IP 

nf , denoted by ord ( )nf , and the 
order of the composite polynomial — [ ]ord ( )k

nf . 

According to Theorem 6.11, [8], the order of the 
polynomial [ ]k

nf  determines by the expression 

[ ]
1 2ord( ) LCM(ord( ), ord( ), ,k

n x xf f f=  

1
, ord( ), , ord( )),

k

xl xk i

i

f f n x
=

= .      (5) 

 In (5), the designations are slightly different 
from those in the original but equivalent to them. 
 The order prP  of the primitive over ( )GF p  

polynomial 
nf  calculate by the formula  

ord( ) 1n

pr nP f p= = − . 

 If 
nf  not primitive, then order irP  belongs to a 

subset of non-trivial divisors prP . Under conditions 

of a priori uncertainty about ,x y  and z  the only 
estimation option [3]ord ( )nf  is the sequential 

exponentiation of the generating element  . The 
most straightforward way to calculate the order of 
SPs is when element  =  chose as the group 
generator, which is the minimal derivative element 
of the group of deductions modulo [3]

nf . In this 

case, regardless of the field characteristic p , the 
formation of the following component 1kg +  of 

group ( )nGF p  is reduced to a shift of one digit to 
the left of the previous element kg  with 

subsequent reduction 1kg +  (if necessary) to the 

remainder modulo [3]
nf . 

 Even for small parameters ,x y  and z  values, 
not exceeding several tens, the estimation of SP 

[3]
nf  orders encounters possibly insurmounTable 

obstacles associated with the need to perform 
calculations of a considerable volume. To 
overcome the "nightmare of large numbers," we 
will use the method of replacing the "linear scale" 
in the definition [3]ord ( )nf  with a "linear-

logarithmic scale.  
The essence of the method is as follows. Let us 

paraphrase classical Lemma 2.3, [12] without 
changing its meaning, thus 

Lemma 1. For each nonzero element 1   of 
( )GF p , generated by IP nf , the equality is 

satisfied 1 (mod ) 1
np

nf − = . 

From Lemma 1, it follows 

Consequence 1. Arbitrary irreducible over the 
field ( )GF p  polynomials nf  (both primitive and 
non-primitive) support the comparison 
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( )
[ 1]1 0 1(mod )

np

nf
−

 ,                  (6) 

where [ ]

раз

( ) m

m

a aa aa= . 

 Comparison (4) holds if and only if 
nf  — IP. It 

is convenient to use relation (6) as one of the 
criteria for the irreducibility of the tested 
polynomials. The irreducible criterion (6) is 
necessary but not sufficient for all degrees n  of 
polynomials 

nf  [13]. 
 Let us further formulate the two most critical 
formal specifications [6]. 

 Definition 5. The sequence of natural numbers 
0,1, 2, ..., 1nk p= − , which are measures of the 

degree of the forming element of the multiplicative 
group of maximum order (MGMO) 

 * 0 1 1( ) , , , , ..., (mod )
nn k p

nGF p f−=      

let's call it the linear scale of the group. 

 Definition 6. The sequence of natural numbers 
1, 2, ...,r n= , which are measures of the degree of 

the characteristic p  of group ( )nGF p  of elements 

, 1r

r pt p= − , is called the logarithmic scale of the 

group. 

 Let us summarize the numerical parameters in 
Table 1. 

Table 1. Auxiliary parameters MGMO over (2)GF  

r  1 2 3 4 5 6 7 8 … 

,2rt  1 3 7 15 31 63 127 255 … 

Let us "tie" the parameters from Table 1 to the 
characteristics of the so-called fiducial grid (Fig. 
1), which consists of a set of parallel straight lines 
(grid steps). 

 

 

Fig. 1. Fiducial grid 

In Table 1, the following designations adopt: 
r −  the number of the step of the fiducial grid; 

,2rt −   the degree of the binary polynomial rCV , 

let's call it the Coordinate Vector, the left bit of 
which is 1, and the rest filled with zeros, i.e.,  

, 2

100...0
r

r

t

CV = .                          (7) 

 The term "coordinate vector" in (7) is nothing 
but the word "round number" [14] mentioned 
above. However, after this, we will refer to it as a 
"coordinate vector", believing it to be more 
appropriate to the context. 

The marks ,2rt , being evenly spaced on some 

axis, form "linear-logarithmic scale" mentioned 
earlier. The parameter ,2rt  is nothing more than the 

order (length) of the zero vector of the polynomial, 
the number of zero digits determined by the 
formula ,2 2 1r

rt = − . 

 We represent the fiducial grid (Fig. 1), 
corresponding to the polynomial nf , in the form of 

a vector [ ]

бит

1 11 11n

n

= . Each r − th unit in [ ]1 n  

symbolizes a coordinate vector rCV  calculated at 
the r − th step of the fiducial grid. The law of 
changing the order ,2rt  of zero digits of a binary 

vector rCV  can be quickly established by analyzing 
the data in the bottom line of Table 1. Namely 

,2 1,22 1r rt t −=  + , 0 0t = , 1,r n= .         (8) 

 Let us introduce some notations. Let 
( )

nr r fRes CV=S  denote the residue of the 

coordinate vector rCV  modulo a polynomial nf . 
Relations (8) form the fundamental basis of the 
proposed algorithm for factorizing semisimple 
polynomials [6], which reduced to a sequence of 
simple recurrent computations 

1( )
nr r k fRes s

−
= S S , 1=  0

r r
s

−
S , 0 1=S , 1,r n= , 

or else (for polynomials over field (2)GF ) 

2
1( 0)

nr r fRes −=S S , 0 1=S , 1,r n= .      (9) 

 When the index r  reaches the last rung of the 
fiducial ladder n  if it turns out that 1n =S , this 

1 2 3 4 5 6 7 8r

| | | | | | | |
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will fulfill the comparison conditions (6). The 
sequence of residues rS  on the steps of the fiducial 

grid, formed by an arbitrary polynomial nf , will be 
called a −S sequence of residues. 

 To explain the previously introduced notion of 
"polynomial cycle period", let us turn to numerical 
examples. For this purpose, let us compare 
sequences of −S residues formed by two 
polynomials belonging to different subclasses. As 
the first polynomial, let us choose a binary 
primitive polynomial of the sixth-degree 

(1)
6 1000011f =  and a simple IP (2)

6 1001001f =  — 

as the second polynomial. Calculating by formula 
(9), we obtain 

Table 2. The sequence of 
  −S residues generated by (1)

6f  

1

2

3

10;

1000;

110;

=

=

=

S

S

S

 
4

5

6

101000;

100101;

.

=

=

= 1

S

S

S

 

Table 3. The sequence of 
  −S residues generated by (2)

6f  

1

2

3

10;

1000;

10010;

=

=

=

S

S

S

 
4

5

6

1001;

10000;

.

=

=

= 1

S

S

S

 

 As follows from Tables 2 and 3, periods of 

cycles polynomials (1)
6f  and (2)

6f  coincide with the 

degree of IP, (1) (2)
6 6Cord Cord( ) ( ) 6f f= = . In 

contrast, (1)
6ord ( ) 63f =  and (2)

6ord ( ) 9f =  are 

different and determine the orders of the same 
polynomials. 

  Now let's turn to IP over ( )GF p , 2p  . Let's 
make Table 4 similar to Table 1, but for 
characteristics 3p = . 

Table 4. Auxiliary parameters MGMO for (3)GF  

r  1 2 3 4 5 6 7 … 

,3rt  1 8 26 80 242 728 2186 … 

 From a comparison of data in Tables 1 and 4, 
we arrive at such generalized relations for degree 

,r pt  and residue ,r pS  of coordinate vector rCV  

, 1, ( 1)r p r pt p t p−=  + − ,  0, 0pt = ,  1,r n= ;    

, 1,
1

( 0...0)
n

p

r p r p f

p

Res −

−

=S S , 0, 1p =S , 1,r n= .  (10) 

 Let's look at a numerical example. Let the 
chosen IP of the sixth degree (3)

6 1323401f =  over 

the field (5)GF . The sequence of −S  residues, 
calculated by the formula (10), is presented in 
Table 5 

Table 5. The sequence of 
  −S residues generated by (3)

6f  

1

2

3

10000;

40240;

302403;

=

=

=

S

S

S

 
4

5

6

414114;

130222;

.

=

=

= 1

S

S

S

 

 As in the previous versions of IP (1)
6f  and (2)

6f , 

for the polynomial (3)
6f , we have (3)

6Cord( ) 6f = , 

whereas (3)
6ord 3906( )f = , is the value obtained 

from the results of computer calculations. 
 Based on the examples considered, we arrive at 
the following Axiom. 

 Axiom 3. The cycle period of a simple and 
primitive polynomials nf  over a field ( )GF p  is 
invariant to the field characteristic p  and coincides 
with the degree of the polynomial, i.e.,
Cord ( )nf п= .  

 Axiom 3 makes it possible, without loss of 
generality in the following numerical calculations, 
to restrict ourselves to considering polynomials 
over fields (2)GF .                                               

3 Factorization Algorithm for Sphenic 

Polynomials 

Factorization of degrees of sphenic polynomials (as 
is customary in classical methods) reduces to 
solving a system of three equations for the a priori 
unknown variables that are the degrees of the 
polynomial factors. Two equations (of the 
necessary three) are trivial and written in this form 
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         x y z n+ + = , 
LCM( , , )x y z C= , (11) 

where for the sake of brevity [3]= Cord ( )nC f . 
The expression for the cycle period [3]Cord ( )nf  

of compound polynomials is similar to (3), which 
determines the order of the same polynomials. In 
particular, for sphenic polynomials 

[3]Cord( ) LCM(Cord( ), Cord( ),

Cord( ))
n x y

z

f f f

f

=
 

 Equations (11) form an incompatible system, 
which, at first sight, seems a priori unsolvable. But 
it is not as bad as it looks. The problem becomes 
surmount if we involve in its solution the relation 
between the parameters n  and C , and a subset of 
non-trivial divisors (NTDs) in the cycle period of 

[3]
nf . 

If, for example, it turns out that = / 3C n , then 
this would mean that all three polynomials forming 
the SP are polynomials of degree / 3n . On the 
other hand, if it is equal to the square of a natural 
number, then the solution of the system of 
equations (9) is as follows: 

x C= ; z C= ; ( )y n x z= − + . 

 The structural-logical scheme in Fig. 2 
represents the complete set of solutions for the 
system (9). 

 We turn to the analysis of ways to overcome the 
incompatibility of the system of equations (9). Let 
us pay attention to the following fact. Suppose that 
the binary SP form by the product over three 
irreducible polynomials whose a priori unknown 
degree 3x = , 4y =  and 6z = . The cycle period 
of such an SP is defined by the expression  

LCM( , , ) LCM(3,4,6) 12C x y z= = = . 

Let us write out the set of NTDs, equal to 
 2,3, 4,6 . From this example, all unknown 

degrees of the polynomial [3]
nf  contained a subset 

C  of non-trivial divisors of the cycle period of the 
polynomial.   

The above relationship between the degrees of 
SPs and NTDs of the cycle period [3]

nf  is not 

necessarily fully observed for all sphenic 
polynomials and their cycle periods. Nevertheless, 
it turns out to be very useful when solving the 
factorization of degrees in the general case of k −

almost simple polynomials. 
 Let us turn to the previously mentioned 
example, which assumes that all three components 
of an SP are polynomials of degree / 3n . It is 
possible for the set of IPs ,x yf f  and zf  in this 

case. In the first version, we will assume that all 
polynomials are different. Let 1010111xf = , 

1100111yf =  and 1101101zf =  answer by the 

sphenic polynomial [3]
18 1001110000101011001f = , 

which lead to Table 6.  

 Let kS  be the eldest subtraction of the sequence 
(in bold in the Tables). If 1k =S , then all SP 
components are different and do not necessarily 
have to have the same degree (as in Table 6). Let us 
support this conclusion with an example.  

 Table 6. The sequence of  −S residues 
generated by the first variant of the [3]

18f  

1

2

3

10;

1000;

10000000;

=

=

=

S

S

S

 
4

5

6

1000000000000000;

11111010101001010;

.

=

=

= 1

S

S

S

 

Let 111xf = , 1101yf =  and 10011zf = . Then 
[3]

9 1001010101f = , 12C = .  −S residues are 

summarized in Table 7. 

Table 7. The sequence of  −S residues   
generated by the [3]

9f  

1

2

3

4

5

6

10;

1000;

10000000;

100010111;

10001001;

110010101;

=

=

=

=

=

=

S

S

S

S

S

S

 

7

8

9

10

11

12

110010110;

110011100;

100010100;

10000011;

100011101;

.

=

=

=

=

=

= 1

S

S

S

S

S

S
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Fig. 2. Structural-logical scheme of the algorithm for factorization  
of degrees of sphenic polynomials 
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 We will assume that two of the three IPs are the 
same in the second version. Let 1100111x yf f= =  

and 1101101zf = . Based on the selected 
parameters we have [3]

18 1110110001100001001f = , 

6C =  which leads to Table 8.  

Table 8. The sequence of  −S residues   
generated by the second variant of the [3]

18f  

1

2

[7]
3

[15]
4

10;

1000;

10 ;

10 ;

=

=

=

=

S

S

S

S

 

5

6

7

100101100011011100;

10110100111010010;

.

=

=

= 10

S

S

S

 

 We obtain a similar result (by the value of kS ) 
when the degree of polynomial zf  is different from 
the degree of polynomials ,x yf f .  

Let 1011x yf f= =  and 11001zf = . Then 
[3]

10 11000111101f = , 12C = , and the sequence of 

−S residues give in Table 9. Note that the 
sequence of −S residues in Tables 8 and 9 ends 
with the value 10k =S . 

 

Table 9. The sequence of  −S residues   
generated by the [3]

10 11000111101f =  

1

2

3

4

5

6

10;

1000;

10000000;

100010110;

1001101;

1111111001;

=

=

=

=

=

=

S

S

S

S

S

S

 

7

8

9

10

11

12

13

1100111110;

101011001;

1110111100;

1000111;

1101110001;

1010101000;

.

=

=

=

=

=

=

= 10

S

S

S

S

S

S

S

 

 Finally, the third option assumes all three 
sphenic polynomials factors are the same. Let 

1101101x y zf f f= = = . We obtain the following 

parameter values [3]
18 1110111100111111101f =  

and 6C = . The sequence of  −S residues showed 
in Table 10. 

 

Table 10. The sequence of  −S residues   
generated by the third variant of the [3]

18f  

1

2

[7]
3

[15]
4

10;

1000;

10 ;

10 ;

=

=

=

=

S

S

S

S

 

5

6

7

8

111011110011110110;

111011110001111110;

110011110011111110;

.

=

=

=

= 1000

S

S

S

S

 

 Thus, according to Table 6-10, the value of 
senior residues kS  can indicate the quality of the 
SP components. Namely, if 1k =S , it means that 
all the factors of the sphenic polynomial are 
different. If 10k =S , two of the three SP factors 
are the same. And finally, if 1000k =S , it means 
that all three SP factors are the same. 
 Let's return to the structural and logical scheme 
of the factorization algorithm (Fig. 2). Consider the 
situation in which C  is an integer. Such a 
condition imposed on the SP cycle period allows 
for determining the minimum x C=  and 
maximum degrees z C=  of хf  and zf  factors. For 
degree y  there remains the possibility of choosing 
one of the alternative solutions y x=  or y z= . 
Both of these values y  retain C . Consider an 
example. Let 3x y= =  and 9z = , that is, 15n =  
and 9C = . Let us choose the SPs as such: 

1011х yf f= = , 1010110111zf = , and thus we 

obtain [3]
15 1010010110101011f = . We come to 

Table 11. 

 Table 11. The sequence of −S residues   
generated by the [3]

15 1010010110101011f =  

1

2

3

4

5

10;

1000;

10000000;

10010110101011;

1101110000101;

=

=

=

=

=

S

S

S

S

S

 

6

7

8

9

10

101010101011110;

110010101100101;

110001111011000;

110110101000111;

.

=

=

=

=

= 10

S

S

S

S

S

 

 Naturally, if the polynomials хf  and yf  are 

different, but their degrees are the same, then in the 
sequence of −S residues, the parameter 1k =S .  
 Let's move to the analysis of the algorithm for 
factorization of degree SP under the condition that 
the cycle period C  of the polynomial is such that 
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[3]
nf . The simplest solution obtains when C n . 

This case empirically established / 2C n= , 
( )x y MC L= =  and z C= , where MC  and L  are 

a subset and the number of NTDs of the cycle 
period C . Let [3]

16 10001100001101001f = . Let 
us compose (Table 12) the sequence of −S

residues 

Table 12. The sequence of −S residues 
generated by the [3]

15 1010010110101011f =  

1

2

[7]
3

[15]
4

10;

1000;

10 ;

10 ;

=

=

=

=

S

S

S

S

 

5

6

7

8

9

11010111100011;

110100111000000;

111110000001001;

1010000010100000

.

=

=

=

=

= 10

S

S

S

S

S

 

 Since 16n = , 8C =  and  2, 4MC = , 2L= , 
then (2) 4x y MC= = = , and 8z C= = . Because 

10k =S , the polynomials хf  and yf  are the same. 

The polynomials х yf f=  of the fourth-degree 

10011 and zf −  the IP of the eighth degree 
100011101 chose.  

Suppose that the polynomials хf  and yf  are 

different, such as 10011хf =  and 11001yf = , 

which form [3]
16 11010101000111111f = . Then, 

subtraction 8 1= k =S S  becomes the oldest in the 
sequence (see Table 13).   

Table 13. The sequence of −S residues 
generated by the [3]

15 1010010110101011f =  

1

2

[7]
3

[15]
4

10;

1000;

10 ;

10 ;

=

=

=

=

S

S

S

S

 

5

6

7

8

100100100100110;

1011010110100100;

111110000001001;

.

=

=

=

= 1

S

S

S

S

 

 We complete our analysis of algorithms for 
factorization of degrees of sphenic polynomials. 
The structural logic diagram, which showed in Fig. 
2, fully contains all the necessary information 
explaining the factorization technology. 

 A natural direction for further research is to 
generalize the results to solve the problem of 
factorization of degrees of k − almost simple 
polynomials whose order k  exceeds 3. 

4 Conclusions 

The study’s main result is the development of a 
practical algorithm of factorization n − degrees 
sphenic polynomials [3]

nf  formed by the product of 

three IPs over a Galois field of arbitrary 
characteristic. Of the three equations functionally 
dependent on the unknown degrees of the sphenic 
polynomials, they can represent only two equations 
explicitly. One of them is trivial and boils down to 
the sum of the unknown degrees of the polynomial 
co-dominants equals the a priori given degree of 
that polynomial.  
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The second equation relies on a calculated 
parameter, called the cycle period C  of the sphenic 
polynomial, equal to the lowest common multiple 
of the degrees of the factors [3]

nf . The 

incompatibility system of two equations for the 
three unknowns has overcome the fact that the 
calculated degrees of the denominators of the 
sphenic polynomials either coincide with the non-
trivial divisors of C  or are functionally related to 
them. 

 They have reviewed different variants of the 
solution to the problem of factorizing degrees of 
sphenic polynomials depending on the ratios of 
parameters n  and C . The volume of calculations 
reduces by switching from the linear scale to 
determine the polynomial’s [3]

nf  period cycle C  to 

the logarithmic scale. The proposed factorization 
algorithm is invariant to the characteristic of the 
field generated by the multipliers of the sphenic 
polynomial.  
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