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1 Introduction 
Let △𝑘

+= {𝐶 = (𝑐1, 𝑐2, … … 𝑐𝑘); 𝑐𝑗 ≥

0, ∑ 𝑐𝑗 = 1𝑘
𝑗=1 }, be a set of all possible discrete 

Chance distributions of a random variable 

𝑌 having utility distribution 𝑈 =

{(𝑢1, 𝑢2, … … 𝑢𝑘); 𝑢𝑗 > 0 ∀𝑗} attached to each 

𝐶 ∈ ∆𝑘
+ such that 𝑢𝑗 > 0 is the utility of an event 

having the chance of occurrence  𝑐𝑗 > 0. 

Let 𝑈 = (𝑢1, 𝑢2, … … 𝑢𝑘) be the set of positive 

real numbers, where 𝑢𝑗  is the utility or importance 

of the outcome 𝑦𝑗  . In general, the utility is 

independent of the likelihood of encoding the 

source symbol 𝑦𝑗, that is 𝑐𝑗. 

The source of information is thus given by 

 

[

𝑦1, 𝑦2 … … … 𝑦𝑘

𝑐1, 𝑐2 … … … 𝑐𝑘

𝑢1, 𝑢2 … … … 𝑢𝑘

]    (1) 

 

Where 𝑢𝑗 > 0,0 < 𝑐𝑗 ≤ 1, ∑ 𝑐𝑗 = 1𝑘
𝑗=1 , is 

called a utility information scheme. Corresponding 

to the scheme (1) Belis and Guiasu [1] gave the 

following measure of information: 

 

𝐻(𝐶; 𝑈) = − ∑ 𝑢𝑗𝑐𝑗 log  𝑐𝑗
𝑘
𝑗=1    (2) 

 

The above measure (2) is called ‘useful 

information’ and it reduces to Shannon's 

information [14] when utilities are ignored, as seen 

following: 

 

𝐻(𝐶) = − ∑ 𝑐𝑗 log  𝑐𝑗
𝑘
𝑗=1   (3) 

 

By using various postulates, many authors 

have defined the entropy of Shannon. Using 

essential assumptions that were deduced by 

Fadeev [7], Chandy and Mcliod [2], Kendall [9], 

Khinchin [10] made Shannon's argument more 

accurate. Tverberg [16], etc., was further defined 

by the entropy of Shannon by considering various 

sets of postulates. Simic [15] depicts a continuous 

series of real numbers adhering to a defined finite 

interval with a defined upper global bound, as well 

as demonstrating with examples how this 

technique can be used to establish the converse of 

several key inequalities.  For strongly convex and 

strongly mid-convex functions, the counterparts of 

the converse Jensen inequality were presented by 

Klaricic & Nikodem [11]. Approximation theory, 

mathematical economics, and optimization theory 

all benefit from strong convex functions. Many of 

their qualities have been documented in the 

Literature for isotonic linear functionals Dragomir 

[6] has given a reverse of Jensen’s inequality. 

 

In several fields of mathematics, convex 

functions play an essential role to Rashid et al. [13] 

and Ge-Jile et al. [8]. They are particularly useful 

in the study of optimization issues, where they 

have a variety of useful features. The convex 

function is an open set, for example, it contains just 

one minimum. Convex functions continue to meet 
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similar characteristics in infinite-dimensional 

spaces given acceptable additional assumptions, 

they are the most well-known basic aspect in the 

calculus of variations as a result. The convex 

enables control of the measured data of a random 

variable that is always bounded above by the 

convex function's expected value in probability 

theory. Jensen's inequality, as well as Holder's 

inequality and Arithmetic–Geometric mean 

inequality, may be derived from this conclusion. 

 

Convexity is something we encounter all the 

time and in a variety of ways. The most typical 

scenario is our standing stance, which is safe as 

long as our center of gravity's vertical projection is 

contained inside of the convex envelope of our 

feet! Convexity also has a significant influence on 

our daily lives due to its diverse uses in industry, 

business, health, art, and other fields. Problems 

with optimal resource allocation and non-

cooperative game equilibria are also present. 

Because a convex function has a convex set as its 

basis, the theory of convex functions falls within 

the umbrella of convexity. Nonetheless, it is a 

significant theory in and of itself, as it affects 

practically all fields of mathematics. 

The graphical analysis is most often the initial 

issue that necessitates the acquaintance with this 

theory. This is an opportunity to learn about the 

second derivative proof of concavity, which is a 

useful tool for detecting convexity. The difficulty 

of identifying the extremal values of functions 

with many variables, as well as the application of 

Hessian as a higher dimensional generalization of 

the second derivative, follows. The next step is to 

go on to optimization issues in infinite-

dimensional spaces, however full of technological 

complexity required to solve such issues, the 

fundamental concepts are quite comparable to 

those behind only one variable example. 

We would like to highlight the introduction 

and study of strongly convex functions, which play 

a crucial contribution to information theory and 

related fields. Many authors, for instance, strongly 

convex functions were used to explaining the one-

of-a-kind presence of a possible answer to 

nonlinear supplementary problems. In the study of 

iterative approaches, the convergence towards 

tackling variational inequalities and equilibrium 

difficulties, strongly convex functions were also 

critical. Using strongly convex functions, 

Nikodem and Pales [12] explore the crucial 

explanation of inner product spaces, which is an 

innovative and unique application. 

 

For convex functions, we obtained the 

following converse of generalized ‘useful’ 

Inequality of Jensen's that reduce the inequality 

given by S. S. Dragomir and N. M. Ionescu in [4]: 

 

0 ≤
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

− 𝑔 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

)  

≤
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

−
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

 (4) 

 

Suppose that 𝐸° is the interior of the interval 

𝐸, and  𝑔: 𝐸 ⊆ 𝑹 → 𝑹 is differentiable convex on 

𝐸°, 𝑦𝑗 ∈ 𝐸°,  and ∑ 𝑐𝑗 = 1𝑘
𝑗=1 , 𝑐𝑗 >  0 (𝑗 =

1, . . . , 𝑘) .  If 𝑔 on 𝐸 is strictly convex, then iff 

𝑦1 = ··· =  𝑦𝑘 the equality case holds in (4). The 

above measure reduces to Dragomir [5], when 

‘utilities are ignored. Several applications of this 

can be found in Dragomir and Goh [3]. The key 

contribution of this research is to highlight refining 

of the converse of generalized ‘useful’ inequality 

of Jensen's defined in (4). 

 

2 New Improvements 
 

In this section, we have given some lemma 

and their proofs where utilities are attached to 

probabilities of a differentially convex function 

and differentially strictly convex function and 

basic results that will be needed in this 

correspondence. 

 

Lemma 2.1 Suppose a differentiable convex 

function on  𝐸°, defined as  𝑔: 𝐸 ⊆ 𝑹 → 𝑹,  and 

𝑢𝑗 > 0 are the utilities attached to probabilities and 

𝑦𝑗 ∈ 𝐸°, 𝑐𝑗 >  0 (𝑗 =  1, . . . , 𝑘)  with ∑ 𝑐𝑗 = 1𝑘
𝑗=1 , 

then we have the inequality 

 
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

 ≤
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

 

+ inf
𝑦∈𝐸°

(𝑔(𝑦) − 𝑦
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) (5)

  

Proof. The following inequality hold for all 

𝑦, 𝑧 ∈ 𝐸°, if 𝑔 is differentiable convex on 𝐸°:  
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𝑔(𝑦)  −  𝑔(𝑧)  ≥  𝑔′(𝑧)(𝑦 −  𝑧) (6) 

  

Again, we get the next inequality if we multiply 

with 𝑐𝑗 >  0 and choose in (6), 𝑧 =  𝑦𝑗(𝑗 =

 1, . . . , 𝑘),  and sum over 𝑗 from 1 up to 𝑘.  

 

𝑔(𝑦) −
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

  

≥ 𝑦
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

−
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

  

 

it is equal to the following inequality 

 

𝑔(𝑦) − 𝑦
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

+
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

  

≥
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

    (7) 

For each 𝑦 ∈ 𝐸°. 
We deduce (5), taking the infimum over 𝑦 ∈ 𝐸°. 

The following outcome relates to the refining of 

Dragomir-Ionescu (4). It can be noted that (5) 

reduces the inequality given by Dragomir [5] when 

utilities are ignored. 

 

Theorem 2.1 Suppose a differentiable convex 

function on 𝐸°, defined as 𝑔: 𝐸 ⊆ 𝑹 → 𝑹, and 𝑢𝑗 >

0 are the utilities attached to probabilities and 𝑦𝑗 ∈

𝐸°, 𝑐𝑗 >  0 (𝑗 =  1, . . . , 𝑘) with ∑ 𝑐𝑗 = 1𝑘
𝑗=1 , then  

 

0 ≤
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

− 𝑔 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

)  

≤ inf
y∈𝐸°

(𝑔(𝑦) − 𝑦
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) 

+
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

− 𝑔 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) 

   ≤
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

. 

−
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

.
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

  (8) 

 

Proof. In the above inequality (8) the second 

inequality is followed by the first inequality in (5). 

It's indeed obvious that 

 

inf
𝑦∈𝐸°

(𝑔(𝑦) − 𝑦
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

)  

≤ 𝑔(�̅�) − �̅�
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

,  

where �̅� =
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

∈ 𝐸° and therefore the last 

portion of (8) is then proven.  

We may utilize the following result for 

applications. 

Lemma 2.2 Suppose a differentiable strictly 

convex function on 𝐸°, defined as 𝑔: 𝐸 ⊆ 𝑹 → 𝑹, 

and 𝑢𝑗 > 0 are the utilities attached to probabilities 

and 𝑦𝑗 ∈ 𝐸°, 𝑐𝑗 >  0 (𝑗 =  1, . . . , 𝑘) with 

∑ 𝑐𝑗 = 1𝑘
𝑗=1 , then 

 
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

≤
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

  

+𝑔 ((𝑔′)−1 − (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

))  

−(𝑔′)−1 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) .
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

 (9) 

 

where(𝑔′)−1 represents the opposite function of 

the derivative 𝑔′defined on  𝑔′(𝐸°). If 𝑦1 = ··· =
 𝑦𝑘, then equality case holds in (9). 

 

Proof. Define the function 𝑓: 𝐸° → 𝑹, 𝑓(𝑦) =

𝑔(𝑦) − 𝑦
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

. Consequently, 𝑓 is 

differentiable on 𝐸° and then 

𝑓′(𝑦) = 𝑔′(𝑦) −
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

 (10) 

If 𝑓′(𝑦) = 0, and 𝑦 ∈ 𝐸° then the above equation 

is equivalent to as follows 

 

𝑔′(𝑦) =
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

    (11) 

 

and since 
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

∈ 𝑔′(𝐸°), 𝑔′ is one-to-one, 

existence strictly increasing on 𝐸°, The equation 

(11) therefore has a unique solution 𝑦0 ∈ 𝐸° 

alternatively to 𝐸° given by 

 

𝑦0 = (𝑔′)−1 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) ∈ 𝐸°,  (12) 

 

The derivative of 𝑔′ defined on 𝑔′(𝐸°), where 

(𝑔′)−1 is the inverse function of the derivative. 
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Let, 𝑓′(𝑦) > 0 if 𝑦 > 𝑦0, 𝑦 ∈ 𝐸° and 𝑓′(𝑦) < 0 if 

𝑦 < 𝑦0, 𝑦 ∈ 𝐸°, then it follows that 

 

inf
𝑦∈𝐸°

𝑓(𝑦) = 𝑓(𝑦0) 

= 𝑔 ((𝑔′)−1 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

)) 

−(𝑔′)−1 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) . (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

).  

 

By using (4), we deduce (9). It is clear that (9) 

reduces the inequality given by Dragomir [5] when 

utilities are ignored. The equality case assumes the 

strict convexity of 𝐸° and specifics are omitted.  It 

is now feasible to disclose the next step in the 

Dragomir-Ionescu process (4). 

 

Theorem 2.2 Suppose a differentiable strictly 

convex function on 𝐸°, defined as 𝑔: 𝐸 ⊆ 𝑹 → 𝑹, 

and 𝑢𝑗 > 0 are the utilities attached to probabilities 

and 𝑦𝑗 ∈ 𝐸°, 𝑐𝑗 >  0 (𝑗 =  1, . . . , 𝑘) with 

∑ 𝑐𝑗 = 1𝑘
𝑗=1 , then 

 

0 ≤
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

− 𝑔 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

)   (13) 

≤
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

  

+𝑔 ((𝑔′)−1 − (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

))  

−(𝑔′)−1 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) . (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

)  

−𝑔 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

)  

≤
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

−
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1 𝑦𝑗

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

  

 

Iff  𝑦1 = ··· =  𝑦𝑘, the equality holds in (13). 

 

Proof. By lemma 2.1 and theorem 2.1, the proof is 

obvious. 

 

Remark 2.1 In Lemma 2.2, we note that there is 

double inequality with the assumptions 

 

𝑔 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) ≤
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

  

≤
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

  

+𝑔 (−(𝑔′)−1 − (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

))  

− (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) . (𝑔′)−1 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) (14) 

 

with equality iff 𝑦1 = ··· =  𝑦𝑘. 
In case, if 𝑓 is a strictly concave and differentiable 

function, then 

 

𝑓 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) ≥
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑓(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

  

≥
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗𝑓′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

+

𝑓 (−(𝑓′)−1 (−
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑓′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

))  

+ (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑓′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) . (𝑓′)−1 (−
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑓′(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) (15) 

 

The proof of (15) follows by (14) choosing 𝑔 =
−𝑓, with equality iff 𝑦1 = ··· =  𝑦𝑘. 

 

3 Numerical and Graphical Illustration 
 

In this section, we give a numerical result that 

will further strengthen our results (14) and (15). 

Suppose a differentiable strictly convex function 

on 𝐸° = 𝑔(𝑦) = 𝑦2, defined as 𝑔: 𝐸 ⊆ 𝑹 → 𝑹, 

and let 𝑢1 = 2, 𝑢2 = 3, 𝑢3 = 4, 𝑢4 = 5, 𝑢5 =
6, 𝑢6 = 7 are the utilities that are attached to 

probabilities 𝑐1 = 𝑐2 = 𝑐3 = 𝑐4 = 𝑐5 = 𝑐6 =
1

6
 

with ∑ 𝑐𝑗 = 16
𝑗=1 . Now we take the convex 

function 𝑔(𝑦) = 𝑦2 is an example of one. The 

'useful' Jensen's inequality asserts that we must 

discover the value of the 'useful Jensen inequality 

for convex function 𝑔 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) ≤
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

 

in Table 1, we measure the numerical value for 

taking examples of the convex function, the value 

of 𝑔 (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑦𝑗

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) = 0.34 and the value of 

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1 𝑔(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

= 2.53 which holds the inequality 

(14) and (15). A bar graph for the convex function 
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is shown in Figure 1. If we choose any two 

locations on the graph of a function and draw a line 

segment between them, the entire segment is 

above the graph, then the function is convex. The 

function, on the other hand, is considered to be 

concave if the line segment always sits below the 

graph. To put it another way, 𝑔(𝑦) is convex only, 

if −𝑔(𝑦) is concave. 

 

 

Table 1. The function evaluated at the expectation 

 

𝑦 𝑦2 𝑐 𝑢 𝑐 ∗ 𝑦 𝑐 ∗ 𝑦2 
𝑔 (

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1 𝑦𝑗

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) (
∑ 𝑢𝑗𝑐𝑗

𝑘
𝑗=1 𝑔(𝑦𝑗)

∑ 𝑢𝑗𝑐𝑗
𝑘
𝑗=1

) 

1 1 1/6 2 0.17 0.17 0.03 0.03 

2 4 1/6 3 0.33 0.67 0.06 0.11 

3 9 1/6 4 0.50 1.50 0.08 0.25 

4 16 1/6 5 0.67 2.67 0.11 0.44 

5 25 1/6 6 0.83 4.17 0.14 0.69 

6 36 1/6 7 1.00 6.00 0.17 1.00 

      =0.34 =2.53 

 

 
Figure 1. Bar graph representation of inequality for the convex function. 

 

4 Discussion 
In this paper, we have mainly worked on a 

differentiable convex function in which a utility 

test is done as well as we have displayed the result 

in terms of a differentiable function and its related 

result also, we have shown the result in terms of 

Jensen’s inequalities.  Belis and Guiasu gave a 

measure of information for the discrete probability 

distribution of random variables that are required 

for information theory. 

 

5 Conclusion 

 

This paper introduced the converse of generalized 

‘useful’ Jensen inequality. Our work reinforces 

Dragomir's fundamental result through a stronger 

and more generalized 'useful' inequality of Jensen, 

which can be used further in information theory. 

With the help of numerical data, it is shown that 

inequality holds for both convex and concave 

functions.  
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