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Abstract:  Supply chain coordination deals with collaborative efforts of supply chain parties and making globally-
optimal decisions that can improve overall performance and efficiency of the entire supply chain. In many 
situations, the problem of supply chain coordination requires formulation of a continuous time optimal control 
model, in which optimal solution is identified approximately through numerical estimation. Therefore, in this 
paper, a novel approach was presented for optimal control problem by developing a new formulation based on 
advanced ingredients of differential and Poisson geometry. Thus, the exact optimal solution of control problem 
can be obtained using an analytical methodology that converts the Hamilton-Jacobi-Bellman partial differential 
equation (PDE) into a reduced Hamiltonian system. The proposed approach was applied to the problem of 
coordinating supplier development programs in a two-echelon supply chain comprising of a single supplier and 
a manufacturing firm. For further illustrating applicability and efficiency of the proposed methodology, a 
numerical example was also provided. The proposed approach offers unique advantages and can be applied to 
find the exact solution of optimal control models in various optimization problems.  
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1 Introduction 
In recent years, supply chain coordination has 
become a major issue in supply chain management 
and received much attention from both supply chain 
researchers and practitioners [1].  
Supply chain coordination implies collaborative 
efforts of supply chain members working together 
towards mutually-defined goals and activities, 
including supplier development, coordination with 
suppliers and customers, etc. [2].  
It is concerned with making globally-optimal supply 
chain decisions that can benefit all supply chain 
members, instead of individual decisions [3]. 

In the recent years, supply chain coordination has 
become a major issue in supply chain management 
and has received a great deal of attention both from 
researchers and practitioners in the field of supply 
chain [4].  

Supply chain coordination implies collaborative 
efforts of supply chain members working together to 
achieve the mutually-defined goals and activities 
including supplier development, coordination with 
suppliers and customers, etc. [5]. It is concerned with 
making globally-optimal supply chain decisions that 

can be useful for all supply chain members, instead 
of individual decisions [6]. 

Supply chain coordination plays a critical role in 
improving the overall performance of supply chain 
and the lack of coordination among supply chain 
partners may reduce efficiency and result in 
undesirable consequences in supply chain operations. 
Therefore, the centralized decision-making and 
various mechanisms are used by supply chain 
partners including revenue sharing, risk sharing, 
synchronized operation, etc., to achieve coordination 
purposes [7].  

In many industries, manufacturing firms develop 
strategic, long-term relationships with their suppliers 
by implementing and supporting supplier 
development programs [8].  

The goal is improving performance and 
capabilities of the suppliers to meet short- and long-
term supply needs of manufacturing firm, which in 
turn results in improving operational performance in 
terms of cost, quality, delivery, etc. [9].  

Such a strong relationship between manufacturers 
and suppliers enhances the overall efficiency and 
profitability of both parties and helps to create 
sustainable competitive advantage [10].  
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Despite potential benefits of supplier 
development programs, they might be unattractive 
for suppliers, because suppliers might be reluctant to 
modify their internal processes and instead pursue 
their own objectives [11]. Since, success of supplier 
development program depends on mutual recognition 
and aligned objectives, coordination between 
supplier and manufacturer is required [8], [12]. Thus, 
optimal decision on supplier development is 
characterized by a solution for the problem of supply 
chain coordination.  

Many problems of supply chain coordination 
which were mentioned above, involve formulating 
and solving a continuous time optimal control model 
with an equation of incomplete Hamiltonian system, 
in which the exact optimal solution cannot be 
obtained, and instead it should be approximately 
estimated by numerical analysis (e.g., [8], [13]). 

Therefore, in this paper, a novel analytical 
solution approach is presented based on differential 
and Poisson geometry by reformulating and 
converting the original problem to a reduced 
Hamiltonian system ([14-19]. The proposed 
approach is applied to obtain optimal solution to the 
problem of coordinating supplier development in a 
two-echelon supply chain comprising of a single 
supplier and single manufacturer.  
 
2 Problem of coordinating supplier 

development 

 
2.1 Problem description and formulation 

 
We consider the problem of coordinating supplier 
development in a two-echelon supply chain as 
presented in the study by Proch et al., [8]. Supply 
chain comprises of a single supplier and a single 
manufacturing firm where manufacturer assembles 
components from supplier and sells the final products 
to the market. The goal is identifying the optimal 
decision of supplier development investment.  

A centralized decision-making process is assumed 
and supply chain is considered as an integrated 
system ,in which all parameters including the optimal 
amount of effort invested in supplier development are 
simultaneously chosen. This decision-making 
process ensures efficiency of the entire system and 
opts for the optimum level of supplier development, 
i.e., maximizes the total profit of the supply chain. 
Variables and parameters for this model are 
summarized in Table 1. 

 
Table 1. Parameters and Decision Variables ([8]) 

Parameters/ 

Variables 
Description 

a  
Prohibitive price (e.g. 
maximum willingness to pay) 

b  
Price elasticity of the 
commodity 

Mc  
Manufacturer's unit production 
cost 

SDc  
Supply cost per unit charged by 
the supplier 

0c  
Supplier's unit production cost 
at the begininig of the contract 
period 

 x t  
The measurement of the efforts 
invested in the supplier 
development 

m  The supplier learning rate 
 

 

 

0

ln
;

ln
[0,1], 1

S

m
S

c x

c x = c x

m =




    

Supplier production cost 

r  
The supplier fixed profit 
margin 

 u t  The effort at time t  

 t
 

Capicity limit of  (resource 
availability in terms of time, 
man power or budget) 

 

The profit function   1: 0, ,SCJ L T R R
 of 

the set of measurable functions and the model of 
efforts invested in supplier development are defined 
by the following problem: 

  
 

   

 

2 2
0

0

0

4

0, 0 ,  

0 1

SC

m
T M

SD

J

a - c - c x t - r
:= - c u t dt,

b

subject to x = u;  

u : T ,ω

x = x = .





 

(1) 

The centralized collaboration strategy should be 
determined such that, the accumulated profit function 
(1) is maximized. Using the maximum principle 
applied to the optimal control problem (1) with the 
Hamiltonian function of 
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 

  

     

2 2
0

, , ,

4
,

m
M

SD

H t x u

a - c - c x t - r
=

b

-c u t + t u t



  

(2) 

switching time t  can be obtained by the solution to 

      , , 0SD

H
x u t t = -c + t =

u
  

 . 
Then, as investigated in a previous study [8], t  

is obtained by numerical analysis from the following 
equation: 

     
1

0 01 1

2

m+ m

M

SD

mc + t a - c - c + t t -T

b

= c

   

 

(3) 

More details on the above fromulation have been 
given in the previous study [8]. 

 
2.2. Conversion of the model based on the 

proposed methodology 
The optimization problem given in Equation (1) is a 
common form in many problems of supply chain 
coordination. It results in an equation with different 
parameters for switching time and the optimal control 
function, which can be only evaluated by numerical 
estimation. In fact, there exists only one equation 
with different parameters (Equation (3)).  

The case where the Hamiltonian H Σφάλμα! 

Δεν έχει οριστεί σελιδοδείκτης. is linear in 
control u  is of special interest. Especially, it is a 
simple situation to handle when H Σφάλμα! Δεν 

έχει οριστεί σελιδοδείκτης. is plotted against u

Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. either 
as a positively-or negatively-sloped straight line, 
since the optimal control is always to be found at a 
boundary of u . Thus, the only task is determining this 
boundary. Moreover, this case serves to highlight 
how a complex situation in the calculus of variations 
has now become easily manageable in optimal 
control theory. 

This simple approach apparently results in 
elimination of some equations of the Hamiltonian 
system in the mentioned coordination optimization 
problem. For example, because accurate 
determination of the capacity limit  = t   of  u t  
in the problem is not critical to our discussion, it is 
exogenously assessed to be feasible to the problem. 

However, given the proposed approach, we 
consider all the functions and parameters in the 
system along with their actual effect. Thus, it will be 
possible to incorporate more variables in the 
coordination optimization model. This can be 
implemented by considering some variables as 
multiple functions and then, the Hamiltonian 
function as a function of these variables and their 
derivatives.  

This simple approach apparently results in 
elimination of some equations of the Hamiltonian 
system in the mentioned coordination optimization 
problem. For example, because accurate 
determination of the capacity limit  = t   of  u t  
in the problem is not critical to our discussion, it is 
exogenously assessed to be feasible to the problem.  

However, given the proposed approach, we 
consider all the functions and parameters in the 
system along with their actual effect. Thus, it will be 
possible to incorporate more variables in the 
coordination optimization model. This can be 
implemented by considering some variables as 
multiple functions and then, the Hamiltonian 
function as a function of these variables and their 
derivatives.  

 
2.3. Solution method 
According to Equation (4), we can rewrite the 
corresponding Hamiltonian function (2) as 

 

   
     

, , ,

,
M SC

SD

H = H x u d

= d p d t - c - c

-c u t + t u t



  

(4) 

with production quantity of 
 

2
M SCa - c - c

d t =
b , 

and price distribution of 
     M SCp d = p d t = a - bd = a+c +c

0
m

SCc = r +c x  
Step 1 (Hamiltonian System): We have the 

Hamiltonian system 
    

 

1
0 02

,
4

,

,   ,

m- m
M

M SC

SD

- mc x t a - c - c x tH d
= = -

x b dt

H du
= d a - bd - c - c - bd = -

d dt

H dx H
= u = = -c + = d

dt u










 



 


 

  
which can be written as follows 
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 
    1

0 0 ,
2

m- m
Mmc x t a - c - c x t

t =
b


 

(5) 

   ,SDd t = c + t  (6) 

   M SCu t = d -a+bd +c +c +bd   (7) 

Step 2 (First Integrals): According to Equation 
(5), we have 

 

 

    

 

      

    

1
0 0

0
1 1

2
0

2 1 2 1

2

2

2

m- m
t M

t

M m- m-

m- m-

t

= t

mc x s a - c - c x s
- ds

b

= t

mc
- a - c I t - I t

b

mc
+ I t - I t

b



















 

(8) 

where, 
   

0

s
m

mI s = x k dk . Also, according to 
Equation (6), we have 

      

     

t

SD
t

t

SD
t

d t = d t - s - c ds

= d t - t - t c - s ds











  



  

(9) 

Then, substituting this into Equation (7) results in 

   

      

    

  

    

0
1 1

2
0

2 1 2 1

0

4

4
1
2

2

M m- m-

m- m-

M

m m

u t = u t

mc
+ -a +c + r I t - I t

b

mc
+ I t - I t

b

- a - c - r t - t

c
+ I t - I t











 

(10) 

Finally, for ( ) 1x t = + t , [0, ]t t ,  as 
expressed in Equation (8), we conclude that 

 

 
 

    

    

0

2 2 20

1 1
2

1 1
4

m mM

m m

t

= t

c a - c
- + t - + t

b

c
+ + t - + t

b





 


 








 

(11) 

In addition, based on Equation (9), we have: 

   
 

   

 

 
    

    

 
    

0

1 10
2

2 20

2 2 1 2 10
2

1
2

1 1
2 1

1
4

1 1
4 2 1

m
M

m+ m+M

m

m+ m+

d t = d t

c a - c
+ + t t - t

b

c a - c
- + t - + t

b m+

c
- + t t - t

b

c
+ + t - + t

b m+




 





 




 



 



 

(12) 

Finally, Equation (10) results in 

 

 

      

 
    

  

 
    

0

2 2 2 2 20

1 10

1 1
4

1 1
8 1
1
2

1 1
2 1

m m

M

m+ m+

M

m+ m+

u t

= u t

c
+ -a +c + r + t - + t

b

mc
+ + t - + t

m+ b

- a - c - r t - t

c
+ + t - + t

m+

 


 


 












 

(13) 

Step 3 (Reduction): Following Step 2, we have 

 SD

H H
-c + p = u

p u

 

   
Then, its first integral is 

22 2 SDu = p - c  
and Equation (4) is reduced to 

 

     22 2M SC SD SD

H p,x,d

= d p d t - c - c p - c -c + p
 

 

2.4. Numerical example and discussion 
For further illustrating applicability and superiority 
of the proposed methodology, a numerical example 
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is presented. Data for the example are adopted from 
the study by Proch et al., [10]. We apply the proposed 
approach and the exact solution algorithm presented 
in the current research to obtain the results and 
compare them with those obtained from numerical 
estimation. It helps to evaluate performance and 
efficiency of the proposed algorithm and analyze 
quality of the obtained solution against a reference 
solution. Characteristics of the numerical example 
are given in Table 2. 

 
Table 2. Parameter Values for Numerical Analysis 

(Adopted from Proch et al. [8]) 

T  a  b  
60 200 0.01 
r  SDc    

15 100000 1 
Mc  0c  m  

70 100 0.1-  
For numerical analysis of the problem using the 

given parameter values, from Equation (11), we 
obtain 

   
 

    
    

0

220

1 1
2

1 1
4

mmM

mm

c a - c
t = T - + T - + t

b

c
+ + T - + t

b

   


 


 



 

Since   SDt = c 

, then we have 

   

   

0 1

0 2

100 200 70 0 1100000 0 1 60 1
0 02

100 0 21 60 1
0 04

- .

- .

( - ) - .
= - + +t

.

- .
+ + - +t

.

 
 
 

 
 
       

resulting in 9.844t = .  
Substituting the identified value in Equation (11), 

we have 

     
0.1 0.225655 0650000 1 250000 1- -

t = - - +t - +t  
Since 

 
  0

19348.65
2

m
Ma - c - rc x

d t = = -
b





 
then based on Equation (12), we conclude that 
   

    

  

0.9

0.8

19348.65 512146.73 9.844

722222.22 8.54 1 155203.71 9.844

312500 6.73 1

d t = - + - t

- - +t - - t

+ - +t
 

Also, according to Equation (13), we obtain 

      
  

    

0 1287500 0 78 1

1 813888 88 73 1

0 957 5 9 88 55 55 8 54 1

- .
u t = u t - . - +t

.
+ . - +t

.
- . . - t + . . - +t



 
The approximate value of t  is equal to 9.212, as 

obtained numerically in the study by Proch et al., [8]. 
However, the analytical solution algorithm 
developed herein provides a better answer as it yields 
a bigger objective value. The difference between the 
results is due to elimination of some equations of the 
Hamiltonian system, which is also a prevalent 
practice to find the answer to the optimal control 
model in coordination optimization problems. 

 Using our proposed methodology, the value of 
switching t  was obtained as 9.844, which is clearly 
better than the result obtained in the study by Proch 
et al., [8] for the presented maximization control 
problem. In the previous works (e.g., [8], [12-13]), 
the optimal solution has been identified by 
eliminating some critical equations. Thus, some 
important characteristics of the problem should be 
overlooked. In fact, an accurate determination of 
 t ,  d t  and  u t  variables has been exogenously 

assessed to be feasible or they should be 
approximately identified. But in the proposed 
method, in actual inspection, we consider the 
variables as multiple functions and then, the 
Hamiltonian function as a function of these variables 
and their derivatives. 

   
3. Conclusions 
In this paper, a novel methodology was presented to 
find the exact optimal solution of the general 
continuous time optimal control problem by 
developing a novel reformulation drawing upon 
differential and Poisson geometry. For this purpose, 
we applied geometric notions about symmetric 
groups and first integrals to reduce the order of the 
Hamiltonian system. The proposed approach and 
solution method was applied to supply chain 
coordination problem in a two-echelon supply chain 
with the objective of finding the optimal decision of 
supplier development investment. We obtained the 
exact optimal solution and the optimum switching 
time for corresponding coordination problem with a 
single supplier and single manufacturing firm.  

The main advantage of the proposed methodology 
is that it outperforms the numerical estimation 
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approach which is prevalent in solving the optimal 
control models in coordination optimization 
problems. The proposed methodology converts the 
original problem to the system of fully Hamiltonian 
equations with equations as equal as variables. It 
provides the analytic optimal solution and, thus, it 
yields better results than those obtained through 
numerical estimation. The proposed approach can be 
also successfully applied to solve optimal control 
models in other optimization problems. 
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