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Abstract: As state of charge is one important variable to monitor the later battery management system, and as 
traditional Kalman filter can be used to estimate the state of charge for Lithium-ion battery on basis of probability 
distribution on external noise. To relax this strict assumption on external noise, set membership strategy is 
proposed to achieve our goal in case of unknown but bounded noise. External noise with unknown but bounded is 
more realistic than white noise. After equivalent circuit model is used to describe the Lithium-ion battery charging 
and discharging properties, one state space equation is constructed to regard state of charge as its state variable. 
Based on state space model about state of charge, two kinds of set membership strategies are put forth to achieve 
the state estimation, which corresponds to state of charge estimation. Due to external noise is bounded, i.e. 
external noise is in a set, we construct interval and ellipsoid estimation for state estimation respectively in case of 
external noise is assumed in an interval or ellipsoid. Then midpoint of interval or center of the ellipsoid are chosen 
as the final value for state of charge estimation. Finally, one simulation example confirms our theoretical results. 
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1. Introduction 

Lithium-ion battery is the leading energy storage 
technology for many fields, such as electric vehicle, 
modern electric grids, transformation, etc. The main 
features of Lithium-ion battery include energy 
density, a long time and a lower self-discharge rate, 
so many research on these main features of 
Lithium-ion battery are carried out in recent years 
from their own different points of view. One 
interesting area of research is battery state 
estimation, especially named as state of charge 
(SOC) estimation, as State of charge can not only 
reflect the remaining capacity of Lithium0ion battery, 
but also embody the performance and endurance 
mileage of electric vehicle. Furthermore State of 
charge is the most important factor to be used in the 
battery management system, which is critical for the 
safety, efficiency and life expectancy of Lithium-ion 
battery. Generally State of charge indicates the 

remaining battery capacity to show how long the 
battery will last. It helps the battery management 
system to protect the battery from overcharging and 
over-discharging, and makes energy management 
system to determine an effective dispatching strategy. 
But State of charge can not be directly measured 
using physical sensors, then it must be estimated 
using some newly developed methods with the aid 
of measurable signals such as the voltage and 
current of the battery. Then here in this paper, State 
of charge estimation is our concerned problem for 
Lithium-ion battery. 
State of charge estimation has been widely studied 
and lots of estimation algorithms have been 
proposed to acquire precise state of charge 
estimation. An improved extended Kalman filter 
method is presented to estimate state of charge for 
vanadium redox battery (Mohamed MR, 2015), 
using a gain factor. Some unknown parameters from 
state space model are identified by classical least 
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squares method. The square root cubature Kalman 
filter algorithm has been developed to estimate the 
state of charge of battery (Guarnieri Massimo, 2016), 
where 2n points are calculated to give the same 
weight, according to cubature transform to 
approximate the mean of state variables. To improve 
the accuracy and reliability of state of charge 
estimation for battery, an improved adaptive 
cubature Kalman filter is proposed in (Hong WC, 
2015), where the battery model parameters are 
online identified by the forgetting factor recursive 
least squares algorithm. An adaptive forgetting 
recursive least squares method is exploited to 
optimize the estimation alertness and numerical 
stability (Petchsingh C, 2016), so as to achieve 
online adaptation of model parameters. To reduce 
the iterative computational complexity, a two stage 
recursive least squares approach is developed to 
identify the model parameters (Li X, Xiong J, 2018), 
then the measurement values of the open circuit 
voltage at varying relaxation periods and three 
temperatures are sampled to establish the 
relationships between state of charge and open 
circuit voltage. In (Ngamsai Kittima, 2015), a 
multi-scale parameter adaptive method based on 
dual Kalman filters is applied to estimate multiple 
parameters. Based on battery circuit model and 
battery model state equation, the real time recursive 
least squares method with forgetting factor is used to 
identify unknown battery parameters (Ressel S, Bill 
F, 2018). After introducing the concept of state of 
health, the average error of the obtained state of 
charge estimation is less than one given value. A 
novel state and parameter co-estimator is developed 
to concurrently estimate the state and model 
parameters of a Thevenin model for Liquid mental 
battery (Chou YS, Hsu NY, 2016), where the 
adaptive unscented Kalman filter (UKF) is 
employed for state estimation, including a battery 
state of charge. After performing Lithium-ion battery 
modelling and off-line parameter identification, a 
sensitivity analysis experiment is designed to verify 
which model parameter has the greatest influence on 
state of charge estimation (Zhong Q, Zhong F, 2016). 

To improve the state of charge estimation accuracy 
under uncertain measurement noise statistics, a 
variational Bayesian approximation based adaptive 
dual extended Kalman filter is proposed in (Xiong B, 
Zhao J, 2017), and the measurement noise variances 
are simultaneously estimated in the state of charge 
estimation process. Actually to the best of our 
knowledge, these state of charge estimation 
methodologies can be roughly divided into 
data-driven methods and model-based methods (Wei 
Z, Tseng KJ, 2017). In the model-based methods, the 
Kalman filter based state of charge estimation 
methods have the merits of self-correction, online 
computation, and the availability of dynamic state of 
charge estimation (Wei Z, Tseng KJ, 2016). Kalman 
filter was firstly proposed to estimate the state of 
linear system, then in order to apply it into nonlinear 
system, the extended Kalman filter (EKF) and 
unscented Kalman filter were developed. Meanwhile 
the date-driven methods typically include the look 
up table method, matching learning based method, 
artificial neural networks and support vector 
machine, etc (Wei Z, Bhattaraia A, 2018). the data 
driven method means that in estimating the state 
whatever in linear system or nonlinear system, no 
mathematical model is needed, i.e. the state is 
constructed only directly by observed data (Lin, C, 
Mu, H, 2017), so a large number of training data 
covering all of the operating conditions is collected 
to improve the estimation accuracy of the considered 
state. 
From above mentioned papers or other literatures, 
we see that it is only Kalman filter that is used to 
achieve the state estimation. Here we regard all 
kinds of Kalman filter’s extended forms as the same 
category. To the best of our knowledge that no other 
new strategy is proposed to estimate the unknown 
state, except Kalman filter or its extended forms. 
Furthermore through understanding Kalman filter 
for state estimation carefully, roughly speaking, 
Kalman filter holds for state estimation in case that 
the considered external noise must be a zero mean 
random signal, i.e. white and normal noise. This 
condition corresponds to the classical probabilistic 
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description on external noise. But this white noise is 
an idea case, and it does not exist in reality. To relax 
this strict probabilistic description on external noise, 
we propose to apply set membership estimation 
strategy in estimating our considered state in the 
presence of unknown but bounded noise. Here our 
considered unknown but bounded external noise is 
more realistic than white noise in engineering or 
other research field. It means that our goal is to 
estimate the state in case of the unknown but 
bounded external noise in this paper, where the 
estimated state corresponds to the state of charge in 
the constructed state space equation. Due to classical 
Kalman filter or its extended forms are useless 
within the framework of unknown but bounded 
external noise, so it is necessary to propose another 
estimation strategy to identify unknown state on the 
basis of unknown but bounded external noise. The 
idea of set membership estimation is from system 
identification theory or adaptive control, and in 
order to apply set membership estimation to deal 
with the problem of estimate the state of charge for 
Lithium-ion battery, firstly we need to reformulate 
one state space equation for the state of charge 

estimation, through using one equivalent circuit 
model to replace the considered state of charge 
estimation for Lithium-ion battery. Based on this 
constructed state space equation corresponding to 
the state of charge for Lithium-ion battery, then the 
idea of set membership estimation strategy can be 
easily applied here. More specially, due to the 
external noise is unknown but bounded, i.e. it is 
assumed to be in one set priori within the whole 
framework of set membership estimation, then two 
kinds of set membership estimation strategies are 
proposed here based on the used set, which includes 
the external noise. Without loss of generality, 
according to the commonly used interval and 
ellipsoid for the external noise, the interval 
estimation and ellipsoid estimation are derived for 
the considered state estimation respectively, which 
corresponds to the state of charge estimation for 
Lithium-ion battery. This correspondence is from 
the equivalent state space equation. Based on our 
obtained interval estimation or ellipsoid estimation, 
the midpoint of the interval estimation can be chosen 
as the final state estimation and similarly the center 
of the ellipsoid estimation can be also chosen. 

Equivalent circuit model 
for Lithium-ion battery

Nonlinear state space 
equation about SOC

External noise in 
interval

External noise in 
ellipsoid

Interval estimation for 
state

Interval estimation for 
output

Ellipsoid estimation for 
state

Outer ellipsoidal 
approximation

Inner ellipsoidal 
approximation
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Figure 1  A flowchart of our paper 
The paper is organized as follows. In section 2, the 
battery modelling is addressed, further the definition 
of state of charge and the state space models for 
state of charge estimation are also described. In 
section 3, consider the external noise is in one 
interval, which is a special case of the unknown but 
bounded, then the interval estimation for the state is 
derived at every time instant by our own 
mathematical derivation. Furthermore, for 
completeness, the interval estimation for the output 
is also obtained, though it is not our concern. In 
section 4, consider the external noise is in one 
ellipsoid, then we investigate to build ellipsoidal 
approximation of the state estimation. The main 
contribution in this section 4 is that given two 
ellipsoids, we need to find the best inner and outer 
ellipsoidal approximations of their arithmetic sum. 
In section 5, one numerical example illustrates the 
effectiveness of our proposed set membership 
estimation in estimating the state of charge for 
Lithium-ion battery. Section 8 ends the paper with 
final conclusion and points out the next topic. 
A flowchart of our two proposed set membership 
strategies is given in Figure 1, where the yellow 
parts are our two considered cases of external noise 
with interval or ellipsoid. The main contributions in 
these paper is to derive the interval estimation and 
ellipsoid estimation for state, which correspond to 
the above two considered unknown but bounded 
noises respectively. 

2．Battery modelling 
Our considered Lithium-ion battery has some merits 
in energy density and life, further it is the leading 
development direction of power batteries for electric 
vehicles in the future. In order to give a brief 
introduction on Lithium-ion battery, the internal 
states of Lithium-ion battery are always divided as 
four parts, i.e. SOC, temperature, rate of current, 
state of health. These four states reflect the internal 
relations of Lithium-ion battery with time variable. 
Here our emphasis is on the internal structure of 
Lithium-ion battery, which is shown in Figure 2, 
whose cell generally comprises four parts: a polymer 

positive electrode, a diaphragm, a negative electrode 
and an electrolyte. The positive electrode of 
Lithium-ion battery is generally composed of 
Lithium-ion polymer. Common cathode Lithium-ion 
polymer materials include lithium phthalate, 
Lithium-ion phosphate, barium acid strontium, 
Lithium-ion management, nickel diamond and 
nickel-nickel aluminum ternary lithium. The 
diaphragm is in the process of the first charge and 
discharge of the liquid Lithium-ion battery. The 
electrode material reacts with the electrolyte at the 
solid-liquid phase interface to form a passivation 
layer covering the surface of the electrode material 
to isolate the electrode and the electrolyte, and the 
Lithium-ion can finish chemical reaction with the 
diaphragm. 

Positive electrode

Negative electrode

Electrolyte

Lithium

Diaphragm

 
Figure 2. Battery internal structure 

Actually in all of literatures on state of charge for 
Lithium-ion battery, two commonly used battery 
models exist, i.e. equivalent circuit model and 
electrochemical model. As electrochemical model is 
very complex, and it is very difficult to design the 
latter Kalman filter in case of this electrochemical 
model, so here in modelling Lithium-ion battery, the 
equivalent circuit model is recently used. Equivalent 
circuit model regards the battery internal reactions 
as a circuit, containing some electronic components, 
so equivalent circuit model consists of basic circuit 
components such as resistors, capacitors and voltage 
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sources. These four basic circuit components are widely explored due to their relatively simple  
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Figure 3. Equivalent circuit model 

 
 
mathematical structure and reduced computational 
complexity. 
Equivalent circuit model is shown in Figure 3, 
which is simple and clear in physical meaning, and 
will be applied to describe the battery charging and 
discharging properties. Through balancing the 
trade-off between model accuracy and 
computational complexity, one Thevenin equivalent 
circuit model is chosen for a Li-ion battery, which is 
regarded as our battery model 
 
 
Applying Kirchhoff law, variable 

loadU  is defined 
as that. 

 0load OC pU U IR U                                       (1) 
p p

p

p

U dU
I C

R dt
                           

            (2) 
where in equation (1) and (2), 

loadU is the terminal 
voltage, I is the load current, 0R is the internal 
ohmic resistance, pR and pC are polarization 
resistence and polarization capacitance of the battery, 

pU is the polarization voltage. 
OCU is the open 

circuit voltage, which is monotonic with state of 
charge. Further OCU is rewritten as the following 
polynomial form. 

  2 3 4
5 4 3 2 1OCU x d d x d x d x d x              

               (3) 

where  
5

1i i
d


are the coefficients of the polynomial 

form, and x is the state of charge of the battery. The 
state of charge is defined as a ratio of the remaining 
capacity over the rated capacity. According to the 
ampere hour counting method, state of charge can be 
expressed as follows. 

0
0( ) ( )

t

t
N

Idt
SOC t SOC t

Q
                    

            (4) 
where t is the sample time, ( )SOC t is the state of 
charge of the battery at time instant t , 0( )SOC t  is 
the initial SOC , I is the load current,  is the 
coulombic efficiency, and 

NQ is the nominal 
capacity of battery. 

1

, , 1

1

1 0

0 exp

(1 exp )

k k

s
p k p k

p p

ks

p

p p

SOC SOC
T

U U
R C

IT
R

R C









 
    

      
      
  

 
 

  
    

  

     (5) 

  
 

 , , 0load k OC k p k kU U SOC U I R               
               (6) 

where k is the sample time, kSOC is the statue 
value at the k th sample time, sT is the specified 
small sampling period.  OC kU SOC denotes a 
nonlinear function of kSOC . 
The parameters in above state space equation (5) and 
(6) can be identified by classical least squares 
method, then our goal in this paper is to estimate 
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state of charge  kSOC at time instant k . 
 
 
3．Interval estimation for SOC 
In this section we start to apply set membership 
filter algorithm to estimate the SOC. by combining 
equation (5) and (6), we see that 

kSOC at time 
instant k  is one state variable in that state space 
equation. Furthermore we also want to testify which 
parameter will influence SOC estimation, then this 
parameter will be added as the new state variables in 
the extended state space equation. 

3.1 Preliminary 

As the main model parameter 0R  is classified as a 

new state variable with 
pU  and SOC, then an 

extended state space equation for set membership 

filter can be given as that. 

1
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        

     
   

  

 
  

    
       

    
 

  

      (7) 

  , , 0load k OC k p k k kU U SOC U I R v   
                          

(8) 
Observing above equation (7) and (8), the problem 
of state of charge for Lithium-ion battery is to 
estimate the first state variable 

kSOC  at every time 
instant k . Due to state of charge for Lithium-ion 
battery is the first element of the state vector in 
equation (7), then this problem is similar to the state 
filtering in the modern control theory. So if the state 
noise or external noise is a white noise, then the 
classical Kalman filter can be well applied to deal 
with the filter problem. But if the probability 
distribution of the state noise or external noise is 
unknown , then Kalman filter strategy is useless here, 
due to the white noise is an idea case in reality. To 
consider other more general case about the state 
noise or external noise, the property of the state 
noise or external noise is unknown but bounded. In 

this whole paper, our contribution concern on deal 
with the problem of state estimation in case of 
unknown but bounded external noise.  
Then in order to apply set membership algorithm 
into above state space equation to estimate the first 
state variable, we rewrite the above two equations (7) 
and (8) as follows. 

 
   

   

1 ( ) ( )

( )

x k Ax k Bu k Dw k

y k Cx k v k

   


 

                            (9) 
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    
 

  

 
 

  
     

  
  

 
 

   
 
 

 

and  

 
  

 
, 0

, , ,OC k p k k

load k

k

d U SOC U I R
y k U C

d SOC

 
   

where in equation (9) k is time instant,  x k is the 

state of this system at time instant k with its initial 

state  0x ,  y k is the observed output at time 

instant k .  u k is the control input,  w k and 

 v k are two unknown but bounded state noise and 

observed noise respectively. All matrices 

, , ,A B C D are some matrices with compatible 

dimensions, i.e. 
, , , yw

n nn nn n n mA R B R D R C R
             

                  (10) 
Our considered linear discrete time invariant system 
is one state space equation, whose structure can be 
seen in Figure 4. 
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Figure 4. The structure of state space equation 

Let x and x be two vectors such that x x  with 

the inequality holding componentwise. An interval 

 ,x x is defined by. 
    n,  = R :x x x x x x                                (11) 

Then first of all, we give the assumptions about 

initial state  0x , state noise  w k and observed 

noise  v k . 
Assumption 1: There exist three kinds of unknown 
but bounded signals 

           0 , 0 , , , ,x x w k w k v k v k            

respectively, such that three uncertainties in state 
space equation (1) be. 

 
     

     

     

0 0 0x x x

w k w k w k for all k R

v k v k v k



 


  


 

                      (12) 

where the inequalities are regarded as 
componentwise. 
As interval  ,x x can not be used in the latter 
computational process, so its other equivalent form 
is defined. 

Definition 1: The interval  ,x x can be equivalently 

represented by the following equivalent form. 
   , : , 1n

x x x x x x xC c p c P R  


          
                      (13) 

where  

, ( ),
2 2x x x x

x x x x
c P diag p p

 
             

                    (14) 
Similarly  

 ,x x x xx c p x c p                                       (15) 
Here the notation 


is the infinite norm of one 

vector, and ()diag is the notation section. Also in 
Definition 1, 

xc is the center of the interval  ,x x , 
and 

xp its radius, i.e.    , ,x xC c p x x . 

Using the above Definition 1, the equivalent forms 
in Assumption 1 are given as the following 
Assumption 2. 

Assumption 2: There exist three equivalent forms 

for three intervals 

           0 , 0 , , , ,x x w k w k v k v k            

respectively. 

 

        

        

        

0 , 0 0 , 0

, ,

, ,

x x

w w

v v

x x C c p

w k w k C c k p k

v k v k C c k p k

   


  


  

                           (16) 

Here the first contribution of our current paper is to 
construct one interval    ,x k x k   for state 

estimation  x k in equation (9), then after 

substituting    ,x k x k   into the observed 

equation, the interval    ,y k y k 
  corresponding 

to the prediction output can be obtained, while 
considering three uncertainties about initial state 
 0x , state noise  w k and observed noise  v k . 

3.2 Interval estimation 

Firstly to obtain one interval    ,x k x k    for state 

estimation  x k at time instant k , we take 
z transformation on both sides of the state equation, 
i.e.  

          0zX z zx AX z BU z DW z                           (17) 
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where z  is the variable in frequency domain, and 
     , ,X z U z W z are the transformation results in 

frequent domain, corresponding to their forms in 
time domain      , ,x k u k w k . 

Formulating equation (17) to give that. 
 

             
1 1 10X z zI A zx zI A BU z zI A DW z
  

     

               (18) 
Taking inverse z transformation on both sides of 
equation (18), it holds that. 

 
       

      

1 1
1 1

0 0
1

1

0

0

0

k k
k k i k i

i i

k
k k i

i

x k A x A Bu i A Dw i

A x A Bu i Dw i

 
   

 


 



  

  

 


                       

(19)
 

Based on equation (19), we proceed to construct 
intervals for state estimation and prediction output 
respectively. 

Observing equation (19), two uncertainties exist, i.e. 

initial state  0x and state noise  w i . From 

Assumption 2, two intervals about initial state 

 0x and state noise  w i are given as. 

 
      

      

0 0 , 0

,
x x

w w

x C c p

w i C c i p i

 




                                   
(20) 

Then we can describe the uncertain initial state 
 0x and state noise  w i  by. 

 
     

     

0 0 0x x x

w w w

x c P

w i c i P i





 


 

                                  
(21)

 

where n

x R  and wn

w R  such that. 
 1, 1x wand                                     (22)  

Substituting equation (20 ) into  x k , then it holds 

that. 
 

       

   

 

       

1
1

0

1
1

0

1 1 1
1 1 1

0 0 0

0 0

0

0

k
k k i

x x x

i

k
k i

w w w

i

k

x

k k k
k i k i k k i

w x x w w

i i i

x k A c P A Bu i

A D c i P i

A c

A Bu i A Dc i A P A DP i





 


 




 



  
     

  

     

  

 

  





  

             (23) 
Define the following pair     ,x xC c k p k  as. 

 

       

     

1 1
1 1

0 0
1

1

0

0

0

k k
k k i k i

x x w

i i

k
k k i

x x w

i

c k A c A Bu i A Dc i

p k A p A D p i

 
   

 


 




  



  


 


  

                (24) 
where notation is the absolute value. 

Then it holds that. 

       , , 1,2x xx k C c k p k k N                               (25) 
Generally the above derivations can be formulated 
as the following Theorem 1. 
Theorem 1: Set     0 , 0x xC c p  and 

    ,w wC c i p i be center-radius representations of 

two uncertainties  0x and  w i , the interval 

   ,x k x k    for state estimation  x k in state 
space equation (1) is constructed as. 

 
     

       

 

     

       

 

1 1
1 1

0 0
1

1

0

1 1
1 1

0 0
1

1

0

0 0

0 0

x x

k k
k k i k i k

x w x

i i

k
k i

w

i

x x

k k
k k i k i k

x w x

i i

k
k i

w

i

x k c k p k

A c A Bu i A Dc i A p

A D p i

x k c k p k

A c A Bu i A Dc i A p

A D p i

 
   

 


 



 
   

 


 



 

    






 

    





 



 



              (26) 
where  xc k and  xp k are defined in equation 
(24), then interval for state estimation is given that. 

 
          , , , 1,2x xx k C c k p k x k x k k N                     (27) 

To analyze the recursive relation between the k th 
interval    ,x k x k   and its latter 1k  th interval 

   1 , 1x k x k    , we list their centers as follows. 
 

       

       

1 1
1 1

0 0

1 1 1

0 0

0

1 0

k k
k k i k i

x x w

i i

k k
k k i k i

x x w

i i

c k A c A Bu i A Dc i

c k A c A Bu i A Dc i

 
   

 

    

 


  



    


 

 

                 (28) 
Taking subtract operation, we find that. 
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         

      

       

   

      

1
1

0
1

1

0

1 1
1 1

0 0

1 0

0

k
k k i

x x x

i

k
k i

w w

i

k k
k k i k i

x w

i i

w

x w

c k c k A c A I A Bu i A I

A Dc i A I Bu k Dc k

A c A Bu i A Dc i A I

Bu k Dc k

c k A I Bu k Dc k


 




 



 
   

 

      

  

 
    
 

 

   





 

    (29) 
Then it holds that 

        1x x wc k Ac k Bu k Dc k                                     (30) 

Equation (30) is the recursive expression of the 
centers. Similarly the recursive expression of the 

radius is that. 
      1x x wp k A p k B p k                                    (31) 

From these two recursive relations between the 

adjacent interval for state estimation, we see that the 

1k  th interval can be obtained from the k th 

interval and the knowledge of control input and state 

noise. The recursive computation for the interval for 

state estimation is seen in Figure 5. 

    0 , 0x xC c p
    0 , 0w wC c p

    1 , 1x xC c p +     2 , 2x xC c p +     ,x xC c k p k
…

    1 , 1w wC c p     1 , 1w wC c k p k 

 1u

 1u k 

 
Figure 5.  Recursive computation for interval 
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But the most important element in model predictive 

control is the prediction output, so the interval for 

the prediction output can be obtained by substituting 

interval    ,x k x k   into the observed equation. 
Due to       ,x xx k C c k p k  and 

      ,v vv k C c k p k , i.e. 

 
     

     

x x x

v v v

x k c k P k

v k c k P k





 


 

                                    
 (32)

 

where n

x R  and vn

v R  such that. 
  1, 1x vand                     

               (33) 
Substituting equation (32) into the observed 
equation (9), we have that. 

 
         

   
 

   
y

x x x v v v

x x v v

c k

y k C c k P k c k P k

Cc k c k CP k P k

 

 

          

  
    

(34) 

Similarly define the center and radius as . 

 
     

     

y x v

y x v

c k Cc k c k

p k Cp k p k

 


 

                                  
  (35) 

Then we have that 

       ,y yy k C c k p k                                    (36) 
Furthermore 

 
             

        

             

        

y y x v x v

x x v v

y y x v x v

x x v v

y k c k p k Cc k c k Cp k p k

C c k p k c k p k

y k c k p k Cc k c k Cp k p k

C c k p k c k p k

      


   


     


   

                  (37) 
Then it also means that 

          , ,y yy k C c k p k y k y k            
                    (38) 

The above equation (38) is our interval for the 
prediction output, which will be used for the next 
robust model predictive control.  

In order to simplify the latter exposition in robust 

model predictive control, we need the explicit form 

of interval           , ,y yy k C c k p k y k y k     . 

To achieve this goal, some notations are introduced 

here. 
 

       

     

     

       

1 1
1 1

0 0
1

1 2
0

1
1

0
1

1 1
1 2

0

0

1

0

0 , 1

k k
k k i k i

x x w

i i

k

i

k
k k i

x x w

i

k
k k i k i

x w

i

c k A c A Bu i A Dc i

c k c k i u i

p k A p A D p i

c k A c A Dc i c k i A B

 
   

 






 




   



   

  

 

    

 







          (39) 
Substituting notation (39) into the expressions 

 y k and  y k respectively, we obtain. 

 
             

        

           

     

1

1 2
0

1

1 2
0

1

1

y y x v x v

x x v v

k

v v x

i

k

i

y k c k p k Cc k c k Cp k p k

C c k p k c k p k

C c k c k i u i c k p k Cp k

a k a k i u i









     

   

 
       

 

   





 
    

               (40) 
where  

         

   

1 1

2 21 1
v v xa k Cc k c k p k Cp k

a k i Cc k i

   


    

      

                        (41) 
Similarly  

          

     
1

3 2
0

1

x x v v

k

i

y k C c k p k c k p k

a k a k i u i




    

  
     

    (42) 
where  

         3 1 v v xa k Cc k c k p k Cp k           
                     (43) 

The advantage of reformulating  y k and  y k is 
that the explicit form can be divided as one linear 
affine function of the control input  u i . Based on 
equation (40) and (43), we rewrite equation (38) as. 

 
          

           
1 1

3 2 1 2
0 0

, ,

1 , 1

y y

k k

i i

y k C c k p k y k y k

a k a k i u i a k a k i u i
 

 

    

 
       
 

 

                      (44) 
Then equation (44) will be used in the detailed 

computation about the other research field. From 

equation (32), the center or midpoint  xc k can be 

chosen as the final state estimation, corresponding to 
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our considered state of charge. Also combing 

equation (32) and (44), we derive not only the 

interval estimation for the state, but also the interval 

estimation for the prediction output. As the emphasis 

here is only the interval estimation for the state, so 

that interval estimation for the prediction output is 

not deep studied here, and it is applied in learning 

model predictive control. 

4．Ellipsoid estimation for SOC 

In section 3, we assume the state noise and the initial 
state are in one interval (12). As in the research field, 
there are other sets to be used to denote the 
uncertainty, such as ellipsoid. It means that interval 
and ellipsoid are two commonly used sets in set 
membership estimation. So for completeness and 
comparison, here in this section we consider the 
ellipsoid estimation for state, which corresponds to 
the state of charge for Lithium-ion battery. 

Observing only the first state equation in equation (9) 

again, matrices , ,A B D can be identified by using 

least squares method. Based on this state equation, 

our problem is to estimate the state  x k at different 

time instant 1,2 1k N  . It is similar to section 3 

that control input  u k  is determined by researcher, 

and  u k is a deterministic value, not an uncertainty. 

So for convergence, we neglect this term ( )Bu k  in 

the latter derivation. It means that if one ellipsoid 

estimation for the state is derived by our own 

derivation, then we can apply translation 

transformation to give the true ellipsoid estimation 

for the state. Then we rewrite the considered state 

equation as follows.  

    

0

1 ( )
0, 0,1, 1

x k Ax k Dw k

x k N

   


  
                               

    (45) 

This special state equation is driven by  w k , 
satisfying the following norm bound. 

  1, 0,1, 1w k k N                     
               (46) 

Our goal here is to build ellipsoid approximation of 
the state recursively. Let 

kX be the set of all states 

where the system can be driven in time instant k N , 
and assume that we have build inner and outer 

ellipsoidal approximations k

inE and k

outE of the 

set
kX . 

 k k

in k outE X E                                            (47) 
Let also 

  / 1TE x Dw w w                                         (48) 
Then the set 

 1
1 2 1 2/ ,k k k

in in inF AE E x Aw w w E w E       

                        (49) 
clearly cover 1kX 

, and a natural recurrent way to 
define an outer ellipsoidal approximation of 1kX 

 

is to take as 1k

outE   the smallest volume ellipsoid 

containing 1k

outF  . Note that the sets 1k

inF   and 

1k

outF  are of the same structure: each of them is the 

arithmetic sum  1 2 1 1 2 2/ ,x w w w W w W    of two 

ellipsoids 1W and 2W . Thus we come to the problem 
as follows: Given two ellipsoids 1W and 2W , find 
the best inner and outer ellipsoidal approximations 
of their arithmetic sum 1 2W W . In fact, it makes 
sense to consider a problem. 
Given two ellipsoids 1W and 2W , find the best inner 
and outer ellipsoidal approximations of their 
arithmetic sum 

  

  1 2 1 1 2 2/ ,W x w w w W w W                               (50) 
of two ellipsoids 1W and 2W . 

4.1 Outer ellipsoidal approximation 

Let the ellipsoids 1W and 2W  be represented as. 
  / 1T

i iW x x D x                                     (51) 

Our strategy to approximate is that, we want to build 
a parametric family of ellipsoids in such a way that, 
first, every ellipsoid from the family contains the 
arithmetic sum 1 2W W  of two given ellipsoids, and 
second, the problem of finding the smallest volume 
ellipsoid within the family is a simple problem. 
Let us start with the observation that an ellipsoid. 

   / 1TW Z x x Zx   
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contains 1 2W W if and only if the following 
implication holds. 

 
  

   

2

1

1 2 1 2

/ 1, 1,2

1

T
i i i

ii

T

x x D x i

x x Z x x


        

  

                           
(52)

 

Let iD  be one block diagonal matrix, such that all 
diagonal blocks, except the i th one, are zero, let 

 M Z be that. 

 11 2

2

0 00
, ,

00 0
D Z Z

D D M Z
D Z Z

    
      
    

  

                   (53) 
Due to the fact that for every symmetric positive 
semidefinite matrix X  such that 

  1, 1,2iTr D X i m  , one has    1Tr M Z X  . 
Then we arrive at the following result. 
Proposition 1: Let a positive definite matrix Z  be 
such that the optimal value in the semidefinite 
program. 

     max / 1, 1,2, 0i

X
Tr M Z X Tr D X i X     

                  (54) 
is 1 . Then the ellipsoid 

   / 1TW Z x x Zx   
contains 1 2W W  of two ellipsoids 

 / 1T

i iW x x D x  . 

The above proposition is the first step to build a 
parametric family of ellipsoids, which contains the 
arithmetic sum 1 2W W . Then the second problem 
of finding the smallest volume ellipsoid within the 
parametric family can be reduced to one 
semidefinite program as that. 
Proposition 2: Given two centered at the origin full 
dimensional ellipsoids. 

 / 1 , 1,2T

i iW x x D x i    

Let us associate with these two ellipsoids the 
semidefinite program. 

   
1

1 2
1 2

1 2 1 2, ,

/ ,
max 0, 0, 1

0

xn

t Z

t t Det Z D D M Z

Z


 

   

 
   

 
    

 
 
 

    

                    (55) 
Every feasible solution  , ,t Z   to this semidefinite 
program with positive value of the objective 
produces ellipsoid    / 1TW Z x x Zx  . 
which contains  1 2W W , and the smallest volume 

ellipsoid is given by optimal solution of the 
semidefinite program (55). 
 

4.2 Inner ellipsoidal approximation 

Let us represent the given centered at the origin 
ellipsoids 

iW   as. 

 / / 1 , 1,2T

i iW x x Aw w w i     
Due to the fact that an ellipsoid 
   / 1TE Z x Zw w w   is contained in the sum 

1 2W W  of the ellipsoids 
iW  if and only if one has. 

2

2 2
1

: T T

i

i

x Z x A x


                      

               (56) 
A natural way to generate ellipsoids satisfying 
equation (56) is to note that whenever matrix 

iX satisfying the following the property about its 
special norms. 

 

   max 2 2
max / 1, 1,2T

i i i i
x

X X X X x x i      

               (57) 
Then the matrix 

  1 2 1 1 2 2,Z Z X X A X A X                                (58) 
satisfies equation (56). 

 
2

1 1 2 2 22 2
1

2 2

2 2
1 1

T T T

i i

i

T T T

i i i

i i

Z x A X A X x X A x

X A x A x



 

  

 



 
     

  (59) 
Thus every collection of square matrices 

iX  with 
spectral norms not exceeding 1 produces an ellipsoid 
satisfying equation (56) and thus contained inW . 
Similarly the largest volume ellipsoid within the 
parametric family can also be reduced to the 
following semidefinite program. 
Proposition 3: Let 

 / / 1 , 0, 1,2T

i i iW x x Aw w w A i     , consider 

the following semidefinite program. 

1
2

1

2

1

max

1 ;
2

0;

0, 1,2

xn
T T

i i

i

T T

i i

i

T

n i

i n

t

subject to t Det X A x

X A x

I X
i

X I





  
     

  

   

 
  

 




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                     (60) 
with design variables 1 2,X X . Every feasible 
solution  1 2, ,X X t  to this problem produces the 
ellipsoid. 

 
2

1 2
1

, / 1T

i i

i

E X X x A X w w w


  
    

  
  

contained in the arithmetic sum 1 2W W of the 
original ellipsoids, and the largest volume ellipsoid 
which can be obtained in this way is associated with 
optimal solution to the semidefinite program (60). 
After solving these two semidefinite programs (55) 
and (60), then we build inner and outer ellipsoidal 

approximations k

inE and k

outE of the set 
kX , i.e. 

k k

in k outE X E   

Based on these two inner and outer ellipsoidal 
approximations k

inE and k

outE of the set 
kX , then the 

final state estimation at time instant  x k can be 
chosen as the midpoint between the two centers of 

inner and outer ellipsoidal approximations k

inE and 
k

outE . 
So generally whatever the state noise or external 
noise is included in an interval or an ellipsoid, firstly 
we apply our mentioned interval estimation or 
ellipsoid estimation to obtain the state estimation set,. 
Secondly the center or midpoint can be chosen as 
the final state estimation value, which corresponds 
to the state of charge for Lithium-ion battery. 
 

5．Simulation example 

Here we do not have yet the experimental platform, 
so this simulation example is based on references in 
the open literatures. To acquire experimental data 
such as current, voltage and temperature from the 
battery, a battery test bench was established. The 
configuration of the battery test bench is shown in 
Figure 6. 

ThermostatLithium-ion battery

Battery test system Host computer

AC Power

Temperature control

Current
voltage
control

Charging/
Discharging

Current voltage control

Current command file

 

Figure 6. Lithium battery test platform 
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For convenience in the latter simulation example, 
Lithium battery test needs to charge and discharge 
the lithium ion battery at different temperatures and 
different rates. Therefore, the equipment required for 
the experimental bench includes a thermostat, a 
battery charging and discharging device, a ternary 
neon battery, and a host computer. Lithium battery 
test platform is plotted in Figure 6, where the 
detailed processes are described as follows. 
Step1. The charging and discharging positive and 

negative terminals of the battery are 
respectively connected to the positive and 
negative electrodes of the battery through 
the wire harness, and the wire harness of the 
appropriate diameter is selected according 
to the allowable charging and discharging 
ratio of the battery to avoid the burning of 
the wire harness. One end of the voltage 
sampling line to the other end of the battery 
is connected to the voltage sampling and 
wiring port of the battery charging and 
discharging device. Finally, the temperature 
measuring line of the thermistor is attached 
to the surface of the battery, and the other 
side of the temperature detecting line is 
connected to the temperature detecting 
terminal of the battery charging and 
discharging device. 

Step 2. Set the lithium battery in the incubator , and 
set the experimental ambient temperature. 
Step 3. Start battery charging and discharging 
equipment and incubator. 
Step 4. In the online machine, we edit the charge 

and discharge test step or import the edited 
current test file into the host computer to 
automatically generate the test step, then set 
the sampling time and output file save 
address, start the test. 

Based on the experimental platform, the open-circuit 
voltage of the battery has a monotonic relationship 
with the state of charge. The relation between 
open-circuit voltage and state of charge is 
established by running test on the considered 
lithium-ion battery. Let all batteries are fully charged 
and rested for 3 hours, such that the internal 
chemical reactions attain a desired equilibrium state. 
Moreover the discharge test includes a sequence of 
pulse current of 1 C with 6-min discharge and 
10-min rest, then the discharge test can make the 
battery to return back to its expected equilibrium 
state before running the next cycle , which is shown 
in Figure 7. 
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Figure 7. Voltage and current curves 

 

 

 

 

Figure 8. Polynomial form for OCU  
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As 
OCU  is rewritten as the following polynomial 

form   2 3 4
5 4 3 2 1OCU x d d x d x d x d x     . To 

identify these unknown parameters in this 

polynomial form, Least squares method is used to 

achieve this goal. Then the identification result for 

this polynomial form is given in Figure 8, which 

shows the relation between the true data point and 

its identified polynomial form. 
In the whole simulation process, the true parameters 
can be identified by using some system 
identification strategy, for example least squares 
method, instrumental variable method, maximum 
likelihood method etc. Then identified parameter are 
obtained as follows. 

0 0.0994 , 0.030 , 20773 ;

1.10 ; 0.3
p p

s

R R C KF

I A T s

    

 
 

Substituting the above values into the equation (7), 
(8) and (9), then each matrix is given as follows. 

 

1 0 0 0.8
0 0.68 0 , 0.064 , 2.5 1 1.2 , 1
0 0 1 0.1

A B C D

   
   

    
   
      

 
Consider the unknown but bounded noise in 
simulation, these two kinds of unknown but bounded 
signals in equation (9) are formulated as. 

 

 

 

0.5 0 0.5

1 1

1 1

x

w k for all k R

v k



  

  


 

 

In simulation we consider not only the state 
estimation, but also the output estimation, and the 
state estimation corresponds to the state of charge. 
The interval estimation on observed output with 
bounded noise  v k can be used in another research 
field, such as robust control, interval model 
predictive control etc. 
Firstly we apply equation (27) to obtain the interval 
estimation for state. The state trajectory can be 
easily obtained by using equation (19) in Matlab, 
where some priori information about initial state and 
bounded noise are used. The simulation results are 
shown in Figure 9, where the black curve is the true 

state trajectory and the two red curves denote the 
estimated curves. One curve is consisted by upper 
bound, and the other curve is the lower bound. From 
Figure 9, we see that the true state trajectory lies in 
between the two red curves., so at each time instant, 
the midpoint of the upper bound and lower bound 
can be chosen as the final state estimation at the 
considered time instant. Similarly the interval 
estimation for output is also given in Figure 10, 
where the true output trajectory lies in between the 
two estimated curves. The interval estimation for 
output is obtained based on equation (44), and the 
final output estimation can also selected as the 
midpoint at each time instant.  
For the sake of completeness, the ellipsoid 
estimation for state or state of charge is given in 
Figure 11, where the true state trajectory is same 
with that curve in Figure 9. Twelve data points are 
sampled in the true state trajectory, and we need to 
construct twelve ellipsoids to include these twelve 
data points as their own interior points. As ellipsoid 
is used to denote the uncertainty, so at every time 
instant we will obtain one ellipsoid to include the 
true data point. From the simulation result in Figure 
11, twelve ellipsoids are constructed through using 
relations (47), and these twelve ellipsoids include 
these twelve data points as their own interior points 
exactly. When the center of the corresponding 
ellipsoid is chosen as the final state estimation, we 
find that the error exists yet, i.e. the center of the 
considered ellipsoid is not equal to the true state 
value at the considered time instant.  
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Figure 9. Interval state estimation 

 
Figure 10. Interval output estimation 
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Figure 11. Ellipsoid state estimation 

 

6．Conclusion 

In this paper, set membership strategy is applied to 
estimate the state of charge for Lithium-ion battery, 
so that the state estimation can be dealt with in case 
of unknown but bounded external noise. The goal of 
introducing set membership strategy is to alleviate 
the shortcoming of the traditional Kalman filter 
algorithm. After formulating one state space 
equation for the state of charge estimation, through 
using one equivalent circuit model to replace the 
considered state of charge estimation for 
Lithium-ion batter. According to the commonly used 
interval and ellipsoid for the external noise, the 
interval estimation and ellipsoid estimation are 
derived for the considered state estimation 
respectively, which corresponds to the state of 
charge estimation for Lithium-ion battery. But here 
we only propose the detailed strategy, and the 
accuracy or convergence of our considered strategy 
can be regarded as our future work. 
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