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1 Introduction 

In our contemporary society, the upcoming new 
industrial revolution, the so-called “Industry 
4.0” [1] and in particular the increasing number 
of Internet of Things (IoT) devices that 
automatically gather information and send them 
to remote repositories for analysis have 
increased the need for reliable and efficient 
systems [2]. Specifically, there is a high 
demand to design accurate and robust control 
systems responsible for computing and 
monitoring the linear and non-linear systems 
alike to achieve optimal behaviour [4]. 
Specifically, although artificial neural networks 
[5] or other dynamical techniques could be 
considered for system optimization [6] many 
interesting applications exist regarding control 
systems such as in robotics [7,8], vehicles [9], 
trucks [10] solar systems [11,12], wind tunnels 
[13,14], routing problems [15] and others 
[16,17].  

In many practical design situations, especially 
in industrial applications implementing Big 
Data solutions consisting of many automated 
systems [18] one has to cope not only with 
uncertainty but also with multiple design 
specifications. Robust multi-objective control 
problems are usually formulated in the 𝐻2/𝐻∞ 
framework [20,21,22,23,24,25,26]. 

Additionally, in the LQG context, multiple 
objectives are expressed in terms of a finite 
number of quadratic cost functions [27,28,29]. 
Since the pole locations may be crucial for 
system’s transient response characteristics and 
stability margins, one of the design objectives is 
often the closed-loop pole placement into pre-
specified regions of the left-half complex plane, 
for all system uncertainties of a given class (see 
e.g. [30,31,32,3334], and related references). In 
most of these approaches, specification of the 
closed-loop objectives in terms of a common 
Lyapunov function [35,36] permits reducing the 
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multi-objective controller design to a convex 
optimization problem; hence, solutions in the 
LMI framework are sought (see also 
[37,38,39]). In the present paper, 𝐻2/𝐻∞ and 
guaranteed cost multi-objective control 
approaches with simultaneous pole placement 
are considered. In particular, a guaranteed cost 
multi-objective technique that ensures a relative 
stability degree for all system admissible 
uncertainties is proposed; furthermore, it is 
extended to ensure the closed-loop pole 
clustering into LMI regions.  

The paper is organized as follows: In Section 2, 
the 𝐻2/𝐻∞ design with regional pole placement 
is recalled. In Section 3, a guaranteed cost 
multi-objective technique with simultaneous 
pole placement is proposed. An application 
example allows comparing these approaches in 
Section 4. Finally, conclusions are given in 
Section 5. 

2 𝐇𝟐/𝐇∞ Multiple Objective Control 

Multi-objective synthesis may consider a mix of 
time- and frequency-domain specifications, i.e., 
𝐻2 and 𝐻∞ performance, regional pole 
placement, passivity, asymptotic tracking or 
regulation, and saturation constraints. In 
particular, stability in presence of unstructured 
model uncertainties and asymptotic disturbance 
rejection are met by 𝐻∞ performance while 𝐻2 
performance ensures desired closed-loop 
responses in presence of random noise. If, in 
addition, the closed-loop pole placement in 
prespecified regions of the left-half plane is of 
interest, an 𝐻2/𝐻∞control problem with 
simultaneous pole placement is formulated. In 
this section, a brief overview of existing results 
is presented. 
 
2.1 Problem Formulation 
 Consider the linear time-invariant, state-
feedback control system of Fig. 1: 

 

Fig. 1: State feedback control system 

where P(s) is the transfer function, x is the state 
vector, u is the control vector, w is a vector of 
exogenous inputs, and 𝑧∞ , 𝑧2 are the output 
signals related to the performance of the control 
system. Denote 𝑇∞(𝑠) and 𝑇2(𝑠) the transfers 
from w to 𝑧∞ and  𝑧2 , respectively. Assuming 
the state vector available for feedback, a linear, 
constant gain state-feedback control law of the 
form:  𝑢(𝑡) = 𝐾𝑥(𝑡)  (1), is sought such that the 
following closed-loop system objectives are 
met: (i) The 𝐻∞ - norm of 𝑇∞(𝑠) remains 
smaller than a given γ > 0 (ii) The 𝐻2 -norm of 
𝑇2(𝑠) remains smaller than a given ν > 0 (iii) 
The trade-off 𝐻2/𝐻∞ criterion 𝛼‖𝛵∞‖∞

2 +
𝛽‖𝛵2‖2

2 is minimized for some positive 
weighting scalars α and β (iv) The poles of the 
closed-loop system are placed in a pre-specified 
region of the left-half complex plane. 

A state-space realization of the closed-
loop system of Fig. 1 has the following 
mathematical form: 

   𝑥̇ = (𝐴 + 𝐵2𝐾)𝑥(𝑡) + 𝐵1𝑤(𝑡) 

  𝑧∞ = (𝐶1 + 𝐷12𝐾)𝑥(𝑡) + 𝐷11𝑤(𝑡)                 (2) 

   𝑧2 = (𝐶2 + 𝐷22𝐾)𝑥(𝑡) 

where A, 𝐵1 , 𝐵2 , 𝐶1, 𝐶2 , 𝐷11, 𝐷12, 𝐷22 are 
constant matrices of appropriate dimensions. 
Some of the system matrices may be uncertain 
but no explicit uncertainty description is used in 
(2). 
 
2.2 Pole Placement in LMI Regions 

By virtue of the Bounded Real Lemma, the 
control synthesis problem formulated in Section 
2.1 can be expressed in terms of a complex 
optimization problem under LMI constraints 
[26]. Besides, placing the closed-loop system 
poles in convex subsets of the left-half complex 
plane can be expressed as LMI constraints on 
the Lyapunov matrix, as well [33]. In these 
references, the following results have been 
established in terms of necessary and sufficient 
conditions: 
• 𝐻∞ performance: The closed-loop system 

(2) is stable and the 𝐻∞ -norm of 𝑇∞(𝑠) is 
smaller than a given γ > 0, if and only if 
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there exists a symmetric matrix 𝑋∞ such 
that, 

(

(𝐴 + 𝐵2𝐾)𝑋∞ + 𝑋∞(𝐴 + 𝐵2𝐾)𝑇      𝐵1                 𝑋∞(𝐶1 + 𝐷12𝐾)𝑇

𝐵1
𝑇

(𝐶1 + 𝐷12𝐾)𝑋∞

−𝐼                     𝐷11
𝑇             

𝐷11                    −𝛾2𝐼            

)

= 𝐻𝑙𝑜𝑜𝑝 

           Where Hloop < 0 , 𝛸∞> 0                              (3) 
• 𝐻2 performance: The 𝐻2 -norm of 𝑇2(𝑠) is 

smaller than a given ν > 0, if and only if there 
exist two symmetric matrices 𝑋2 and Q, such 
that, 

(
(𝐴 + 𝐵2𝐾)𝑋2 + 𝑋2(𝐴 + 𝐵2𝐾)𝑇 𝛣1

𝐵1
𝑇 −𝐼

) < 0 

         (
𝑄 (𝐶2 + 𝐷22𝐾)𝑋2

𝑋2(𝐶2 + 𝐷22𝐾)𝑇 𝑋2
) > 0                  (4) 

                  and             tr(Q) < 𝑣2 
• Pole placement: The poles of the closed-loop 

system are placed in the LMI region: 
𝐷 = {𝑧 ∈ ∁∶ 𝐿 + 𝑀𝑧 + 𝑀𝑇𝑧̅ < 0,  

Where 𝐿 = 𝐿𝑇 = {𝜆𝑖𝑗}1≤𝑖,𝑗≤𝑚 and 𝛭 = {𝜇𝑖𝑗}1≤𝑖,𝑗≤𝑚 
These equations apply if and only if there exists 
a symmetric matrix 𝑋𝑝𝑜𝑙such that: 
[𝜆𝑖𝑗𝑋𝑝𝑜𝑙 + 𝜇𝑖𝑗(𝛢 + 𝛣2𝛫)𝛸𝑝𝑜𝑙 + 𝜇𝑖𝑗𝛸𝑝𝑜𝑙 + 𝜇𝑖𝑗𝛸𝑝𝑜𝑙(𝛢 + 𝛣2𝛫)𝑇]

1≤𝑖,𝑗≤𝑚
 

= 𝐻𝑝𝑜𝑙𝑒_𝑝𝑙𝑎𝑐𝑒 

             Where Hpole_place < 0, 𝛸𝑝𝑜𝑙𝑒 > 0                        (5) 

The above design problem is not jointly convex 
in the variables Q, K, 𝑋∞, 𝑋2, and 𝑋𝑝𝑜𝑙 . 
However, convexity can be enforced by seeking 
a common solution 𝑋 ∶=  𝑋∞ = 𝑋2 = 𝑋𝑝𝑜𝑙 >

0, such that conditions (3)-(5) are met. Then, 
setting Υ := ΚΧ leads to the multiple objective 
optimization with LMI constraints, 

(

𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵2𝑌 + 𝑌𝑇𝐵2
𝑇        𝐵1                 𝑋𝐶1

𝑇 + 𝑌𝑇𝐷12
𝑇

𝐵1
𝑇

𝐶1𝑋 + 𝐷12𝑌

−𝐼                     𝐷11
𝑇             

𝐷11                    −𝛾2𝐼            

)

= 𝐻𝑑𝑒𝑠𝑖𝑔𝑛 

Where Hdesign< 0 and ( 𝑄 𝐶2𝑋 + 𝐷22𝑌

𝑋𝐶2
𝑇 + 𝑌𝑇𝐷22

𝑇 𝑋
) > 0 

 [𝜆𝑖𝑗 + 𝜇𝑖𝑗(𝐴𝑋 + 𝐵2𝑌) + 𝜇𝑖𝑗(𝑋𝐴𝑇 + 𝑌𝑇𝐵2
𝑇)]

1≤𝑖,𝑗≤𝑚
=

𝐻𝑓𝑖𝑛𝑎𝑙  

Where Hfinal< 0  (6) and  𝑡𝑟(𝑄) < 𝑣0
2 ,    𝛾2 < 𝛾0

2 

In this case, the multiple objective problem 
reduces to the minimization of 𝛾2 + 𝛽𝑡𝑟(𝑄), 
where Y, X, Q, and 𝛾2 satisfy inequalities (6). 
The optimal solution is denoted 
(𝑋∗, 𝑌∗, 𝑄∗, 𝛾∗)and the resulting state-feedback 
gain: 𝐾∗ = 𝑌∗(𝑋∗)−1 (7), guarantees a 
satisfactory worst-case performance 
corresponding to: 

‖𝛵∞‖∞ ≤ 𝛾∗  ,  ‖𝛵2‖2 ≤ √𝑡𝑟(𝑄∗)                 (8) 

(see [33] for details and proof). 

In the output-feedback case, nonlinear terms 
arise at the synthesis procedure formulas and 
hence the problem is intractable via LMIs. A 
change of the controller’s variables leads to 
approaches that are more sophisticated. Besides, 
since seeking for a common solution X in (6) 
implies some conservatism [33], recent works 
attempt to remove it by using BMI optimization 
techniques with output-feedback dynamic 
controllers [40, 41]. 

Consider now the case where structured 
uncertainties in system (2) are taken into 
account in terms of either the polytopic 
description, 

𝛢 = ∑ 𝐴𝑗𝑎𝑗
𝑘
𝑗=1  , ∑ 𝑎𝑗

𝑘
𝑗=1 = 1 , 𝑎𝑗 ≥ 0            (9)    

 or the affine description: 

𝛢 = 𝐴𝑛𝑜𝑚 + ∑ 𝐴𝑗𝑟𝑗
𝑘
𝑗=1                                   (10) 

in which the uncertain parameters 𝑟𝑗 belong to 
known bounded intervals and where for 
simplicity it has been assumed that the state 
matrix is denoted by A. In ref. [34], the previous 
synthesis results were extended to the uncertain 
cases (9), (10); furthermore, existing quadratic 
D-stability results [31,42] were generalized to 
arbitrary LMI regions.  

Note that when dealing with structured 
uncertainties, the resulting regional pole 
placement conditions are only sufficient. In 
order to reduce the related conservatism, the 
Lyapunov matrix was chosen as an affine 
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function of the uncertain parameters, in [29]. 
Then, uncertainty levels were determined for 
which stability is preserved. The analysis results 
were used for synthesis purposes in order to 
achieve regional pole assignment via output-
feedback. 

3 Guaranteed cost multiple objective 
control  

When dealing with linear state-space 
descriptions with structured uncertainties, the 
LQR context allows achieving desirable 
performances in terms of guaranteed cost 
control (GCC) (see e.g. [43,44,45,46] and 
related references). Moreover, as shown in [44], 
the nominal system’s optimality is preserved 
despite uncertainty, in the sense of the well-
known stability margins ensured by the optimal 
linear quadratic regulator [47]. In order to 
reduce the usual conservatism, an upper bound 
of the quadratic cost function has to be 
minimized. Besides, in the quadratic D–stability 
approaches [31,32] it is straightforward to 
deduce that an associated guaranteed cost can 
be minimized, as well. Hence, the multi-
objective control with simultaneous pole 
placement for linear systems in state-space 
descriptions with structured uncertainties can 
naturally be considered in the LQR/GCC 
context. The multiple objectives are expressed 
in terms of multiple quadratic performance 
indices that have to be as small as possible by 
the same controller while the closed-loop poles 
have to be placed in a pre-specified region of 
the left-half plane. Recall that the GCC can 
tolerate unstructured uncertainties affecting the 
system input [48]. This fact allows extending 
the GCC application to the class of uncertain 
system affected by external disturbances, as 
well. 

3.1 Problem Formulation 

Consider the linear uncertain system, 

𝑥̇(𝑡) = (𝛢 + 𝛥𝛢)𝑥(𝑡) + (𝛣 + 𝛥𝛣)𝑢(𝑡)̇ , ∈ [0,∞), 
𝑥(0) = 𝑥0                                                    (11) 

where A and B are the state and control 
matrices, respectively, having appropriate 

dimensions. Let the uncertainty description be 
of the affine type, 

𝛥𝛢 = ∑ 𝐴𝑖𝑟𝑖
𝑘
𝑖=1 , 𝛥𝐵 = ∑ 𝐵𝑖𝑝𝑖

𝑙
𝑖=1                   (12) 

where 𝐴𝑖 , 𝑖 = 1,2, … , 𝑘 and 𝐵𝑖 , 𝑖 = 1,2, … , 𝑙 
are constant matrices that determine the 
uncertainty structure and 𝑟𝑖 , 𝑝𝑖 are scalar 
uncertain parameters. It is assumed that the 
corresponding uncertain parameter vectors 
belong to known and bounded compact sets, 

R ≔ {𝑟 ∈ 𝑅𝑘: |𝑟𝑖| ≤ 𝑟̅, 𝑖 = 1,2, … , 𝑘}; 𝑟̅ > 0, 

 (13) 

J ≔ {𝑟 ∈ 𝑅𝑙: |𝑝𝑖| ≤ 𝑝̅, 𝑖 = 1,2, … , 𝑙}; 𝑝̅ > 0 

An equivalent normalized description of (12) 
with 𝑟̅ = 𝑝̅ = 1 can be used without loss of 
generality. Moreover, linearity of (12) allows 
the uncertainty matrices 𝐴𝑖, 𝐵𝑖 to have unity 
rank and thus be decomposed in terms of vector 
products of appropriate dimensions, 

𝐴𝑖 = 𝑑𝑖𝑒𝑖
𝑇,  𝑖 = 1,2, … , 𝑘 , 𝐵𝑖 = 𝑓𝑖𝑔𝑖

𝑇 ,  𝑖 = 1,2, … , 𝑙  (14) 

For the design purpose define the following 
symmetric positive definite matrices (15): 

𝐷 ≔ [𝑑1 …𝑑𝑘] , 𝐸 ≔ [𝑒1 …𝑒𝑘] , 

𝐹 ≔ [𝑓1 …𝑓𝑙] , 𝐺 ≔ [𝑔1 …𝑔𝑙] , 

𝑆̃ ≔ 𝑑𝑖𝑎𝑔(𝜎1 …𝜎𝜅) , 𝑇̃ ≔ 𝑑𝑖𝑎𝑔(𝜏1 …𝜏𝑙) 

where j j σ τ are positive scalars. Since the rank-
1decomposition (14) is not unique, these scalars 
may be chosen to determine the appropriate 
one, in order to satisfy design requirements. 

The control design specifications are described 
in terms of multiple quadratic performance 
indices of the form, 

 𝐽𝑖(𝑥0, 𝛥𝛢, 𝛥𝛣, 𝑡) = ∫ [𝑥𝑇(𝑡)𝑄𝑖𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑖𝑢(𝑡)]𝑑𝑡
∞

0
   (16) 

where 𝑄𝑖 >0 , 𝑅𝑖>0 , 𝑖 = 1,… , 𝜌 . 

The guaranteed cost multiple objective control 
problem consists of finding a linear state-
feedback control law of the form (1) such that 
the corresponding values of all performance 
indices (16) are made as small as possible and 
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remain upper bounded for all admissible 
uncertainties i.e., consistent with (12)-(13). It is 
obvious that for ρ =1 this problem reduces to 
the well-known GCC problem. In the sequel, 
pole placement constraints will be considered as 
well. 

3.2 An LMI approach for GC multi-
objective control 

Following to the GCC theory, the guaranteed 
cost control with respect to the 𝑖𝑡ℎperformance 
index is: u(𝑡) = −𝛿𝑖𝑅𝑖

−1𝐵𝑇𝑃𝑥(𝑡)                (17) 
and results from the solution of the generalized 
Riccati equation: 

𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃(𝛿𝑖𝐵𝑅𝑖
−1𝐵𝑇 − 𝛿𝑖

2𝐵𝑅𝑖
−1𝐺𝑇𝑖

−1𝐺𝑇𝑅𝑖
−1𝐵𝑇 −

𝐹𝑇𝑖𝐹
𝑇 − 𝐷𝑆𝑖𝐷

𝑇)𝑃 + 𝐸𝑆𝑖𝐸
𝑇 + 𝑄𝑖 = 0                       (18) 

Furthermore, it ensures that 𝐽𝑖(𝑥0, 𝛥𝛢, 𝛥𝛣, 𝑡)t ≤ 
𝐽𝑖̃ = 𝑥0

𝑇𝑃𝑥0 , for all admissible uncertainties, 𝐽𝑖̃ 
being the guaranteed cost. To avoid the 
dependency of the cost functions (16) on initial 
conditions, one can assume 𝑥0 uniformly 
distributed over a unit sphere and thus 
randomized with zero mean and identity 
covariance. Then, by considering the expected 
values of (16), the corresponding guaranteed 
cost values are  𝐽𝑖̃ ≤ 𝑡𝑟(𝑃), i.e., 

    𝐽𝑖(𝑥0, 𝛥𝛢, 𝛥𝛣, 𝑡) ≤ 𝑡𝑟(𝑃)              (19) 

Consider now the case where a degree of 
relative stability is to be ensured to the closed-
loop system. By multiplying (16) by 𝑒2𝑎𝑡 , α > 
0 and replacing A by 𝐴̅ = 𝐴 + 𝑎𝐼 in the 
generalized Riccati equation, the guaranteed 
cost control law places the closed-loop system’s 
poles at the left of −α on the complex plane, for 
all admissible uncertainties [49]. In 
consequence, if a common positive definite 
solution of the set of generalized Riccati 
equations, 

𝑃𝐴̅ + 𝐴̅𝑇𝑃 − 𝑃(𝛿𝑖𝐵𝑅𝑖
−1𝐵𝑇 − 𝛿𝑖

2𝐵𝑅𝑖
−1𝐺𝑇𝑖

−1𝐺𝑇𝑅𝑖
−1𝐵𝑇 −

𝐹𝑇𝑖𝐹
𝑇 − 𝐷𝑆𝑖𝐷

𝑇)𝑃 + 𝐸𝑆𝑖𝐸
𝑇 + 𝑄𝑖 = 0                   (20) 

for = 1,… , 𝜌 , exists, then the guaranteed cost 
control law:  𝑢(𝑡) = −𝛿𝑖𝑅𝑖

−1𝐵𝑇𝑃𝑥(𝑡)         (21) 

ensures the upper bound: 𝐽𝑎𝑖 ≤ 𝑡𝑟(𝑃)          (22) 

of the performance indices  

𝐽𝑎𝑖(𝛥𝛢, 𝛥𝛣, 𝑡) = 𝛦{∫ 𝑒2𝑎𝑡[𝑥𝑇(𝑡)𝑄𝑖𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑖𝑢(𝑡)]𝑑𝑡
∞

0
}                                 

                    (23) 

Moreover, it ensures the closed-loop system’s 
pole positioning at the left of −α on the complex 
plane, for all admissible uncertainties. 

Generalized Riccati equations of the form (18), 
(20) lack of analytic solutions (see [46] for an 
overview of solutions and features). A 
computational solution can be found by using 
LMIs, provided such a solution exists. In 
addition, the positive scalars 𝜎𝑖 , 𝜏𝑖  can be 
treated as free parameters to the solution search. 
Since the common solution should be such that 
the corresponding guaranteed cost is 
minimized, one can solve an LMI minimization 
problem. 

3.3 Theorems 
In the next sections we provide in the theorems 
and proofs for the above-mentioned 
mathematical equations. 
 
3.3.1 Theorem 1 

Consider the uncertain system (11) with random 
initial conditions and multiple performance 
indices (23). If the minimization problem                                                             

min
(𝑀,𝑊,𝛿𝑖,𝑆𝑖,𝑇𝑖)

𝑡𝑟(𝑀)                             (24) 

with LMI constraints:   [𝑀 𝐼
𝐼 𝑊

] > 0   and     (25) 

[

−𝐴̅𝑊 − 𝑊𝐴̅𝑇 + 𝛿1𝐵𝑅−1
1 𝐵𝑇 − 𝐷𝑆1𝐷

𝑇 − 𝐹𝑇1𝐹
𝑇 𝑊𝐸 𝛿1𝐵𝑅−1

1 𝐺 𝑊

𝐸𝑇𝑊
𝛿1𝐺

𝑇𝑅−1
1 𝐵𝑇

𝑊

  𝑆1

0
0

0       
     𝑇1          

0       

0
0

𝑄̅1
−1

]      

 > 0                                                                                                  (26) 

[
 
 
 
−𝐴̅𝑊 − 𝑊𝐴̅𝑇 + 𝛿𝜌𝐵𝑅𝜌

1𝐵𝑇 − 𝐷𝑆𝜌𝐷𝑇 − 𝐹𝑇𝜌𝐹𝑇 𝑊𝐸 𝛿𝜌𝐵𝑅𝜌
1𝐺 𝑊

𝐸𝑇𝑊
𝛿1𝐺

𝑇𝑅𝜌
1𝐵𝑇

𝑊

  𝑆𝜌

0
0

0       
     𝑇𝜌          

0       

0
0

𝑄̅𝜌
−1

]
 
 
 

> 0 

admits a non-empty set of feasible solutions 
(𝑀,𝑊, 𝛿𝑖 , 𝑆𝑖, 𝑇𝑖) where M, W are symmetric 
and positive definite matrices, S, T are diagonal 
positive definite matrices and 𝑄𝑖̅ < 𝑄𝑖, 𝑖 =
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1, … , 𝜌 , then the positive definite matrix,𝛲 =
𝑊−1  (27), satisfies the set of generalized 
algebraic Riccati equations (20). The 
guaranteed cost control law is:   𝑢∗(𝑡) =
−𝛿𝑖𝑅−𝑖

1 𝐵𝑇𝑊−1𝑥(𝑡)  (28) and minimizes the 
guaranteed cost: 𝐽∗ = 𝑡𝑟(𝑃)  (29), for all 
admissible uncertainties. Furthermore, the 
closed-loop system’s poles are placed at the left 
of −α on the complex plane, for all admissible 
uncertainties. 

Proof: By applying the Schur complement to 
the multiple LMIs (26) and then pre and post- 
multiplying by 𝛲 = 𝑊−1, one obtains the 
following set of inequalities: 

𝑃𝐴 + 𝐴𝑇𝑃 − 𝑃(𝛿𝑖𝐵𝑅𝑖
−1𝐵𝑇 − 𝛿𝑖

2𝐵𝑅𝑖
−1𝐺𝑇𝑖

−1𝐺𝑇𝑅𝑖
−1𝐵𝑇 −

𝐹𝑇𝑖𝐹
𝑇 − 𝐷𝑆𝑖𝐷

𝑇)𝑃 + 𝐸𝑆𝑖𝐸
𝑇 + 𝑄𝑖̅ < 0                      (30) 

These inequalities are satisfied for 𝑄𝑖̅ < 𝑄𝑖 , if 
the generalized algebraic Riccati equations (20) 
are satisfied. Furthermore, application of the 
Schur complement to (25) yields  
𝑀 > 𝑊−1 = 𝑃. In consequence, minimization 
of tr (M) implies minimization of tr(P). Since P 
is the common solution of the set of (20), tr(P) 
is the minimal guaranteed cost bound of the 
multiple performance objectives. The closed-
loop pole positioning follows from (20) and 
(23) according the results in [45,49]. The 
optimality of the solution follows from the 
convexity of the objective function and of the 
constraints [50].  

Based on Theorem 3.1, the guaranteed cost 
multi-objective control with pole placement in 
LMI regions can be formulated as follows: 

3.3.2 Theorem 2 

Consider the uncertain system (11) with random 
initial conditions and multiple performance 
indices (16). If the minimization problem 

min
(𝑀,𝑊,𝛿𝑖,𝑆𝑖,𝑇𝑖)

𝑡𝑟(𝑀)                          (31) 

with LMI constraints: [𝑀 𝐼
𝐼 𝑊

] > 0 and (32) 

[

−𝐴𝑊 − 𝑊𝐴𝑇 + 𝛿1𝐵𝑅−1
1 𝐵𝑇 − 𝐷𝑆1𝐷

𝑇 − 𝐹𝑇1𝐹
𝑇 𝑊𝐸 𝛿1𝐵𝑅−1

1 𝐺 𝑊

𝐸𝑇𝑊
𝛿1𝐺

𝑇𝑅−1
1 𝐵𝑇

𝑊

  𝑆1

0
0

0       
     𝑇1          

0       

0
0

𝑄̅1
−1

]

> 0 

                                       ⋮                              (33) 

[
 
 
 
−𝐴𝑊 − 𝑊𝐴𝑇 + 𝛿𝜌𝐵𝑅𝜌

1𝐵𝑇 − 𝐷𝑆𝜌𝐷𝑇 − 𝐹𝑇𝜌𝐹𝑇 𝑊𝐸 𝛿𝜌𝐵𝑅𝜌
1𝐺 𝑊

𝐸𝑇𝑊
𝛿1𝐺

𝑇𝑅𝜌
1𝐵𝑇

𝑊

  𝑆𝜌

0
0

0       
     𝑇𝜌          

0       

0
0

𝑄̅𝜌
−1

]
 
 
 

> 0 

[𝜆𝜅𝜈𝑊 + 𝜇𝜅𝜈(𝛢𝑊 − 𝛿𝑖𝑅−𝑖
1 𝐵𝑇) + 𝜇𝜅𝜈(𝑊𝐴𝑇 − 𝛿𝑖𝑅−𝑖

1 𝐵𝑇)]1≤𝜅,𝜈≤𝑚 < 0  

                                      (34) 

admits a non-empty set of feasible solutions 
(𝑀,𝑊, 𝛿𝑖 , 𝑆𝑖, 𝑇𝑖) where M, W are symmetric 
and positive definite matrices, S, T are diagonal 
positive definite matrices and 𝑄𝑖̅ < 𝑄𝑖, 𝑖 =
1, … , 𝜌 , then the positive definite matrix, 

                             𝛲 = 𝑊−1                          (35) 

satisfies the set of generalized algebraic Riccati 
equations (18). The guaranteed cost control law 
is the following: 

     𝑢∗(𝑡) = −𝛿𝑖𝑅−𝑖
1 𝐵𝑇𝑊−1𝑥(𝑡)        (36) 

and minimizes the guaranteed cost:                        
𝐽∗ = 𝑡𝑟(𝑃) (37), for all admissible uncertainties. 
Furthermore, the closed-loop system’s poles are 
placed in the LMI region 𝐷 = {𝑧 ∈ ∁∶ 𝐿 +
𝑀𝑧 + 𝑀𝑇𝑧̅ < 0} where 𝐿 = 𝐿𝑇 = {𝜆𝜅𝜈}1≤𝜅,𝜈≤𝑚 
and 𝛭 = {𝜇𝜅𝜈}1≤𝜅,𝜈≤𝑚 , for all admissible 
uncertainties. 

Proof: The proof follows from Theorem 3.1 
and the results in [33].  

Remark In the control laws (28) and (36), the 
values of 𝑅𝑖 , 𝑖 = 1,… , 𝜌 yield different values 
of feedback gains obtained for the same P; this 
seems to deviate from the initial problem 
statement. In effect, for any choice of 𝑅𝑖 the 
control law guarantees the same upper bound 
overall performance indices. Moreover, by 
choosing the suitable feedback gain between 
them, it is possible to satisfy further design 
specifications. 
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4 Design Example 

The control approaches presented in previous 
sections are illustrated and compared by means 
of a design example. All LMI-related 
computations were performed with the function 
hinfmix from the LMI Control Toolbox [51]. 

4.1 Satellite’s attitude control 

This example is adapted from the satellite’s 
attitude control problem in [52]. The design 
purpose is to control the pointing direction of a 
satellite in orbit about the earth. The system is 
modelled as two masses connected by a spring 
with torque constant k and viscous-damping 
constant f that can vary because of temperature 
fluctuations in the range, 

0.09 < 𝑘 < 0.4, 0.0038 < 𝑓 < 0.04 
Their nominal values are k = 0.245, f = 0.0188 . 
The satellite’s motion is affected by a 
disturbance w. The system’s state-space 
description is, 

[
 
 
 
 
𝜃1̇

𝜃2̇

𝜃1̈

𝜃2̈]
 
 
 
 

= [
   
0
0

−𝑘

   0    1     0
    0    0     1
    𝑘 −𝑓     𝑓

   𝑘 −𝑘     𝑓 −𝑓

]

[
 
 
 
𝜃1

𝜃2

𝜃1̇

𝜃2̇]
 
 
 

+ [

0
0
1
0

] (𝑤 + 𝑇) , 

𝑦 = [
𝑧∞

𝑧2
]   , with    𝑧∞ = 𝜃2  and 

𝑧2 = [
1 0 0 0
0
0

1 0 0
0 0 0

]

[
 
 
 
𝜃1

𝜃2

𝜃1̇

𝜃2̇]
 
 
 

+ [
0
0
1
] 𝑇 

where 𝜃1 , 𝜃2 are the angles of the main body 
and of the sensor, respectively and T is the 
control torque on the main body. The open-loop 
nominal system poles are (0, 0, −0.0188 ± j0.7) 
and thus it is practically unstable. Furthermore, 
the poles of the open-loop uncertain system for 
all possible values of the uncertain parameters 
in the above range lie to a region located close 
to the imaginary axis, shown in Fig. 2.  

For this system, a robust control law that 
ensures closed-loop performances and regional 
pole placement in a cycle with equation 
(𝑥 + 6.9)2 + 𝑦2 = 46.24  for all admissible 
parameter variations is sought. Application of 

the 𝐻∞ design with pole placement constraints 
results to extremely large controller gains that 
may cause undesirable effects, such as actuator 
saturation, to the closed-loop system. In the 
sequel, both the 𝐻2/𝐻∞ and the guaranteed cost 
multi-objective control are applied to the 
satellite’s model. 

 

Fig. 2: Open-loop pole locations of the 
uncertain system 

The controller gain K = [-5.8861 -7.2805 -
3.6630 -23.2995] has been obtained from the 
trade-off between minimizing 𝐻2 and 𝐻∞ -
norms of the uncertain system. The closed-loop 
nominal system’s poles are (−1.12 ± j0.584, 
−0.727 ± j1.22). Furthermore, the closed-loop 
pole locations of the uncertain system for all 
admissible parameter variations are shown in 
Fig. 3. 

 

Fig. 3: Closed-loop pole locations obtained by 
the 𝐻2/𝐻∞control 

5 Conclusion 

The guaranteed cost multi-objective approach 
proposed in the present paper considered the 
general case of uncertain systems in which 
uncertain parameters may affect both the state 



WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2021.20.30 Antonios Vouzikas, Alexandros Gazis 

E-ISSN: 2224-2678 279 Volume 20, 2021 

 

 
 

and control input matrices. The uncertainty 
decomposition was treated as an optimization 
tool. Minimization of the GC allowed reducing 
conservatism related to Lyapunov based 
methods. The non-uniqueness of the obtained 
controller provides several degrees of freedom 
to the design procedure: Since all of the 
controllers are stabilizing, the most adequate 
one can be chosen for the practical system 
under consideration. In a future work, an 
inverse problem will be formulated and solved 
to establish algorithms for the choice of the 
most adequate solution with respect to the 
desirable performances. 
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