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1. Introduction
Let A(p) denotes the class of normalized p-valent
functions f which are analytic in U = {z ∈ C : |z| <
1}, and given by

f(z) = zp +
∞∑

k=p+1

akz
k ( p ∈ N = {1, 2, 3...}),

(1.1)
we note that A(1) = A, is the so-called the subclass
of univalent functions. A function f ∈ A(p) is called
p-valent starlike of order α(0 ≤ α < p), if and only
if

Re
{
zf

′
(z)

f(z)

}
> α (0 ≤ α < p; z ∈ U) , (1.2)

we denote by S∗
p(α) the class of all p-valent starlike

functions of order α. Also, a function f ∈ A(p) is
called p-valent convex of order α(0 ≤ α < p), if and
only if

Re
{
1 +

zf
′′
(z)

f ′(z)

}
> α (0 ≤ α < p; z ∈ U) ,

(1.3)
we denote by Cp(α) the class of all p-valent convex
functions of order α. It is well known that:

f(z) ∈ Cp(α) ⇐⇒ zf
′
(z) ∈ S∗

p(α)

(0 ≤ α < p; z ∈ U) . (1.4)

A function f ∈ A(p) is called p-valent close-to-
convex functions of order β(0 ≤ β < p), and type
(0 ≤ α < p), if there exist a function g(z) ∈ S∗

p(α)
such that

Re
{
zf

′
(z)

g(z)

}
> β (0 ≤ β < p; z ∈ U) , (1.5)

we denote this class by Kp(β, α) . Also, a function
f ∈ A(p) is called p-valent quasi-convex function of
order β(0 ≤ β < p), and type (0 ≤ α < p),if there
exist a function g(z) ∈ Cp(α) such that

Re
{
zf

′
(z)

g′(z)

}
> β (0 ≤ β < p; z ∈ U) , (1.6)

we denote this class byK∗
p(β, α). similarly, It is well

known that:

f(z) ∈ K∗
p(β, α) ⇐⇒ zf

′
(z) ∈ Kp(β, α)

(0 ≤ α, β < p; z ∈ U) . (1.7)

For further information about starlike, convex, close-
to-convex and quasi-convex function, see [5], [7], [9],
[10], [11], [12], [13] and [14].
Moreover, the definitions of Riemannian fractional
integral and fractional derivative are important for our
results. (For details, see [15], [17] and [18], also ref-
erences cited therein).
Definition 1.1. The fractional integral of order δ is
defined, for a function f(z), by

D−δ
z f(z) =

1

Γ(δ)

z∫
0

f(ζ)

(z − ζ)1−δ
dζ; (δ > 0), (1.8)

where the function f is analytic in a simply-connected
domain of the complex z-plane containing the origin
and the multiplicity of (z − ζ)δ−1 is removed by re-
quiring log(z − ζ) to be real when z − ζ > 0.
Definition 1.2. The fractional derivative of order δ is
defined, for a function f, by

Dδ
zf(z) =

1

Γ(1− δ)

d

dz

z∫
0

f(ζ)

(z − ζ)δ
dζ; (0 ≤ δ < 1),

(1.9)
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where the function f is constrained, and the multiplic-
ity of (z−ζ)−δ is removed as in Definition 1.1 above.
Under the hypothesis of Definition 1.2, the fractional
derivative of order n + δ (0 ≤ δ < 1 and n ∈ N0 =
{0, 1, 2, ...}) is defined for a function f by

Dn+δ
z f(z) =

dn

dzn
{Dδ

zf(z)} (0 ≤ δ < 1;n ∈ N0).

Also, by using Definitions 1.1, 1.2, we obtain

Dδ
z{zk} =

Γ(k + 1)

Γ(k − δ + 1)
zk−δ (0 ≤ δ < 1; k ∈ N),

(1.10)
and

D−δ
z {zk} =

Γ(k + 1)

Γ(k + δ + 1)
zk+δ (δ > 0; k ∈ N),

(1.11)
in terms of Gamma functions.
In his thesis, Tremblay [19] investigated a fractional
calculus operator defined in terms of the Riemann-
Liouville fractional differential operator. Recently,
Ibrahim and Jahangiri [3] extended the Tremblay op-
erator in the complex plane for univalent functions.
Here, we introduce the multivalent case operator.
Definition 1.3 ([3]). Tremblay fractional derivative
operator Tµ,γ

p,z of a function f is defined, for all z ∈ U ,
by

(T µ,γ
z f) (z) =

Γ(γ)

Γ(µ)
z1−γDµ−γ

z zµ−1f(z), (1.12)

(0 < γ ≤ 1, 0 < µ ≤ 1, 0 ≤ µ− γ < 1, µ > γ),

It is clear that for µ = γ = 1, we obtain(
T 1,1
z f

)
(z) = f(z).

For more information about Tremblay operator see
[16].
Now, we introduce themodified of Tremblay operator
of functions f ∈ A(p) in complex domain as follows:
Definition 1.4. If f ∈ A(p), then the modi-
fied p-valent Tremblay operator denoted by Tµ,γ

p :
A(p) −→ A(p) and defined as:

Tµ,γ
p,z f(z) =

Γ(µ)Γ(γ + p)

Γ(γ)Γ(µ+ p)
(T µ,γ

z f(z))

=
Γ(γ + p)

Γ(µ+ p)
z1−γDµ−γ

z zµ−1f(z). (1.13)

where Tµ,γ is denoting the Tremblay fractional
derivative operator defined by (1.12).
Applying some calculation, one arrives to the series
representation of Tµ,γ

p,z f(z) as following

Tµ,γ
p,z f(z) = zp +

∞∑
k=p+1

Γ(γ + p)Γ(µ+ k)

Γ(µ+ p)Γ(γ + k)
akz

k

or, for more convenience, it can be rewritten as

Tµ,γ
p,z f(z) = zp +

∞∑
k=p+1

(µ+ p)k−p

(γ + p)k−p
akz

k,

(0 < γ ≤ 1, 0 < µ ≤ 1, 0 ≤ µ− γ < 1, µ > γ),

where (m)n is the Pochhammer symbol (shifted fac-
torial), defined as following:

(m)n =
Γ (m+ n)

Γ (m)
,

then we have the following two cases

(i) (m)n = m (m+ 1) ... (m+ n− 1)

(n ∈ N,m ∈ C) ;
(ii) (m)n = 1, (n = 0,m ∈ C) .

Remark 1.1. Taking p = 1, then

Tµ,γ
p,z = Tµ,γ

z ,

the modified Tremblay operator, which was defined
by Esa et al. [2]. Using (1.1), we can obtain the fol-
lowing recurrence relations, which will be needed.

z(Tµ,γ
p,z f(z))

′
= (µ+ p)Tµ+1,γ

p,z f(z)− µTµ,γ
p,z f(z),

(1.14)
and

z(Tµ,γ+1
p,z f(z))

′
= (γ + p)Tµ,γ

p,z f(z)− γTµ,γ+1
p,z f(z).

(1.15)
Definition 1.5. By using the operator Tµ,γ

p,z f(z) de-
fined by (1.13), we introduce the following subclasses
of the class A(p), as follows:

S∗
p(α;µ, γ) = {f ∈ A(p);Tµ,γ

p,z f(z) ∈ S∗
p(α)},

(1.16)

Cp(α;µ, γ) = {f ∈ A(p);Tµ,γ
p,z f(z) ∈ Cp(α)},

(1.17)

Kp(β, α;µ, γ) = {f ∈ A(p);Tµ,γ
p,z f(z) ∈ Kp(β, α)},

(1.18)

K∗
p(β, α;µ, γ) = {f ∈ A(p);Tµ,γ

p,z f(z) ∈ K∗
p(β, α)},
(1.19)

(0 ≤ α, β < p; 0 < γ, µ ≤ 1, 0 ≤ µ−γ < 1, µ > γ).

In order to introduce our main results, we shall need
the following lemma which is given by Miller and
Mocanu [8]
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Lemma 1.1. Let u = u1 + iu2, v = v1 + iv2 and let
Ψ(u, v) be a complex-valued function such that

Ψ : D → C (D ⊂ C× C).

Suppose also that the function Ψ(u, v) satisfies each
of the following conditions:
(i) Ψ(u, v) is continuous D;
(ii) (1, 0) ∈ D and Re{Ψ(1, 0)} > 0;
(iii) Re{Ψ(iu2, v1)} ≤ 0 for all (iu2, v1) ∈ D such
that

v1 ≤ −1

2
(1 + u22). (1.20)

Let
h(z) = 1 + c1z + c2z

2 + ....., (1.21)
be analytic in U such that (h(z), zh′

(z)) ∈ D(z ∈
U). If Re{Ψ(h(z), zh

′
(z))} > 0 (z ∈ U), then

Re{h(z)} > 0 for z ∈ U.

2. Inclusion relationships
Unless otherwise mentioned, we shall assume
throughout the remainder of this paper that
0 ≤ α, β < p, 0 < γ, µ ≤ 1, 0 ≤ µ − γ < 1,
µ > γ, p ∈ N, z ∈ U and f ∈ A(p).
In this section, we give several inclusion relationships
for analytic function classes, which are associated
with the generalized operator Tµ,γ

p,z f(z).
Theorem 2.1. For the function subclass S∗

p(α;µ, γ)
we have

S∗
p(α;µ+ 1, γ) ⊂ S∗

p(α;µ, γ) ⊂ S∗
p(α;µ, γ + 1).

(2.1)
Proof. We begin with showing the first inclusion re-
lationship

S∗
p(α;µ+ 1, γ) ⊂ S∗

p(α;µ, γ), (2.2)

Let f ∈ S∗
p(α;µ+ 1, γ), and set

z(Tµ,γ
p,z f(z))

′

Tµ,γ
p,z f(z)

− α = (p− α)h(z) (2.3)

where h is defined by (1.21). By using the identity
(1.14) and (2.3), we obtain

(µ+ p)
Tµ+1,γ
p,z f(z)

Tµ,γ
p,z f(z)

= (p− α)h(z) + α+ (p− λ).

(2.4)
By using logarithmic differentiation on both sides of
(2.4), we obtain

z
(
Tµ+1,γ
p,z f(z)

)′

Tµ+1,γ
p,z f(z)

=

z (Tµ,γ
p,z f(z))

′

Tµ,γ
p,z f(z)

+
(p− α) zh′(z)

(p− α)h(z) + α+ µ
,

using (2.3) in the above equation, we obtain

z
(
Tµ+1,γ
p,z f(z)

)′

Tµ+1,γ
p,z f(z)

− α

= (p− α)h(z) +
(p− α) zh′(z)

(p− α)h(z) + α+ µ
. (2.5)

Now, we choose
u(z) = h(z) = u1+iu2 and v(z) = zh′(z) = v1+iv2,

and define the function ψ(u, v) by

ψ(u, v) = (p− α)u+
(p− α) v

(p− α)u+ α+ µ
.

It is easy to see that the function ψ(u, v) satis-
fies conditions (i) and (ii) of Lemma 1.1 in D =(
C\

{
α+µ
α−p

})
× C. Also, we verify condition (iii) as

follows:

Re {ψ(iu2, v1)} = Re
{

(p− α) v1
(p− α) iu2 + α+ µ

}
=

(α+ µ) (p− α) v1

(α+ µ)2 + (p− α)2 u22

≤ − (α+ µ) (p− α) (1 + u22)

2
[
(α+ µ)2 + (p− α)2 u22

]
< 0.

Which shows that ψ(u, v) = ψ(h(z), zh′(z)) (z ∈
U) satisfies the hypotheses of the Lemma 1.1, then
Re {h(z)} > 0 (z ∈ U), then using (2.3), we have
f ∈ S∗

p(α;µ, γ). This evidently the proof of (2.2).
(ii) now, we prove

S∗
p(α;µ, γ) ⊂ S∗

p(α;µ, γ + 1), (2.6)
which is the second inclusion relationship of Theorem
2.1. Let f ∈ S∗

p(α;µ, γ) and set

z(Tµ,γ+1
p,z f(z))

′

Tµ,γ+1
p,z f(z)

− α = (p− α)h(z), (2.7)

where h(z) is defined by (1.21). By applying the
identity (1.15) in (2.7), we obtain

(γ + p)
Tµ,γ
p,z f(z)

Tµ,γ+1
p,z f(z)

= (p− α)h(z) + α+ γ. (2.8)

By using logarithmic differentiation on both sides of
(2.8), we obtain

z(Tµ,γ
p,z f(z))

′

Tµ,γ
p,z f(z)

− α

= (p− α)h(z) +
(p− α) zh′(z)

(p− α)h(z) + α+ γ
, (2.9)
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By using arguments similar to those detailed before,
together with (2.9) and ψ(u, v) is continuous in D =(
C\

{
α+γ
α−p

})
×C, then we can prove (2.6), which is

the second inclusion relationship of Theorem 2.1.
Combining the inclusion relationships (2.2) and (2.6),
we complete the proof of Theorem 2.1.
Theorem 2.2. For the function subclass Cp(α;µ, γ)
we have

Cp(α;µ+ 1, γ) ⊂ Cp(α;µ, γ) ⊂ Cp(α;µ, γ + 1).
(2.10)

Proof. We first show that

Cp(α;µ+ 1, γ) ⊂ Cp(α;µ, γ). (2.11)

Let f ∈ Cp(α;µ+1, γ). Using Theorem 2.1, we have

Tµ+1,γ
p,z f(z) ∈ Cp(α) ⇐⇒ z

(
Tµ+1,γ

p,z f(z)
)′ ∈ S∗

p(α)
⇐⇒ Tµ+1,γ

p,z zf ′(z) ∈ S∗(α)
⇐⇒ zf ′(z) ∈ S∗

p(α;µ+ 1, γ)
=⇒ zf ′(z) ∈ S∗

p(α;µ, γ)
⇐⇒ Tµ,γ

p,z zf
′(z) ∈ S∗

p(α)

⇐⇒ z
(
Tµ,γ

p,z f(z)
)′ ∈ S∗

p(α)
⇐⇒ Tµ,γ

p,z f(z) ∈ Cp(α)
⇐⇒ f(z) ∈ Cp(α;µ, γ).

This completes the proof of (2.11).
By using arguments similar to those detailed above,
we can also prove the right part of Theorem 2.2, that
is, that

Cp(α;µ, γ) ⊂ Cp(α;µ, γ + 1). (2.12)

Combining the inclusion relationships (2.11) and
(2.12), we complete the proof of Theorem 2.2.
Theorem 2.3. For the function subclass
Kp(β, α;µ, γ) we have

Kp(β, α;µ+ 1, γ) ⊂ Kp(β, α;µ, γ) ⊂ Kp(β, α;µ, γ + 1).
(2.13)

Proof. Let us begin with proving that

Kp(β, α;µ+ 1, γ) ⊂ Kp(β, α;µ, γ). (2.14)

Let f ∈ Kp(β, α;µ + 1, γ), then Tµ+1,γ
p,z f(z) ∈

Kp(β, α). Or, there exists a function g ∈ S∗
p(α) such

that

Re


z
(
Tµ+1,γ
p,z f(z)

)′

g(z)

 > β (z ∈ U) .

We put g = Tµ+1,γ
p,z k(z), so that we have k ∈

S∗
p(α;µ+ 1, γ) and

Re


z
(
Tµ+1,γ
p,z f(z)

)′

Tµ+1,γ
p,z k(z)

 > β (z ∈ U) .

Next, we put

z (Tµ,γ
p,z f(z))

′

Tµ,γ
p,z k(z)

= (p− β)h(z) + β, (2.15)

where h is given by (1.21). Thus, by using the identity
(1.14), we obtain

z
(
Tµ+1,γ

p,z f(z)
)′

Tµ+1,γ
p,z k(z)

=
Tµ+1,γ

p,z zf ′(z)

Tµ+1,γ
p,z k(z)

=

1
µ+p

[
z
(
Tµ,γ

p,z zf
′(z)

)′
+ µTµ,γ

p,z zf
′(z)

]
1

µ+p

[
z (Tµ,γ

p,z k(z))
′ + µTµ,γ

p,z k(z)
]

=

z
(
Tµ,γ

p,z zf
′(z)

)′
Tµ,γ

p,z k(z)
+ µ

Tµ,γ
p,z zf

′(z)

Tµ,γ
p,z k(z)

z
(
Tµ,γ

p,z k(z)
)′

Tµ,γ
p,z k(z)

+ µ

.

(2.16)

Since k ∈ S∗
p(α;µ+1, γ), then by using Theorem 2.1

we have k ∈ S∗
p(α;µ, γ), and

z (Tµ,γ
p,z k(z))

′

Tµ,γ
p,z k(z)

= (p− α)G(z) + α, (2.17)

whereG(z) = g1 (x, y)+ig2 (x, y) and Re {G(z)} =
g1 (x, y) > 0 (z ∈ U) . Using (2.15) and (2.17) in
(2.16), we have

z
(
Tµ+1,γ
p,z f(z)

)′

Tµ+1,γ
p,z k(z)

=

z (Tµ,γ
p,z zf ′(z))

′

Tµ,γ
p,z k(z)

+ µ [(p− β)h(z) + β]

(p− α)G(z) + α+ µ
. (2.18)

Moreover, from (2.15), we can put

z
(
Tµ,γ
p,z f(z)

)′
= [(p− β)h(z) + β]Tµ,γ

p,z k(z).
(2.19)

Differentiating both sides of (2.19) with respect to z,
and using (2.15) and (2.17), we obtain

z(Tµ,γ
p,z zf ′(z))′

Tµ,γ
p,z k(z)

= (p− β)zh′(z) + [(p− β)h(z)

+ β][(p− α)G(z) + α]. (2.20)

By substituting from (2.20) into (2.18), we obtain

z
(
Tµ+1,γ

p,z f(z)
)′

Tµ+1,γ
p,z k(z)

=

(
(p− β) zh′(z) + [(p− β)h(z) + β] [(p− α)G(z) + α]

+ µ [(p− β)h(z) + β]
)

(p− α)G(z) + α+ µ
,
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z
(
Tµ+1,γ

p,z f(z)
)′

Tµ+1,γ
p,z k(z)

=
(p− β) zh′(z) + [(p− β)h(z) + β] [(p− α)G(z) + α+ µ]

(p− α)G(z) + α+ µ
,

z
(
Tµ+1,γ
p,z f(z)

)′

Tµ+1,γ
p,z k(z)

− β

= (p− β)h(z) +
(p− β) zh′(z)

(p− α)G(z) + α+ µ
. (2.21)

In (2.21), take u = h(z) = u1 + iu2, v = zh′(z) =
v1 + iv2, and define the function ψ(u, v) by

ψ(u, v) = (p− β)u+
(p− β) v

(p− α)G(z) + α+ µ
,

(2.22)
where (u, v) ∈ D = C × C. Then it follows from
(2.22) that:
(i) ψ(u, v) is continuous in D;
(ii) (1, 0) ∈ D and Re {ψ(1, 0)} = p− β > 0;
(iii) for all (iu2, v1) ∈ D such that v1 ≤
−1

2

(
1 + u22

)
, we have

Re {ψ(iu2, v1)} = Re
{

(p− β) v1
(p− α)G(z) + α+ µ

}

=

(
(p− β) v1

)(
(p− α) g1 + α+ µ

)
(
(p− α) g1 + α+ µ

)2
+
(
(p− α) g2

)2

= −

(
(p− β)

(
1 + u22

) )(
(p− α) g1 + α+ µ

)
2

[(
(p− α) g1 + α+ µ

)2
+
(
(p− α) g2

)2
]

< 0,

which shows that ψ(u, v) satisfies the hypotheses
of Lemma 2.1. Thus, in light of (2.15) we have

Re
{

z(Tµ,γ
p,z f(z))

′

Tµ,γ
p,z k(z)

}
> β. Or, f ∈ Kp(β, α;µ, γ),

which leads to the inclusion relationship (2.14).
The remainder of our proof of Theorem 2.3 would
make use of the identity (1.15) in an analogous man-
ner. Therefore, we choose to omit the details in-
volved. The proof of Theorem 2.3 is completed.
Theorem 2.4. For the function subclass
K∗

p(β, α;µ, γ) we have

K∗
p (β, α;µ+ 1, γ) ⊂ K∗

p (β, α;µ, γ) ⊂ K∗
p (β, α;µ, γ + 1).

(2.23)
Proof. Just, as we derived Theorem 2.2 as a conse-
quence of Theorem 2.1 by using the equivalence (1.4).
Similarly, we can prove Theorem 2.4 by using The-
orem 2.3 in conjunction with the equivalence (1.7).
Therefore, we choose to omit the details involved.

3. Integral-preserving properties
In this section, we shall make use of the generalized
Bernardi-Libera-Livingston integral operator Jσ,p :
A(p) −→ A(p) defined by (cf. [5], [6] and [1])

Jσ,pf(z)

=
σ + p

zσ

z∫
0

tσ−1f(t)dt (σ > −p; p ∈ N) (3.1)

which has the series representation

Jσ,pf(z) = zp +

∞∑
k=p+1

(
σ + p

σ + k

)
akz

k, (3.2)

(σ > −p, p ∈ N, f ∈ A(p)).

Using (1.14) and (3.2), it is clear that Jσ,pf(z) satis-
fies the following relationship:

z
(
Tµ,γ
p,z Jσ,pf(z)

)′
= (σ + p)Tµ,γ

p,z f(z)−σTµ,γ
p,z Jσ,pf(z).

(3.3)
In order to obtain the integral-preserving properties
involving the integral operator Jσ,p, we need the fol-
lowing lemma which is known as Jack’s lemma [4].
Lemma 3.1 ([4]). Let ω(z) be a nonconstant function
analytic in U with ω(0) = 0. If |ω(z)| attains its
maximum value on the circle |z| = r < 1 at z0, then

z0ω
′(z0) = ζω(z0),

where ζ is a real number and ζ ≥ 1.
Theorem 3.1. Let σ > −α. If f(z) ∈ S∗

p(α;µ, γ),
then

Jσ,pf(z) ∈ S∗
p(α;µ, γ).

Proof. Suppose that f(z) ∈ S∗
p(α;µ, γ) and let

z (Tµ,γ
p,z Jσ,pf(z))

′

Tµ,γ
p,z Jσ,pf(z)

=
1 + (1− 2α)ω(z)

1− ω(z)
, (3.4)

where ω(0) = 0. Then, by using (3.3) and (3.4), we
have

z (Tµ,γ
p,z Jσ,pf(z))

′

Tµ,γ
p,z Jσ,pf(z)

=
(σ + p)Tµ,γ

p,z f(z)− σTµ,γ
p,z Jσ,pf(z)

Tµ,γ
p,z Jσ,pf(z)

= (σ + p)
Tµ,γ
p,z f(z)

Tµ,γ
p,z Jσ,pf(z)

− σ,

then

Tµ,γ
p,z f(z)

Tµ,γ
p,z Jσ,pf(z)

=
1

(σ + p)

[
1 + (1− 2α)ω(z)

1− ω(z)
+ σ

]
=
σ + 1 + (1− σ − 2α)ω(z)

(σ + p) (1− ω(z))
, (3.5)

which, upon logarithmic differentiation, yields
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[
z(Tµ,γ

p,z f(z))′

Tµ,γ
p,z f(z)

(1− ω(z))− zω′(z)](σ + p)

=
Tµ,γ
p,z Jσ,pf(z)

Tµ,γ
p,z f(z)

[(1− σ − 2α)ω′(z)

− σ((1− σ − 2α)ω(z) + σ + 1)]

+ (σ + p)[(1− σ − 2α)ω(z) + σ + 1],

further computations and using (3.5) for the second
time, one arrives to

z (Tµ,γ
p,z f(z))

′

Tµ,γ
p,z f(z)

=
1 + (1− 2α)ω(z)

1− ω(z)
+

zω′(z)

1− ω(z)

+
(1− σ − 2α) zω′(z)

(1− σ − 2α)ω(z) + σ + 1
, (3.6)

which is equivalent to

z (Tµ,γ
p,z f(z))

′

Tµ,γ
p,z f(z)

−α = (1− α)
1 + ω(z)

1− ω(z)
+

zω′(z)

1− ω(z)

+
(1− σ − 2α) zω′(z)

(1− σ − 2α)ω(z) + σ + 1
. (3.7)

Now, assuming that max
|z|≤|z0|

|ω(z)| = |ω(z0)| = 1

(z ∈ U) and applying Jack’s lemma, we obtain

z0ω
′(z0) = ζω(z0) (ζ ∈ R, ζ ≥ 1).

If we set ω(z0) = eiθ (θ ∈ R) in (3.7) and observe
that

Re
{
(1− α)

1 + ω(z0)

1− ω(z0)

}
= 0,

then, we obtain

Re

{
z (Tµ,γ

p,z f(z))
′

Tµ,γ
p,z f(z)

−α

}

=Re
{
z0ω

′(z0)

1− ω(z0)
+

(1− σ − 2α) z0ω
′(z0)

(1− σ − 2α)ω(z0) + σ + 1

}
=Re

{
ζeiθ

1− eiθ
+

(1− σ − 2α) ζeiθ

(1− σ − 2α) eiθ + σ + 1

}
=− 2ζ (σ + α) (1− α)

2 (1+σ) (1−σ−2α) cos θ+(1 + σ)2+(1−σ−2α)2

< 0,

which obviously contradicts the hypothesis f(z) ∈
S∗
p(α;µ, γ). Consequently, we can deduce that

|ω(z)| < 1 (z ∈ U), which, in view of (3.3), proves
the integral-preserving property asserted by Theorem
3.1.

Theorem 3.2. Let σ > −α. If f(z) ∈ Cp(α;µ, γ),
then

Jσ,pf(z) ∈ Cp(α;µ, γ). (3.8)
Proof. By applying Theorem 3.1 and the equivalence
relation (1.4), it follows that

f(z) ∈ Cp(α;µ, γ)

⇐⇒ Tµ,γ
p,z f(z) ∈ Cp(α)

⇐⇒ z
(
Tµ,γ
p,z f(z)

)′ ∈ S∗
p(α)

⇐⇒ Tµ,γ
p,z zf

′(z) ∈ S∗
p(α)

⇐⇒ zf ′(z) ∈ S∗
p(α;µ, γ)

=⇒ Jσ,p

(
zf ′(z)

)
∈ S∗

p(α;µ, γ)

⇐⇒ Tµ,γ
p,z Jσ,pzf

′(z) ∈ S∗
p(α)

⇐⇒ z
(
Tµ,γ
p,z Jσ,pf(z)

)′ ∈ S∗
p(α)

⇐⇒ Tµ,γ
p,z Jσ,pf(z) ∈ Cp(α)

⇐⇒ Jσ,pf(z) ∈ Cp(α;µ, γ),

which proves Theorem 3.2.
Theorem 3.3. Let σ > −α. If f(z) ∈
Kp(β, α;µ, γ), then

Jσ,pf(z) ∈ Kp(β, α;µ, γ). (3.9)

Proof. Suppose that f(z) ∈ Kp(β, α;µ, γ). Then,
there exists a function g(z) ∈ S∗

p(α;µ, γ) such that

Re

{
z (Tµ,γ

p,z f(z))
′

Tµ,γ
p,z g(z)

}
> β.

Thus, upon setting

z (Tµ,γ
p,z Jσ,pf(z))

′

Tµ,γ
p,z Jσ,pg(z)

− β = (1− β)h(z), (3.10)

where h(z) is given by (1.21), we find from (3.3) that

z (Tµ,γ
p,z f(z))

′

Tµ,γ
p,z g(z)

=
Tµ,γ
p,z zf ′(z)

Tµ,γ
p,z g(z)

=
z (Tµ,γ

p,z Jσ,pzf
′(z))

′
+ σ (Tµ,γ

p,z Jσ,pzf
′(z))

z (Tµ,γ
p,z Jσ,pg(z))

′
+ σ (Tµ,γ

p,z Jσ,pg(z))

=

z (Tµ,γ
p,z Jσ,pzf

′(z))
′

Tµ,γ
p,z Jσ,pg(z)

+ σ
Tµ,γ
p,z Jσ,pzf

′(z)

Tµ,γ
p,z Jσ,pg(z)

z (Tµ,γ
p,z Jσ,pg(z))

′

Tµ,γ
p,z Jσ,pg(z)

+ σ

.

(3.11)

Since g(z) ∈ S∗
p(α;µ, γ), we know from Theorem

3.1 that Jσ,pg(z) ∈ S∗
p(α;µ, γ). Then, we can set

z (Tµ,γ
p,z Jσ,pg(z))

′

Tµ,γ
p,z Jσ,pg(z)

− α = (1− α)H(z), (3.12)
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where Re {H(z)} > 0. Then, substituting (3.10) and
(3.12) into (3.11), we have

z (Tµ,γ
p,z f(z))

′

Tµ,γ
p,z g(z)

=

z (Tµ,γ
p,z Jσ,pzf

′(z))
′

Tµ,γ
p,z Jσ,pg(z)

+ σ [β + (1− β)h(z)]

[(1− α)H(z) + α] + σ
.

(3.13)

Also, we find from (3.10) that

Tµ,γ
p,z Jσ,pzf

′(z) =
(
Tµ,γ
p,z Jσ,pg(z)

)
[(1− β)h(z) + β] .

(3.14)
Differentiating both sides of (3.13) with respect to z,
we obtain

z
(
Tµ,γ
p,z Jσ,pzf

′(z)
)′
= (1−β) zh′(z)

(
Tµ,γ
p,z Jσ,pg(z)

)
+ z

(
Tµ,γ
p,z Jσ,pg(z)

)′
[(1−β)h(z) + β] ,

that is,

z (Tµ,γ
p,z Jσ,pzf

′(z))
′

Tµ,γ
p,z Jσ,pg(z)

= (1−β) zh′(z)+

[(1− β)h(z) + β] [(1− α)H(z) + α] . (3.15)

Substituting (3.15) into (3.13), we find that

z (Tµ,γ
p,z f(z))

′

Tµ,γ
p,z g(z)

− β = (1− β)h(z)

+
(1− β) zh′(z)

[(1− α)H(z) + α] + σ
. (3.16)

Then, by setting

u = h(z) = u1 + iu2 and v = zh′(z) = v1 + iv2,

we can define the function ψ(u, v) by

ψ(u, v) = (1− β)u+
(1− β) v

[(1− α)H(z) + α] + σ
,

where (u, v) ∈ D = C × C. The remainder of our
proof of Theorem 3.3 is similar to that of Theorem 2.3,
so we choose to omit the analogous details involved.
Proof of Theorem 3.3 is completed.
Theorem 3.4. Let σ > −α. If f(z) ∈
K∗

p(β, α;µ, γ), then

Jσ,pf(z) ∈ K∗
p(β, α;µ, γ). (3.17)

Proof. By applying Theorem 3.3 and the equivalence

relation (1.7), it follows that

f(z) ∈ K∗
p(β, α;µ, γ)

⇐⇒ Tµ,γ
p,z f(z) ∈ K∗

p(β, α)

⇐⇒ z
(
Tµ,γ
p,z f(z)

)′ ∈ Kp(β, α)

⇐⇒ Tµ,γ
p,z zf

′(z) ∈ Kp(β, α)

⇐⇒ zf ′(z) ∈ Kp(β, α;µ, γ)

=⇒ Jσ,pzf
′(z) ∈ Kp(β, α;µ, γ)

⇐⇒ Tµ,γ
p,z Jσ,pzf

′(z) ∈ Kp(β, α)

⇐⇒ z
(
Tµ,γ
p,z Jσ,pf(z)

)′ ∈ Kp(β, α)

⇐⇒ Tµ,γ
p,z Jσ,pf(z) ∈ K∗

p(β, α)

⇐⇒ Jσ,pf(z) ∈ K∗
p(β, α;µ, γ),

which complete the proof of Theorem 3.4.
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