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Abstract: This work deals with the inverse problem of reconstructing the thermal conductivity coefficient of the
(2+1)D heat equation from over–posed data at the boundaries. The proposed solution uses a variational approach
for identifying the coefficient. The inverse problem is reformulated as a higher–order elliptic boundary–value
problem for minimization of a quadratic functional of the original equation. The resulting system consists of a
well–posed fourth–order boundary–value problem for the temperature and an explicit equation for the unknown
thermal conductivity coefficient. The existence and uniqueness of the resulting higher–order boundary–value
problem are investigated. The unique solvability of the inverse coefficient problem is proven. The numerical al-
gorithm is validated and applied to problems of reconstructing continuous nonlinear coefficient and discontinuous
coefficients. Accurate and stable numerical solutions are obtained.
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1 Introduction
There are many practically important problems in-
volving parabolic partial differential equations, which
are classified as inverse in the sense that the way
they are posed is not the standard initial, boundary,
or initial–boundary value for which the correctness
and well–posedness of the problem has been proved.
Clearly, the incorrect problems are inverse in this
sense. The first example for an incorrect problem
was shown by [6] for the initial value problem for
Laplace equation (the so–called “analytical continu-
ation” problem).

The class of inverse problems is wider than the
class of incorrect problems since the former contains
also the problems involving an unknown coefficient
in the governing equation to be estimated from ad-
ditional (overposed) data at the boundary or at some
internal points (lines, surfaces) in the domain. In this
case, the problem is inverse in the sense that no ex-
plicit equation is available to evaluate the unknown
coefficient. Intuitively speaking, one should adjust
the coefficient in order to make solution meet the
overposed data at the boundaries.

The problem for thermal conductivity coefficient
has attracted attention recently, see [1, 2, 5, 7, 8, 10,
11, 12, 14, 18, 21].

The coefficient identification may or may not be
incorrect depending on existence and uniqueness of
the solution. In most of the situations these questions

are hard to answer and any kind of approach capable
to shed some light on the problem is welcome. Even
if an abstract theorem of uniqueness is available, the
actual computation of the unknown coefficient still re-
mains a formidable difficulty and the quest for effec-
tive algorithms is still on. At the same time, the es-
timation of an unknown coefficient from overposed
boundary data is of significant practical importance
when creating non-invasive methods to identify the
material properties of a continuum.

Common approach to the solution of inverse prob-
lems is based on regularization methods (see, e.g.,
[4, 13, 20]), which requires finding the minimumwith
respect to a parameter (called a regularization param-
eter) of a properly constructed functional. In general,
the numerical solution of the regularization algorithm
does not always approach the exact solution when the
regularization parameter becomes very small.

In this work we apply the so–called Method of
Variational Imbedding (MVI) to solve the inverse
problem for thermal conductivity reconstruction. A
comparison between the regularizationwith respect to
a small parameter andMVI, applied to the same prob-
lem, shows the advantages of the latter. Both meth-
ods come up with a numerical procedure for solving
higher order equations. The MVI gives a solution of
the original problem that coincides with the solution
of the variational problem.
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2 The Direct Problem
This work deals with thermal conductivity identifi-
cation from the heat conduction equation satisfying
specific boundary and initial conditions. The general
differential equation of heat conduction [9] within a
solid is:

∂T (~r, t)

∂t
= ∇[λ∇T (~r, t)] + q(~r, t), (1)

where the variables are: ~r – the position vector within
the body; t – the time; T – the temperature at any point
~r and any time t; λ – the thermal conductivity; q – the
heat generation in the medium.

We consider the initial–boundary value problem
for the heat conduction in a bounded domain. The
two–dimensional heat conduction equation is

∂T

∂t
=

∂

∂x

(
λ
∂T

∂x

)
+

∂

∂y

(
λ
∂T

∂y

)
, (2)

whereΩ = {(x, y) : 0 < x < 1; 0 < y < 1} ⊂ R2 is
the domain, and T = T (x, y, t). There are no internal
heat sources, i.e. q(x, y, t) = 0.

In this work, the thermal conductivity is consid-
ered to be a function of time t, i.e., λ = λ(t). Under
this assumption, equation (2) reduces to

R(x, y, t) := −∂T (x, y, t)
∂t

+ λ(t)
∂2T (x, y, t)

∂x2
+ λ(t)

∂2T (x, y, t)

∂y2
= 0. (3)

If the coefficient λ = λ(t) is known, the problem
can be solved provided that an initial condition and a
boundary condition at each boundary point (x, y) ∈
∂Ω of the body are available, namely

T (x, y, 0) = φ(x, y), (4)

T (x, y, t)
∣∣
(x,y)∈∂Ω = ψ(x, y, t). (5)

The system of equations (3)–(5) comprises the so–
called direct problem.

3 The Inverse Problem
We now introduce the inverse problem considered
in this paper. Suppose that the thermal conductiv-
ity coefficient λ(t) is not known. In order to iden-
tify it, we need more information for the temperature
T (x, y, t). We assume that the temperature field is not
only known in the initial time moment t = 0, but also
in a specified final time moment, t = tF ,

T (x, y, tF ) = Φ(x, y). (6)

We also assume that the heat flux associated with a
temperature profile T is given for all t ∈ [0, tF ] and
(x, y) ∈ ∂Ω, i.e.,

−λ∂T
∂ν

∣∣∣∣
(x,y)∈∂Ω

= Ψ(x, y, t), (7)

where ∂T
∂ν is the normal derivative of the temperature

function T at the boundary point (x, y) ∈ ∂Ω. If
the thermal conductivity λ(t) is known, the problem
(3)–(7) is over–determined. If the function λ(t) is not
known, it is possible to find the temperature T and
the thermal conductivity simultaneously. The pair of
functions (T, λ) is a solution of the problem (3)–(7).
These type of problems are inverse problems.

3.1 Variational Approach to Solving the

Inverse Problem

Following the idea of MVI, [3, 15, 16, 17], we replace
the problem (3)–(7) with a minimization problem for
the quadratic functional of the original equation

I(T, λ) =
∫ tF

0

∫∫
Ω
R2dxdydt −→ min, (8)

under the conditions (4)–(7).
The functional I(T, λ) is a quadratic and homo-

geneous function of its argument R(x, y, t). Hence,
it attains its minimum if and only if the argument is
zero, i.e. R(x, y, t) = 0. It follows that there is an
one-to-one correspondence between the solution of
the original problem (3), (4)–(7) and the minimiza-
tion problem (8), (4)–(7).

3.2 The ”Imbedded” Boundary–Value

Problem

Necessary conditions for minimization of the func-
tional I(T, λ) are derived from the Euler–Lagrange
equations for the functions T (x, y, t) and λ(t). The
equation for the function T (x, y, t) is(

∂

∂t
+ λ

∂2

∂x2
+ λ

∂2

∂y2

)
(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
= 0. (9)

If the functions T and λ are as many time differ-
entiable as needed, the equation (9) becomes

− ∂2T

∂t2
+ λ2

(
∂4T

∂x4
+
∂4T

∂y4
+ 2

∂4T

∂y2∂x2

)
+
dλ

dt

(
∂2T

∂x2
+
∂2T

∂y2

)
= 0. (10)
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Equation (10) is of the second order with respect to the
time t and of the fourth order with respect to the spa-
tial variables x and y. There exist sufficient number
of initial and boundary conditions (4)–(7) for solving
(10). The problem is well–posed if the function λ(t)
is known. Hence, using the MVI, the inverse prob-
lem is embedded into a higher–order but well–posed
elliptic boundary–value problem. Note that if the co-
efficient λ(t) is not consistent with the boundary data,
the solution of the obtained via MVI boundary–value
problem may not give the desired value of the func-
tional J . Therefore, minimization with respect to the
function λ(t) should be considered.

It follows from equation (8) that the coefficient
λ(t) can be computed as

λ(t) =

∫∫
Ω

∂T

∂t

(
∂2T

∂x2
+
∂2T

∂y2

)
dxdy∫∫

Ω

(
∂2T

∂x2
+
∂2T

∂y2

)2

dxdy

· (11)

This approach does not work for stationary fields.

4 Existence and Uniqueness of the

Solution
Now we investigate the individual components of the
minimization problem for existence and uniqueness
of the solution. The uniqueness of each subproblem
will not automatically bring uniqueness of the full
minimization problem; yet, existence and uniqueness
of the subproblems are of crucial importance for con-
structing algorithms for approximating solutions.

4.1 Correctness of the Fourth-Order B.V.P.

In order to prove the correctness of the fourth–order
boundary–value problem (10), (4)–(7), we consider
the Hilbert spaceH(D), where D is the domain

D = {(x, y, t) : 0 < x < 1; 0 < y < 1; 0 < t < tF }.

Definition 1 Let H consists of the functions α satis-
fying the following boundary conditions

α|∂Ω =
∂α

∂ν

∣∣∣∣
∂Ω

= α(x, y, 0) = α(x, y, tF ) = 0 ,

(12)
where ν is the outward unit normal.

We assume that the functions under consideration are
as many time differentiable as necessary.

Definition 2 We introduce the following scalar prod-
uct in H(D)

[α, β] =

∫ tF

0

∫∫
Ω

(
−∂α
∂t

+ λ
∂2α

∂x2
+ λ

∂2α

∂y2

)
(
−∂β
∂t

+ λ
∂2β

∂x2
+ λ

∂2β

∂y2

)
dxdydt , (13)

where λ(t) > 0 is a function defined for t > 0.

The equation (13) is a scalar product because for
λ(t) > 0, with the homogeneous boundary conditions
(12), the equation

−∂α
∂t

+ λ
∂2α

∂x2
+ λ

∂2α

∂y2
= 0, (14)

has only the trivial solution, i.e. [α, α] = 0 is true
only when α(x, y) ≡ 0 in D. The space H(D), with
the scalar product (13), is a Hilbert space.

Let us introduce sufficiently differentiable func-
tions χ(x, y, t), defined in D, and satisfying the re-
spective boundary conditions (4)–(7). Let us now de-
fine the functional

F (Φ)
def
= −[χ,Φ]

= −
∫ tF

0

∫∫
Ω

(
−∂χ
∂t

+ λ
∂2χ

∂x2
+ λ

∂2χ

∂y2

)
(
−∂Φ
∂t

+ λ
∂2Φ

∂x2
+ λ

∂2Φ

∂y2

)
dxdydt ,

where Φ ∈ H(D). Following the Riesz Representa-
tion Theorem, for the continuous linear functional F
on the Hilbert space H, there is a unique v ∈ H such
that

F (Φ) = [v,Φ] (15)

for all Φ ∈ H(D).

Definition 3 A generalized (weak) solution of the
problem (10), (4)–(7) is defined as the function T :=
v + χ.

Therefore, the following expression holds true for
the weak solution T for all Φ ∈ H(D)

[T,Φ] = [T,Φ] + [χ,Φ] = [T,Φ]− F (Φ)

= [T,Φ]− [T,Φ] = 0 . (16)

Theorem 1 The classical solution of the problem
(10), (4)–(7) is also a generalized solution.

Wemultiply equation (10) byΦ, and integrate over
the domain D to obtain
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0 =

∫ tF

0

∫∫
Ω

Φ

(
∂

∂t
+ λ

∂2

∂x2
+ λ

∂2

∂y2

)
(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dxdydt

=

∫ tF

0

∫∫
Ω

Φ
∂

∂t

(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dxdydt

+

∫ tF

0

∫∫
Ω

Φλ
∂2

∂x2

(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dxdydt

+

∫ tF

0

∫∫
Ω

Φλ
∂2

∂y2

(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dxdydt.

(17)

Using integration by parts we obtain

∫ tF

0

∫∫
Ω

Φ
∂

∂t

(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dxdydt

=

∫∫
Ω

[Φ(x, y, tF )− Φ(x, y, 0)]

(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dxdy

−
∫ tF

0

∫∫
Ω

∂Φ

∂t

(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dxdydt,

(18)

∫ tF

0

∫∫
Ω

Φλ
∂2

∂x2

(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dxdydt

=

∫ tF

0

∫ 1

0
λ [Φ(1, y, t)− Φ(0, y, t)]

∂

∂x

(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dydt

−
∫ tF

0

∫ 1

0
λ

[
∂Φ

∂x

∣∣
(1,y,t)

− ∂Φ

∂x

∣∣
(0,y,t)

]
(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dydt

+

∫ tF

0

∫∫
Ω

λ
∂2Φ

∂x2

(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dxdydt,

(19)

∫ tF

0

∫∫
Ω

Φλ
∂2

∂y2

(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dxdydt

=

∫ tF

0

∫ 1

0
λ [Φ(x, 1, t)− Φ(x, 0, t)]

∂

∂y

(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dxdt

−
∫ tF

0

∫ 1

0
λ

[
∂Φ

∂y

∣∣
(0,1,t)

− ∂Φ

∂y

∣∣
(x,1,t)

]
(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dxdt

+

∫ tF

0

∫∫
Ω

λ
∂2Φ

∂y2

(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dxdydt.

(20)

Since Φ ∈ H(D), all boundary integrals in (18),
(19), and (20) vanish. After some manipulations we
obtain∫ tF

0

∫∫
Ω

(
−∂Φ
∂t

+ λ
∂2Φ

∂x2
+ λ

∂2Φ

∂y2

)
(
−∂T
∂t

+ λ
∂2T

∂x2
+ λ

∂2T

∂y2

)
dxdydt = [T,Φ] .

(21)

Theorem 2 The weak solution of the problem (10),
(4)–(7) is unique.

In order to prove the uniqueness, we take the dif-

ference T̂ = T1−T2 between two supposed solutions
T1 and T2. It is obvious that T̂ ∈ H(D). On the other

hand, equation (16) holds true for T̂ . Then, by taking

Φ ≡ T̂ , we obtain [T̂ , T̂ ] = 0, hence T̂ ≡ 0. Thus,
we have shown that the Euler-Lagrange equation (10)
possesses a unique solution under the boundary con-
ditions (4)–(7), if the coefficient λ(t) > 0 is given.

4.2 Correctness of the Problem for the

Termal Conductivity λ
Since equation (11) is an explicit expression for the
coefficient, it provides a unique solution for λ(t) > 0,
when the function T (x, y, t) is thought of as known.

4.3 Existence of Solution of the Full

Minimization Problem
Up to this point, we have shown that the two Euler-
Lagrange equations (10) and (11) possess unique so-
lutions for T (x, y, t) and λ(t), provided that the other
function is assumed to be known in each equation.
This allows one to construct a procedure for find-
ing a solution to the full nonlinear problem by means
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6

-
j=1

j=2

j=3

N−2

N−1

N

i=1 i=2 i=3 M−2 M−1 M

O x
1

y

1

Figure 1: Grid pattern.

of iterations replacing λ(t) (when calculating T ), or
T (x, y, t) (when calculating λ) with their values cal-
culated from the previous iteration.

If the iterations converge, then they will give one
of the possible solutions of the problem. Thus, the
existence of the solution to the identification prob-
lem can be established a-posteriori. In the light of
what has been shown in this section, one can conclude
that divergence of the global iteration will necessarily
mean that there exists no solution to the identification
problem. In other words, for the specified data, there
is no function λ(t) for which the overposed data stems
from the second order parabolic equation (3).

The convergence of the iterations, however, se-
cure only the existence of the solution. It may not be
unique, and the iterations can converge to different
solutions depending on the initial guess for the func-
tions T (x, y, t) and λ(t). Regardless to this limita-
tion, the approach based on MVI is a very useful tool
that allows one to find at least one possible coefficient
that is consistent with the overposed data. In order to
limit the uncertainty of the coefficient estimation, it is
possible to incorporate additional restrictions on λ(t)
based on additional physical information, but they go
beyond the framework of the present paper.

5 Numerical Scheme

5.1 Grid and Approximations
As an example, we consider a problem in the unit
square

D = {(x, y) : 0 < x < 1; 0 < y < 1}.

We also introduce an orthogonal mesh with a to-
tal number of grid lines equal to M and N in the
x- and y-directions, respectively. In order to obtain
second–order approximation of the derivatives partic-
ipating in the boundary conditions, we use staggered

grid in both directions which overflows the bound-
aries by half spacing (see Figure 1). The spacings are
given by: hx ≡ 1/(M − 2) and hy ≡ 1/(N − 2),
and the grid lines are defined by xi = (i− 1.5)hx for
i = 1, . . . ,M , and yj = (j−1.5)hy for j = 1, . . . , N .

In order to secure second–order approximation in
time, we use a non-staggered grid in time for the tem-
perature T (x, y, t). The grid for the coefficient λ(t)
is staggered (see Figure 2).

• • • •| | |
λ1 λ2 λ3

t = 0
6

. . . • • • •| | |
Ti,j,1 Ti,j,2 Ti,j,3 Ti,j,4 Ti,j,L−3Ti,j,L−2Ti,j,L−1 Ti,j,L

λL−3 λL−2 λL−1 6
t = tF

Figure 2: Grid nodes in time.

The total number of grid nodes in the t–direction
for T is equal to L and the total number of grid nodes
in the t–direction for λ is equal to L− 1. The spacing
in the t–direction is ht ≡ tF /(L − 1), and the grid–
nodes for T and λ are defined in the following way:

• for T : tl = (l − 1)ht , for l = 1, . . . , L;

• for λ: tl+0.5 = (l − 0.5)ht for l = 1, . . . , L− 1.

5.2 Approximation of the Fourth–Order

B.V.P.

The grid described above allows discretization of the
derivative in the governing equation and boundary
conditions with central differences. The grid-nodes
used for approximation of the fourth order partial dif-
ferential equation (10) are shown at Figure 3. After
discretization, we obtain a system of linear equations
with the following coefficients: for Ti,j,k :

C00
k =

2

h2t
+

6l2k
h4x

+
8l2k
h2xh

2
y

−
2l′k
h2x

+
6l2k
h4y

−
2l′k
h2y

;

for Ti,j−1,k, Ti,j+1,k :

C01
k = −

4l2k
h2xh

2
y

−
4l2k
h4y

+
l′k
h2y

;

for Ti,j−2,k, Ti,j+2,k :

C02
k =

l2k
h4y

;

for Ti−1,j−1,k, Ti−1,j+1,k, Ti+1,j−1,k, Ti+1,j+1,k :

C11
k =

2l2k
h2xh

2
y

;
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• • • • •

• • •

• • •

•

•

•

•

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦j + 2

j + 1

j

j − 1

j − 2

i+ 2i+ 1ii− 1i− 2

Figure 3: Grid nodes (•) used in approximation of the
derivatives with respect to x and y.

for Ti−1,j,k, Ti+1,j,k :

C10
k = −

4l2k
h4x

−
4l2k
h2xh

2
y

+
l′k
h2x

;

for Ti−2,j,k, Ti+2,j,k :

C20
k =

l2k
h4x

;

for Ti,j,k−1, Ti,j,k+1 :

− 1

h2t
.

5.3 Approximation of the Thermal

Conductivity λ
Let us introduce the following notations

Λi,j,k
xx =

Ti−1,j,k − 2Ti,j,k + Ti+1,j,k

h2x

=
∂2T

∂x2
∣∣
(xi,yj ,tk)

+O(h2x), (22)

Λi,j,k
yy =

Ti,j−1,k − 2Ti,j,k + Ti,j+1,k

h2y

=
∂2T

∂y2
∣∣
(xi,yj ,tk)

+O(h2y), (23)

for i = 2, 3, . . . ,M − 1, j = 2, 3, . . . , N − 1, and
k = 1, 2, . . . , L. Also,

Λi,j,k
t =

Ti,j,k+1 − Ti,j,k
ht

=
∂T

∂t

∣∣
(xi,yj ,tk+1/2)

+O(h2t ), (24)

for i = 2, 3, . . . ,M − 1, j = 2, 3, . . . , N − 1, and
k = 1, 2, . . . , L− 1.

We use the extendedMidpoint rule to approximate
the integrals in (11) of the second–order with respect
to all variables:

S1,k =
hxhy
2

M−1∑
i=2

N−1∑
j=2

Λi,j,k
t (Λi,j,k

xx + Λi,j,k+1
xx + Λi,j,k

yy + Λi,j,k+1
yy )

=

∫∫
Ω

∂T

∂t

(
∂2T

∂x2
+
∂2T

∂y2

)
dxdy

+O(h2x + h2y + h2t ), (25)

S2,k =
hxhy
4

M−1∑
i=2

N−1∑
j=2

(Λi,j,k
xx + Λi,j,k+1

xx + Λi,j,k
yy + Λi,j,k+1

yy )2

=

∫∫
Ω

(
∂2T

∂x2
+
∂2T

∂y2

)2

dxdy +O(h2x + h2y + h2t ), (26)

for k = 1, 2, . . . , L− 1. The equation (11) is approx-
imated as

λk =
S1,k
S2,k

. (27)

5.4 Algorithm

The iterations are performed as follows:

(I) With a given initial values for λoldk > 0, the fourth-
order boundary value problem equations(10 ),
(5),(7) is solved for the function Ti,j,k.

(II) With the newly computed values of Ti,j,k, the
function λnewk is evaluated.

If the norm of the difference between the new and
the old field for λ is less than ε, i.e. maxk |λnewk −
λoldk,l| < ε, then the calculations are terminated,

otherwise step (I) is repeated.

6 Validation of the Algorithm
We check the accuracy of the difference scheme for
the fourth-order problem using tests involving differ-
ent grid spacing hx, hy, and ht. We do that to ver-
ify that the solution of the linear imbedding problem
for the unknown function does coincide with the so-
lution of the “direct” problem for a given coefficient.
We used different expressions for the coefficient, in-
cluding the constant. The findings are essentially the
same. We present here the results with a coefficient
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Figure 4: The difference between numerical and
exact values of λ(t) for hx = hy = ht =
0.1, 0.05, 0.025, 0.0125 for λ = 0.5.

Table 1: The l2 norm of the difference λ− λexact, and
the rates of convergence for four different values of
the grid spacings hx = hy = ht for λ = 0.5.

ht ||λ− λexact||l2 rateλ

0.100000 0.004918 —
0.050000 0.001246 1.980654
0.025000 0.000312 1.995780
0.012500 0.000078 2.002137

that is a constant, continuous nonlinear function of
time, and discontinuous function of time.

We also check the rates of convergence calculated
as

rateλ = log2
||λ2h − λexact||
||λh − λexact||

. (28)

6.1 Constant Coefficient
The temperature and the coefficient in this case are as
follows

T (x, y, t) = e−4t sin(2x+2y), andλ(t) = 0.5. (29)

Under proper boundary conditions the numerical so-
lution has to converge to the exact solution (29). Fig-
ure 4 shows the point–wise numerical errors for the
function λ(t) calculated with for different spacings
hx = hy = ht = 0.1; 0.05; 0.025; 0.0125.

The l2 norm of the difference between the nu-
merical solution λ and the analytical solution (29)
with four different grid spacings hx = hy = ht =
0.1; 0.05; 0.025; 0.0125 is given in Table 1 along with
the rates of convergence. The presented numerical
tests confirm the second order rate of convergence.

6.2 Continuous Nonlinear Coefficient
In order to prove numerically the second–order of ap-
proximation, consider the following exact solution of
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Figure 5: The difference between numerical and
exact values of λ(t) for hx = hy = ht =
0.1, 0.05, 0.025, 0.0125 for λ(t) = 1

1+t .

Table 2: The l2 norm of the difference λ− λexact, and
the rates of convergence for four different values of
the grid spacings hx = hy = ht for λ(t) =

1
1+t .

ht ||λ− λexact||l2 rateλ

0.100000 0.001657 —
0.050000 0.000416 1.993292
0.025000 0.000104 1.998393
0.012500 0.000026 2.002052

the equation (2):

T (x, y, t) = (1+ t)2e−(x+y), λ(t) =
1

1 + t
. (30)

Under proper boundary conditions the numerical so-
lution has to converge to the exact one in (30).

Figure 5 shows the point–wise numerical errors for
the function λ(t) calculated with different spacings
hx = hy = ht = 0.1; 0.05; 0.025; 0.0125.

The l2 norm of the difference between the numer-
ical solution λ and the analytical solutions using the
four different grid spacings is given in Table 2 along
with the rates of convergence. The presented numeri-
cal tests demonstrate the second order rate of conver-
gence. The most important point here is that in this
case we found that the identification of the coefficient
is unique in the sense that we started the iterative pro-
cess from rather different initial conditions and in all
cases we ended up with the same numerical solution,
whose error is depicted in Figure 5.

6.3 Discontinuous Coefficient

We now choose a rather hard test case with a coeffi-
cient to be identified being a discontinuous function,
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Figure 6: The difference between numerical and
exact values of λ(t) for hx = hy = ht =
0.1, 0.05, 0.025, 0.0125 for λ(t) given with equation
(31).

namely

λ(t) =

{
0.5 if t < 0.5;

0.55 if t > 0.5.
(31)

The temperature distribution T is

T (x, y, t) =

{
e(−4t+2) sin(2x+ 2y) if t ≤ 0.5;

e(−4.4t+2.2) sin(2x+ 2y) if t > 0.5.
(32)

Under the corresponding boundary conditions the nu-
merical solution has to converge to the exact one.
However, because of singularity, we cannot expect the
second order of convergence.

Fig. 6 shows the point–wise numerical errors for
the function λ(t) calculated with for different spac-
ings hx = hy = ht = 0.1; 0.05; 0.025; 0.0125.

The l1 norm of the difference between the nu-
merical solution λ and the analytical solution with
four different grid spacings hx = hy = ht =
0.1; 0.05; 0.025; 0.0125 is given in Table 3 along with
the rates of convergence. The presented numerical
tests demonstrate rate of convergence about 1.5. The
reason for this behavior is the singularity at the plane
t = 0.5. The numerical error for the temperature,
Texact−Tnumeric

Texact
, at the plane x = 0.5 for hx = hy = ht =

0.0125 is shown at Figure 7.

Conclusions
This paper proposes an approach for solving the in-
verse coefficient problem for the (2+1)D heat conduc-
tion equation based on the measurements of tempera-
ture and heat flux at the body’s boundary. The original
inverse problem is replaced by a minimization prob-
lem. The Euler–Lagrange equations for minimization

Figure 7: The difference between numerical and exact
values of T for hx = hy = ht = 0.0125 at the plane
x = 0.5.

Table 3: The l1 norm of the difference λ− λexact, and
the rates of convergence for four different values of
the grid spacings hx = hy = ht for λ(t) given with
equation (31).

ht ||λ− λexact||l1 rateλ

0.100000 0.005909 —
0.050000 0.002086 1.502476
0.025000 0.000761 1.454726
0.012500 0.000278 1.450635

comprise a fourth-order elliptic equation for the tem-
perature, the function T = T (x, y, t), and an explicit
equation for the unknown coefficient λ = λ(t). For
this system, the boundary data are no longer over-
posed. Thus, the original inverse problem is embed-
ded into a higher–order but well–posed problem. The
numerical simulations show that the proposedmethod
gives an accurate simultaneous identification of the
temperature and the thermal conductivity.
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