
Model predictive control(MPC)is one special form of
suboptimal control problem, whose control objective is
to keep the state of a system near some desired points.
MPC combines elements of several ideas that we have
put forth, for example, certainty equivalent control, mul-
tistage lookahead and rollout algorithms. MPC tend-
s some applied properties for classical linear quadratic
control, i.e. there are two main reasons for replacing that
classical linear quadratic control by MPC. (1) The con-
sidered system may be nonlinear, and using for control
purposes a model that is linearized around the desired
point may be inappropriate. (2) There may be control
and state constraints, which are not handled adequately
through a quadratic penalty on state and control. The
solution obtained from a linear quadratic model, is not
suitable for this , because the quadratic penalty on s-
tate and control tends to blur the boundaries of the con-
straints. Generally, MPC converts one optimal control
problem into one numerical optimization problem with
equality or inequality constraints, which correspond to
the control and state constraints. Moreover, when the

? This paper was not presented at any IFAC meeting. Cor-
responding author Wang Jianhong.

Email address: wangjianhong@nuaa.edu.cn (Wang
Jianhong).

considered system is either deterministic, or else it is s-
tochastic, it is replaced with a deterministic version by
using typical values in place of all uncertain quantities,
such as the certainty control approach in implementing
MPC. More specifically, at each stage, an optimal con-
trol problem is solved over a fixed length horizon, start-
ing from the current state. The first component of the
corresponding optimal policy is then used as the control
of the current stage, while the remaining components
are discarded. The optimization process is then repeat-
ed at the next stage, once the next state is revealed or
the optimization algorithm is terminated iteratively.

From above detailed description on MPC, MPC corre-
sponds to one numerical optimization problem, whose
cost function or loss function is one error error value
between the actual output and its desired output refer-
ence. In reality, the desired output is given, but the ac-
tual output is unknown in priori, so firstly we need to
model the considered system and collect its actual out-
put through persistly exciting the system by one appro-
priate input signal. It means the considered system is i-
dentified and used to calculate the actual output. There
are two modelling approaches, used to identify the con-
sidered system, i.e. first principle and system identifi-
cation. The first principle needs lots of priori informa-
tion about the considered system, such as Newton law,
mathematical or physical laws, etc. Then main essence of
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system identification is to excite the considered system,
then use these collected input-output data to identify
or estimate the unknown parameters, as the parameters
are estimated online and used to describe the considered
system, whatever in open loop or closed loop condition.
The advantage of the second system identification ap-
proach is that no any priori information are needed, but
only input-output data. In this big data period, this re-
quirement for input-output data is tolerable. Roughly
speaking, when to obtain the actual output in cost func-
tion for MPC, the input-output data , corresponding to
the considered system in open loop or closed loop, are
collected to identify the system through some statisti-
cal methods, for example, least squares method, maxi-
mum likelihood method, etc. Then the identified system
is applied to express or describe the actual output, so
the actual output depends on the accuracy of the iden-
tified system. In practice, system identification is a well-
developed technique for estimating system parameters
from operational data, typically taken during dedicated
system testing or excitation, so system identification is
also named as data driven.

Due to the application of system identification into MPC
or other control strategy, such as adaptive control, in-
ternal model control and robust control, a new concept-
identification for control was proposed in 2010s. Here we
give a concise introduction or contribution on identifi-
cation for control. In case of the unknown but bounded
noise, one bounded error identification is proposed to i-
dentify he unknown systems with time varying parame-
ters ( Bravo J M, Alamo T, Camacho E F,2016). Then
one feasible parameter set is constructed to include the
unknown parameter with a given probability level. In
( Bravo J M, Alamo T, Vasallo M, 2017), the feasible
parameter set is replaced by one confidence interval, as
this confidence interval can accurately describe the actu-
al probability that the future predictor will fall into the
constructed confidence interval. The problem about how
to construct this confidence interval is solved by a lin-
ear approximation/programming approach ( Casini M,
Garulli A, Vicino A, 2017), which can identify the un-
known parameter only for linear regression model. Ac-
cording to the obtained feasible parameter set or confi-
dence interval, the midpoint or center can be deemed as
the final parameter estimation, further a unified frame-
work for solving the center of the confidence interval is
modified to satisfy the robustness. This robustness cor-
responds to other external noises, such as outlier, un-
measured disturbance (Cerone V, Lasserre J B, Piga
D,2014). The above mentioned identification strategy,
used to construct one set or interval for unknown pa-
rameter, is called as set membership identification, deal-
ing with the unknown but bounded noise. There are t-
wo kinds of descriptions on external noise, one is prob-
abilistic description, the other is deterministic descrip-
tion, corresponding to the unknown but bounded noise
here ( Milanese M, Novara C, 2004). For the probabilis-
tic description on external noise,the noise is always as-

sumed to be one white noise, and its probabilistic densi-
ty function (PDF) is known in advance. On the contrary
for deterministic description on external noise, the only
information about noise is bound, so this deterministic
description can relax the strict assumption on proba-
bilistic description. In reality or practice, bounded noise
is more common than white noise. Within the deter-
ministic description on external noise, set membership
identification is adjusted to design controllers with two
degrees of freedom ( Novara C, Formentin S, Savaresi
S M,2016), it corresponds to data driven control or set
membership control. Set membership control is applied
to design feedback control in a closed loop system with
nonlinear system in (Tanaskovic M, Fagiano L, Novara
C, 2017), where the considered system is identified by
set membership identification, and the obtained system
parameter will be benefit for the prediction output. Af-
ter substituting the obtained system parameter into the
prediction output to construct one cost function , ref-
erence ( Tanaskovic M, Fagiano L, Smith R,2014) takes
the derivative of the above cost function with respect
to control input to achieve one optimal input. Set mem-
bership identification can be not only applied in MC,
but also in stochastic adaptive control ( Vidyasagar M,
Karandikar R L, 2008), where a learning theory -kernel
is introduced to achieve the approximation for nonlinear
function or system. Based on the bounded noise, many
parameters are also included in known intervals in pri-
or, then robust optimal control with adjustable uncer-
tainty sets are studied in ( Zhang X, Kamgarpour M,
Georghiou A, 2017), where robust optimization is intro-
duced to consider uncertain noise and uncertain param-
eter simultaneously. To solve the expectation operation
with dependence on the uncertainty, sample size of ran-
dom convex programs is considered to replace the expec-
tation by finite sum (Zhang X, Sergio Grammatico, John
Lygeros, 2015). In recent years, the first author also s-
tudies the application of set membership into MPC, for
example, bounded error identification is applied in MPC
( Wang Jianhong, 2018), and to guarantee the obtained
interval predictor to be a minimum interval predictor,
two optimal vectors, used to adjust the width of the ob-
tained interval predictor are suggested to be piecewise
affine forms. To apply interval prediction model into ro-
bust MPC, min-max optimization problem is solved by
Gauss-Seidel algorithm (Wang Jianhong,2019), and con-
vergence of this Gauss-Seidel algorithm is provided too
only through our own derivations.

In this short note, we continue to do this research on ap-
plying system identification into MPC,i.e. data driven
MPC equals to system identification for MPC. Consider
one first order discrete time nonlinear dynamic control
system, its output must be needed in the cost function
for MPC, so firstly we need to construct the actual out-
put for the considered nonlinear dynamical system. But
here it is very different with the references, as the non-
linear dynamical system is considered. To implementing
the proposed MPC well, that actual output, correspond-
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ing to the nonlinear dynamical system, is identified or
constructed by our own derivations. Moreover, our own
derivations belong to the idea of system identification,
i.e. the input-output data are proposed to construct the
actual output directly, not to identify the nonlinear sys-
tem parameter. Roughly speaking, data are used to de-
scribe the actual output directly, thus avoiding to es-
timate the nonlinear system parameter. The process of
using the input-output data to denote the actual out-
put directly coincides to the essence of data driven. Af-
ter substituting the obtained actual output in the cost
function for MPC, the idea of dynamic programming
is applied to solve the optimal input value. Dynamic
programming deals with situations, where decisions are
made in stages ( D P Bertsekas, 2019). The outcome of
each decision may not b fully predictable, but can be
anticipated to some extent before the next decision is
made. As MPC formulates the problem of designing opti-
mal controller into one constrain optimization problem,
so dynamic programming can be applied to analyze the
minimum principle of this constrain optimization, which
corresponds to one general case. Moreover, after defining
one concept of stability for MPC, stability condition is
also derived through dynamic programming. To the best
of our knowledge, dynamic programming is only stud-
ied in the numerical optimization theory, not in control
science yet. Only in reference (Francesco Borrelli, Ma-
to Baotic, ALberto Bemporad,2005), dynamic program-
ming is firstly introduced to balance the desire for low
present cost with the undesirability of high future cost
for constrain optimal control. Therefore,this short note
is the first analysis, regarding dynamic programming in-
to data driven MPC¿ Generally, the main contribution-
s of our short note are formulated as follows. (1) Con-
struct the actual output directly by input-output data
for cost function in MPC, (2) Reformulate one optimal
control as one constrain optimization problem, (3) The
minimum principle and stability analysis are presented
for MC through dynamic programming.

This short note is organized as follows. In section 2, one
first order discrete time nonlinear dynamical control sys-
tem is considered, and some preliminaries are formulated
about the noise for the nonlinear function. In section 3,
the estimate of the unknown nonlinear function is stud-
ied. Two estimations for the unknown nonlinear function
are derived based on the detailed noise, i.e. unknown but
bounded noise and martingale difference noise. This pro-
cess about constructing the unknown nonlinear function
corresponds to the nonlinear function estimation on ba-
sis of input-output data.It means we apply the collect-
ed input-output data to identify the unknown nonlinear
function. In section 4, the obtained estimation for the
unknown nonlinear function is substituted into the cost
function in MPC. The minimum principle for the numer-
ical optimization is given to solve one optimal control
input or controller. After defining the stability concep-
t, dynamic programming is used to obtain the stability
condition for our considered MPC in section 5. In sec-

tion 6, one simulation example illustrates the effective-
ness of the proposed theories. Section 7 ends the paper
with a final conclusion and points our the next topic.

Due to linear system is widely studied in lots of refer-
ences, so here in this short note we consider a more gen-
eral case, i.e. consider the following first order discrete
time nonlinear dynamical system.

y(t+ 1) = f(y(t)) + u(t) + w(t+ 1), t ≥ 0 (1)

where in equation (1), y(t) and u(t) are the system out-
put and input respectively at time instant t. Nonlinear
function f() is completely unknown, the goal of next sec-
tion is to estimate or identify this nonlinear function by
input-output data sequence {u(t), y(t)}, external noise
w(t) is one unknown but bounded noise, which extend-
s the spacial case of white noise, and its upper bound
w > 0 satisfies.

‖w(t)‖ ≤ w,∀t ≥ 0 (2)

To apply MPC to design the predictive control u(t), the
estimation of the nonlinear function f(y(t)) is expected
to track one desired output reference ydes(t). To measure
its discrepancy, error value (f(y(t))− ydes(t)) is needed
to expand at time instant t. Due to nonlinear function
f(y(t)) is unknown, so the urgent mission is to estimate
this nonlinear function and use its estimation ŷ(t) in
error value, i.e. (ŷ(t)− ydes(t)) .

In case of unknown but bounded noise w(t), the near-
est neighbor estimation for nonlinear function f() is de-
scribed to achieve the tracking.

Set{
b̄(t) = max0≤i≤ty(i)

b(t) = min0≤i≤ty(i)
(3)

and

it = arg min0≤i≤t‖y(t)− y(i)‖ (4)

Then we set

‖y(t)− y(it)‖ = min0≤i≤t−1‖y(t)− y(i)‖ (5)

So at each time instant t ≥ 1, the nearest neighbor esti-
mation for nonlinear function f(y(t)) is given as

f̂(y(t)) = y(it + 1)− u(it) (6)

2 Nonlinear dynamic system 
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Equation (6) can be rewritten as

f̂(y(t)) = f(y(it + 1)) + w(t+ 1) (7)

To make the actual output y(t) track the desired output
reference ydes(t), we define{
u
′
(t) = −f̂(y(t)) + 1

2 (b̄(t) + b(t))

u
′′
(t) = −f̂(y(t)) + ydes(t), t ≥ 1

(8)

Based on the definition (8), then the controller is defined
as follows.

u(t) =

{
u
′
(t) if ‖y(t)− y(i)‖ > ε

u
′′
(t) if ‖y(t)− y(i)‖ ≤ ε

(9)

where ε > 0 is one arbitrary small positive value.

Using the above controller u(t)(9), the tracking mission
will reach, i.e. ‖y(t) − y(i)‖ → 0 and observing above
description, the estimation for nonlinear function is im-
portant in determining the controller. To return back to
our considered MPC, this estimation for nonlinear func-
tion is also needed, so in section 3, we derive other esti-
mation for nonlinear function based our own derivation.

The nearest neighbor estimation (6) is efficient in case of
bounded noise (2). To this end, as a consequence we as-
sume that noise w(t) is a martingale difference sequence,
i.e.

E[w(t+ 1)Bt] = 0, t ≥ 0 (10)

whereE mens the expectation, andBt = σ{w(0), · · ·w(t)}
is σ-algebra, generated by sequence {w(0), · · ·w(t)}.
Making use of the property of martingale difference
sequence, set

δj = [jε, (j + 1)ε], j ∈ Z = {all integers} (11)

where Z is the set of all integers, ε > 0 is one arbitrary
small positive value, and it holds that.⋃
j∈Z

= (−∞,+∞) (12)

and

δi
⋂
δj = φ, for i 6= j (13)

We define the following interval value function 4() as,
for each y

4(y) = δj−1
⋃
δj

⋃
δj+1, if y ∈ δj , j ∈ Z (14)

It means4(y) covers the ε neighborhood of y. For every
t ≥ 1, ‖y(t)− y(i)‖ ≤ ε, then it holds that.

t−1∑
i=0

I4(y(t))(y(i)) > 0 (15)

where I4(y(t)) is the indicator function. Therefore, if
‖y(t)− y(i)‖ ≤ ε, the estimation of that nonlinear func-
tion f() is defined as.

ŷ(t) = f̂(y(t))

=

∑t−1
i=0(y(i+ 1)− u(i))I4(y(t))(y(i))∑t−1

i=0 I4(y(t))(y(i))
(16)

To give a more detailed description on the above estima-
tion, we list some special estimations for t = 1, 2, 3 · · ·N ,
where N is a finite time horizon,i.e.

ŷ(1) =
(y(1)− u(0))I4(y(1))(y(0))

I4(y(1))(y(0))

= y(1)− u(0)

ŷ(2) =
(y(1)− u(0))I4(y(2))(y(0))

I4(y(2))(y(0)) + I4(y(2))(y(1))

+
(y(2)− u(1))I4(y(2))(y(1))

I4(y(2))(y(0)) + I4(y(2))(y(1))

ŷ(3) =
(y(1)− u(0))I4(y(3))(y(0))

I4(y(3))(y(0)) + I4(y(3))(y(1)) + I4(y(3))(y(2))

+
(y(2)− u(1))I4(y(3))(y(1))

I4(y(3))(y(0)) + I4(y(3))(y(1)) + I4(y(3))(y(2))

+
(y(3)− u(2))I4(y(3))(y(2))

I4(y(3))(y(0)) + I4(y(3))(y(1)) + I4(y(3))(y(2))

...

ŷ(N) =
(y(1)− u(0))I4(y(N))(y(0))

I4(y(N))(y(0)) + · · ·+ I4(y(N))(y(N − 1))
+ · · ·

+
(y(N)− u(N − 1))I4(y(N))(y(N − 1))

I4(y(N))(y(0)) + · · ·+ I4(y(N))(y(N − 1))

Based on our derived estimation of that nonlinear func-
tion, then ŷ(t) can be regarded as the actual output at
time instant t. Furthermore {u(0), y(0)} is initial data
sequence.

3 Nonlinear function estimation 
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As the goal of MPC is to make the considered system
to track that desired output reference ydes(t) and reject
noise from t = 0 up to a finite time horizon N . MPC
turns one optimal control problem into one numerical
optimization problem, whose cost function is always set
as that.

min
u(0)···u(N)

N∑
t=0

[ŷ(t)− ydes(t)]TQ[ŷ(t)− ydes(t)]

+u(t)TSu(t) (17)

where ŷ(t) is the actual output, coming from equation
(16), ydes(t) is the desired output reference, Q and S are
two positive definite weighting matrices.

4.1 Numerical optimization problem

In order to apply dynamic programming algorithm to
solve the cost function in MPC (17), we need to sim-
plify that cost function to satisfy the standard form for
dynamic programming. The main step in MPC is to ob-
tain those optimal control input or optimal controller
{u(0), u(1), · · ·u(N)}, while minimizing the cost func-
tion.

Expanding the cost function (17) to that.

N∑
t=0

ŷT (t)Qŷ(t)− 2ydes(t)Qŷ(t) + yTdes(t)Qydes(t)

+ u(t)TSu(t) (18)

Neglecting the third term yTdes(t)Qydes(t) , as it is inde-
pendent of the control input {u(0), u(1), · · ·u(N)}, then
the simplified cost function is that.

N∑
t=0

ŷT (t)Qŷ(t)− 2ydes(t)Qŷ(t) + u(t)TSu(t) (19)

Rewriting the above simplified cost function as it-
s standard from form, and denoting it as notation
J(y0, u0, u1 · · ·uN−1),i.e.

N−1∑
t=0

ŷT (t)Qŷ(t)− 2ydes(t)Qŷ(t) + u(t)TSu(t)

+ ŷT (N)Qŷ(N)

=
N−1∑
t=0

gt(ŷ(t), u(t)) + gN (ŷ(N))

gt(ŷ
T (t), u(t)) = ŷT (t)Qŷ(t)− 2ydes(t)Qŷ(t)

+ u(t)TSu(t)

gN (ŷ(N)) = ŷT (N)Qŷ(N) (20)

According to the standard form in dynamic program-
ming algorithm, for a given initial output y0 = y(0), the
total cost of a control sequence {u(0), u(1), · · ·u(N)} is

J(y0, u0, u1 · · ·uN−1) =
N−1∑
t=0

gt(ŷ(t), u(t))

+ gN (ŷ(N)) (21)

where for the sake of brevity, we denote u0 = u(0), u1 =
u(1), · · · , uN−1 = u(N−1). Equation (21) coincides with
the cost function, and system equation is that.

ŷ(t) =

∑t−1
i=0(yi+1 − ui)I4(yt)(yi))∑t−1

i=0 I4(yt)(yi)

= ft−1(yt−1, yt−1), t = 1, 2 · · ·N (22)

Combing equation (20),(21)and (22)m these three equa-
tions are studied in our introduced dynamical program-
ming algorithm.

4.2 Dynamic Programming algorithm

Consider that numerical optimization problem again
(21) for MPC, whose actual output ŷ(t) is estimated
from equation (22),i.e.

J(y0, u0, u1 · · ·uN−1) =

N−1∑
t=0

gt(ŷ(t), u(t))

+ gN (ŷ(N))

The idea for principle of optimizality with the structure
of dynamic programming. Let {u∗0 · · ·u∗N−1} be an op-
timal control sequence, consider the subproblem that s-
tarts at ŷ∗(k) at time instant k, and want to minimize
the cost-to-go from time instant k to time horizon N .

gk(ŷ∗(k), u(k)) +
N−1∑

m=k+1

gm(ŷ(m), u(m))

+ gN (ŷ(N)) (23)

over {uk, · · ·uN−1},m = k · · ·N−1. Then the truncated
optimal sequence {u∗k · · ·u∗N−1} is optimal for this sub-
problem. Dynamic programming algorithm construct
the optimal cost functions.

J∗N (yN ), J∗N−1(yN−1), · · · J∗0 (y0) (24)

Sequentially starting from J∗N and proceeding backwards
to J∗N−1, J

∗
N−2 · · · J∗0 , i.e. start with J∗N (yN ) = gN (ŷ(N))

and for k = 0, 1 · · ·N − 1, let

J∗k (yk) = min
uk···uN−1

[gk(ŷ(k))

4 Model predictive control 
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+
N−1∑

m=k+1

gm(ŷ(m), u(m)) + gN (ŷ(N))]

= min
uk

[
N−1∑
m=k

gm(ŷ(m), u(m)) + gN (ŷ(N))]

= min
uk

[gk(ŷ(k))

+ min
uk+1···uN−1

[
N−1∑

m=k+1

gm(ŷ(m), u(m)) + gN (ŷ(N))]

= min
uk

[gk(ŷ(k)) + J∗k+1(ŷ(k + 1))] (25)

where in equation (25), the principle of optimizality is
used.

Then for every initial output value y0, the number
J∗0 (y0), obtained at the last step, is equal to the op-
timal cost J∗(y0). More specifically, once the optimal
cost function J∗0 , · · · J∗N have been obtained, dynamic
programming algorithm to construct an optimal control
sequence {u∗0 · · ·u∗N−1} and corresponding output tra-
jectories {ŷ∗1 · · · ŷ∗N} for the given initial output value y0.

Time delay

MPC+ dynamic 
programming

()f

( )y t( 1)y t +

( )u t

( 1)w t +

Figure.1 Structure of dynamic programming and data
driven MPC

Now dynamic programming algorithm is formulated as
follows. Set

u∗0 ∈ arg minu0
[g0(y0, u0) + J∗1 (ŷ1(y0, u0))]

and

ŷ∗0 = y1 − u∗0

Sequentially, going forward, for k = 1, 2, · · ·N − 1, set

u∗k ∈ arg minuk
[gk(ŷ∗k, uk) + J∗k+1(ŷk+1)]

and

ŷk+1 =

∑k
i=0(y(i+ 1)− u∗(i))I4(yk)(yi)∑k

i=0 I4(yk)(yi)

The above forward optimal control sequence construc-
tion is possible only after we have computed J∗k (ŷk) by
dynamic programming algorithm for all ŷk and k. Then
the structure of combing dynamic programming algo-
rithm and data driven MPC is plotted in Figure 1.

This section is one auxiliary part, showing that dynamic
programming can also be applied to test the stability
analysis for that MPC, then one explicit form about the
cost perstage is needed. Without loss generality, the cost
perstage is quadratic form, i.e.

ŷT0 (k)Qŷ0(k) + uT0 (k)Su0(k), k = 0, 1 · · ·N (26)

where Q and S are the same with equation (17), also we
impose output and control constraints.

ŷ0(k) ∈ Y0(k) and u0(k) ∈ U0(k), k = 0, 1 · · ·N (27)

for all initial output value y0(0) ∈ Y0, the output value
of the closed loop system is that.

ŷ0(k + 1) =

∑k−1
i=0 (y(i+ 1)− u(i))I4(yk+1)(yi)∑k−1

i=0 I4(yk+1)(yi)

= fk−1(yk−1, uk−1) (28)

Satisfied the output and control constraints, and u∗0(k)
is one stationary controller. The stability concept is de-
fined as that the total cost over an infinite number of
state is finite, i.e.

∞∑
k=0

(ŷT (k)Qŷ(k) + u∗(k)Su∗(k)) <∞ (29)

Let y(0), u(0), ŷ(1), u(1) · · · be the output and control
sequence, generated by data driven MPC, so that.

u(k) = u∗(k)

ŷ(k + 1) = fk−1(yk−1, uk−1)

k = 0, 1 · · · (30)

Denote Ĵ(ŷ(i)) the optimal cost of the N stage problem

solved by data driven MPC, and J̃(ŷ(i)) be the optimal
cost starting at y(0) of a correspondingN−1 stage prob-
lem. It means that the optimal value of the quadratic

5 Stability analysis based on  

dynamic program-Ming 
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cost.

N−2∑
k=0

(ŷT (k)Qŷ(k) + u∗(k)Su∗(k)) <∞ (31)

and

ŷ(N − 1) = 0 (32)

Since that deriving the state to 0 can not decrease the
optimal cost, then we have for all ŷ(k) ∈ Y (k)

Ĵ(ŷ) ≤ J̃(ŷ) (33)

From the definitions of Ĵ(ŷ) and J̃(ŷ), we have for all k,

min
u∈U

[ŷT (k)Qŷ(k) + uTi (k)Sui(k) + J̃(ŷ(k + 1))]

= ŷT (k)Qŷ(k) + uTi (k)Rui(k)

+ J̃(ŷ(k + 1))

= Ĵ(ŷ(k)) (34)

by using equation (33), we have that.

ŷT (k)Qŷ(k) + uTi (k)Sui(k) + Ĵ(ŷ(k + 1))

≤ Ĵ(ŷ(k)) (35)

Summing these equations for arbitrary values N > 0, it
holds that.

Ĵ(ŷ(k + 1)) +
N∑

k=0

(ŷT (k)Qŷ(k) + uT (k)Su(k))

≤ Ĵ(y(0)) (36)

Since Ĵ(ŷ(k + 1)) ≥ 0, it holds that.

N∑
k=0

(ŷT (k)Qŷ(k) + uT (k)Su(k)) ≤ Ĵ(y(0)) (37)

Taking the limit on above inequality asN →∞, we have
that.

∞∑
k=0

(ŷT (k)Qŷ(k) + uT (k)Su(k)) ≤ Ĵ(y(0)) <∞ (38)

This completes the proof of that stability concept (29),
whose total cost over an infinite number of state is finite.

Combing section 4 and 5, we find that dynamic program-
ming is used not only to solve the numerical optimiza-
tion problem, but also to test the stability of the closed
loop system in Figure 1.

In this short note, data driven model predictive control
is considered to identify the actual output value and de-
sign the optimal control sequence. The combination of
system identification and dynamic programming is used
to complete model predictive control. More specifical-
ly, optimal control sequence is constructed by dynamic
programming algorithm, and stability is analyzed by dy-
namic programming for the whole obtained closed loop
system. As this is the first analysis, regarding dynamic
programming and model predictive control, so that how
to combine game theory and dynamic programming for
data driven model predictive control is our next ongoing
work.
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