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Abstract: - Suppose that the observations are i.i.d. from a density f(·; θ), where θ is an identifiable parameter.
One expects that the maximum likelihood estimator of θ is consistent. But its consistency proof is non-trivial and
various sufficient conditions have been proposed (see, e.g., the classical statistics textbooks). All these sufficient
conditions require f(x; θ) being somewhat upper semi-continuous (in θ), with various smoothness conditions or
conditions needed for the dominated convergence theorem. We study the sufficient and necessary condition.
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1 Introduction.
The maximum likelihood estimator (MLE) is a popu-
lar classical statistical method and is applied to many
fields even recently (see, e.g., Lio and Liu [8] Derksen
and Makam [4]). In this paper, the sufficient and nec-
essary condition is studied for the strong consistency
of MLE, assuming

(A1) X1, ..., Xn are i.i.d. from a random vectorX with
its density function (df) f(·; θo), θo ∈ Θ;

(A2) the identifiability condition:∫
|f(x; θ) − f(x; θo)|dµ(x) = 0 implies θ = θo,

where µ is a measure, θ is a finite dimensional
parameter in Θ (the parameter space).

While (A1) is a common assumption of the MLE,
(A2) is a necessary identifiability condition. If a pa-
rameter is not identifiable, we do not even know what
is the true value of θ, let alone a consistent estimator
of θ. Hereafter, we assume that (A1) and (A2) hold.

The new result is weaker than all the existing re-
sults in the literature (see, e.g., Ferguson ([5] Part 4),
Lehmann and Casella ([7] Section 6.3), Stuart and
Arnold ([12] Chapter 18), and Casella and Berger ([3]
p.156)), among others), who only consider sufficient
conditions, and is weaker than the results of Zhang
[16] and Rossi [9] etc., who study also necessary con-
ditions under additional assumptions rather than (A1)
and (A2).

For illustration, consider first a continuous random
variable (rv)X , with its df f . There are 4 typical cases
as follows:

Case 1.
∫
f(t)lnf(t)dt is finite, e.g.,

f(t) = 1(t ∈ (0, 1)).
Case 2.

∫
f(t)lnf(t)dt = −∞, e.g.,

f(t) = (r − 1)1(t>e)
t(lnt)r , r > 1.

Case 3.
∫
f(t)lnf(t)dt = ∞, e.g.,

f(t) = (r − 1)1(t∈(0,e
−1])

t(|lnt|)r , r > 1.
Case 4.

∫
f(t)lnf(t)dt does not exist, e.g.,

f(t) = 1(t∈(0,e−1]∪[e,∞))
2t(lnt)2 .

Each distribution in the examples of the four cases
leads to a location or scale parameter family, among
other possibilities. Thus we need to study the consis-
tency of the MLE of the parameter in each case.

In many textbooks, people often say that the
MLE is consistent under suitable conditions (see, e.g.,
Bickel and Doksum ([2] p.139.)). On the other hand,
in his classical textbook, Ferguson ([5] p.114) shows
that the MLE of θ is consistent if the following con-
ditions hold:
(A3) limθ′→θf(x; θ

′) ≤ f(x; θ) ∀ x (i.e., f(·; θ) is
upper semi-continuous);

(A4) Θ is compact;
(A5) ∃ a functionK(x) such thatEθo(|K(X)|) < ∞

and ln f(x;θ)
f(x;θo)

≤ K(x) ∀ (x, θ);
(A6) for all θ ∈ Θ, and sufficiently small δ > 0,

sup|θ−θo|<δ f(x; θ) is measurable in x.
(A5) is needed in his proof so that the dominated con-
vergence theorem is applicable, but in the examples
of Cases 2, 3 and 4, (A3), (A4) and (A5) do not hold
(see Remark 1), not even in the examples of Case 1
with censored data (see Example 4).
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Casella and Berger ([3] p.516) present a set of
somewhat simpler sufficient conditions for the con-
sistency of theMLE of θ in their textbook as follows:
(A7) The densities f(x; θ) have common support,

and f(x; θ) is differentiable in θ.
(A8) The parameter space Θ contains an open set A

and the true parameter θo ∈ A.
Until recently (see, e.g., Rossi [9]) the sufficient con-
ditions for the MLE under the assumptions of (A1)
and (A2) are still essentially combinations of (A3),
..., (A8). Notice that (A7) implies (A3), and (A7) and
(A8) are much stronger smoothness assumptions on
the df. (A8) weaken (A4), but it does not allow dis-
creteΘ and we may not know the trueA, just like that
we do not know the true value of θo. One can verify
that (A7) does not hold in the examples of Cases 1, 2,
3 and 4 (see Remark 1).

It is actually more desirable to find the necessary
and sufficient (NS) conditions for the consistency of
the MLE. The NS conditions are studied for consis-
tency of M-estimates in regression models with gen-
eral errors (see Berlinet, Liese and Vajda [1]) or other
models, but not for the MLE until recently. Zhang
[16] establishes the NS condition for the weak con-
sistency of the M-estimator under additional assump-
tions. In particular, Theorem 4 in Zhang [16] can be
stated for the MLE θ̂n as follows:
(S1) Suppose that X is a rv. ρn(θ) decreases with
θ < θ̂n and increases with θ > θ̂n, where ρn(θ) =

− 1
n

∑n
i=1 lnf(Xi; θ), θ ∈ R. Then θ̂n

P→θo iff
inf

||θ−θo||≥ϵ
ρn(θ)− ρn(θo)

P→δ(ϵ) ∀ ϵ > 0 and (1)

a δ(ϵ) > 0.
Zhang’s result has several drawbacks: (a) Eq. (1) is
not always easy to check, (b) it is not a strong consis-
tency result; (c)X is not a random vector, (d) θ ∈ R,
(e) convexity of L(θ) in R may not be true (see Ex-
ample 6).

Under (A1) and (A2), it is interesting to notice
that almost all sufficient conditions in the literature
imply that f(·; θ) is upper semi-continuous in θ (see,
e.g., (A3) or (A7) (as continuity implies upper semi-
continuity)), or its weakened version:
(A9) lim

n→∞
f(x; θn) ≤ f(x; θ∗) ∀ x ∈ W , where∫

1(x /∈ W)dµ(x) = 0 and lim
n→∞

θn = θ∗

(see van der Vaart [13]). Under (A1) and (A2), in ad-
ditional to upper semi-continuity (A3) or its weak-
ened one (A9), all existing sufficient conditions in
the literature need some additional regularity assump-
tions such as (A5), (A7), (A8) or (S1), among others.
In this paper, it is shown that the sufficient condition
for strong consistency of the MLE is only (A9) alone
(see Theorems 1 and 2). The aforementioned para-
metric families all satisfy (A9) (see Section 4), but

some of them do not satisfy (A3) and (A7) (see Re-
mark 1). It is worth mentioning that since (A3) im-
plies (A9), if (A3) holds then the MLE is consistent
without (A4), (A5), (A7), (A8) and (S1), as imposed
in the literature.

In Section 2, we present the sufficient condition
for the strong consistency of the MLE when the ob-
servations are random variables (see Theorem 1). The
extension of Theorem 1 to the case that the observa-
tions are p× 1 random vectors is studied in Section 3
(see Theorem 2). In our proof of consistency, we need
to modify the Kullback-Leibler (KL) [6] inequality.
In Section 4, we establish the consistency of theMLEs
of the parameters related to the examples in Cases 2,
3 and 4, as well as in Case 1 with censored data. We
also explain that Theorem 2 can be applied to multi-
variate regression analysis. In Section 5, it is shown
that (A9) is the necessary condition in some sense.
Some proofs are relegated to a technical report for a
better presentation.

2 Main results for random variables.
In order to motivate our main results, we shall first
study some special cases. The examples in Cases 2, 3
and 4 can lead to parametric families that the existing
sufficient conditions for the consistency of the MLE
are not applicable. In some cases such as in Example
1 with complete data, the MLE has an explicit solu-
tion. Their consistency proofs are relatively easy in
such cases, but not so otherwise.
Example 1. Consider an example in Case 4 with

the df f(x) =

{ 0.5
(1+lnx)2x if x ≥ 1

0.5
(1−lnx)2x if x ∈ (0, 1)

and

F (x) = P (X ≤ x) =

{
1− 0.5

1+lnx if x ≥ 1
0.5

1−lnx if x ∈ (0, 1).
It leads to a location parameter family. Suppose that
X1, ...,Xn are i.i.d. from F (x−α). The likelihood is
L(α) = 0.5n ×

∏n
i=1{1(α < Xi)

×[(1− ln(Xi − α))2(Xi − α)]−1(Xi−α∈(0,1])

×[(1 + ln(Xi − α))2(Xi − α))−1(Xi−α>1]}, i.e.,

L(α)


= 0 if α ≥ X(1)
= ∞ if α = X(1)−
< ∞ if α < X(1).

Thus the MLE under the location parameter family
F (x − α) is α̂ = X(1). It is well known that
P (α̂ > t) = (P (X > t))n, thus the consistency
follows, as well as the distribution of α̂. It is easy to
show that α̂ is also strongly consistent.

The cumulative distribution function (cdf) F (·)
in Example 1 also leads to a scale parameter family
{F (·/θ) : θ > 0}. The df is f(x; θ) = θf(x/θ)
= 0.5

[(1+ln(x/θ))2x]1(x>θ)[(1−ln(x/θ))2x]1(x∈(0,θ])
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= 0.5

x(1+ln(x/θ))21(x>θ>0)(1−ln(x/θ))21(x∈(0,θ])
, x > 0.

Thus for X(1) > 0, L(θ) =
∏n

i=1 f(xi; θ)

=
0.5n/

∏
i
Xi∏

i
(1+ln(X(i)/θ))

21(X(i)>θ>0)
(1−ln(X(i)/θ))

21(0<X(i)≤θ)
,

g(lnθ)def= (lnL(θ) +
∑

i lnXi + nln2)/2
= −

∑n
i>k ln(1+ lnX(i)

θ )−
∑k

i=1 ln(1− lnX(i)

θ ),
if X(k) ≤ θ < X(k+1), 0 ≤ k ≤ n.

g(lnθ) =



−∞ if θ = 0+ or∞
−

∑n
i=1 ln(1 + lnX(i)

θ ) if 0 < θ < X(1)

−
∑n

i=1 ln(1− lnX(i)

θ ) if X(n) ≤ θ

−[
∑n

i>k ln(1 + lnX(i)

θ )

+
∑k

i=1 ln(1− lnX(i)

θ )] otherwise,
where X(k) ≤ θ < X(k+1), 1 ≤ k < n.
Let h(x) = ln(a± x), then h′ = ±(a± x)−1 and

h′′(x) = (a±x)−2. Thus, if t ̸= lnX(k), k = 1, ..., n,

then g′(t) =
∑

i
1(X(i)>et)
1+lnX(i)−t −

∑
i
1(X(i)≤et)
1−lnX(i)+t ,

g′′(t) =
∑

i
1(X(i)>et)

(1+lnX(i)−t)2 +
∑

i
1(X(i)≤et)

(1−lnX(i)+t)2 .

Hence, g′(lnθ) is a monotonely increasing func-
tion of lnθ for θ ∈ (X(i), X(i+1)), i ∈ {0, 1, ..., n}.
For example, consider a special case by letting n = 2,
X1 = 1 and X2 = e. Then

g(t) = −1(0 > t)ln(1− t)− 1(0 ≤ t)ln(1 + t)−
1(1 > t)ln(2− t)− 1(1 ≤ t)ln(t).

g(t) =



−1(0 > t)ln(1− t)
−1(1 > t)ln(2− t) = −∞ if t = −∞
−1(0 > t)ln(1− t)
−1(1 > t)ln(2− t) = −ln2 if t = 0−
−1(0 ≤ t)ln(1 + t)
−1(1 > t)ln(2− t) = −ln2 if t = 0+
−1(0 ≤ t)ln(1 + t)
−1(1 > t)ln(2− t) = −ln2.25 if t = 0.5
−1(0 ≤ t)ln(1 + t)
−1(1 > t)ln(2− t) = −ln2 if t = 1−
−1(0 ≤ t)ln(1 + t)
−1(1 ≤ t)ln(t) = −ln2 if t = 1+
−1(0 ≤ t)ln(1 + t)
−1(1 ≤ t)ln(t) = −∞ if t = ∞,

g′(t) =



−1(0≤t)
1+t − 1(1≤t)

t = 0− if t = ∞
−1(0≤t)

1+t − 1(1≤t)
t < 0 if t = 1+

−1(0≤t)
1+t + 1(1>t)

2−t > 0 if t = 1−
−1(0≤t)

1+t + 1(1>t)
2−t < 0 if t = 0+

1(0>t)
1−t + 1(1>t)

2−t > 0 if t = 0−
1(0>t)
1−t + 1(1>t)

2−t = 0+ if t = −∞.

t : −∞ 0− 0+ 1−
g′(t) : 0+ ↗ 1.5 −0.5 ↗ 0 ↗ +0.5
g(t) : −∞ ↗ −ln2 −ln2 ↘ ↗ −ln2
t : 1+ ∞

g′(t) : −1.5 ↗ 0−
g(t) : −ln2 ↘ −∞

Notice that

(a) L(θ) is a continuous function in θ;

(b) L(θ) is twice differentiable in the intervals
(X(i−1), X(i)), i = 0, ..., n;

(c) but L(θ) is not differentiable at X(i)’s;

(d) g′′(t) > 0 for t ∈ (eX(i−1) , eX(i)), i = 0, ..., n;

(e) thus g′(t) is strictly increasing for
t ∈ (eX(i−1) , eX(i)), i = 0, ..., n;

(f) thus g′(t) = 0 at the local minimum points.

The MLE θ̂n = argmaxt∈{X1,...,Xn}g(lnt), where
g(lnX(k)) =

∑n
i>k(1 + ln(X(i)/X(k)))

−1

−
∑

i<k(1− ln(X(i)/X(k)))
−1, k = 0, ..., n.

The examples in Cases 2, 3 and 4 can also lead
to certain location or scale parameter families. The
existing sufficient conditions for the consistency of
the MLE are not applicable (see Remark 1).
The example in Case 2.

f(t) = (r − 1)1(t > e)/[t(lnt)r], r > 1.
The location parameter:
f(t;α) = (r−1)1(t−e > α)/[(t−α)(ln(t−α))r].
f(t;α) ↑ in α ∈ (−∞, t − e], as 1

t−α ↑ and
1

(ln(t−α))r ↑. Thus L(α) ↑ in α ∈ (−∞, X(1) − e],
the MLE of α is α̂n = X(1) − e.
The scale parameter:
f(t; θ) = (r − 1)1(t > eθ)/[t(ln(t/θ))r], r > 1.
Thus the MLE of θ is θ̂n = X(1)/e.
The example in Case 3.

f(t) = (r − 1)1(t ∈ (0, 1/e])/[t(lnt)r], r > 1.
The location parameter:
f(t;α) = (r−1)1(t∈[α,α+1/e])

(t−α)(ln(t−α))r , r > 1.

L(α) = 1(α<X(1)≤···≤X(n)<α+1/e])∏n

i=1
(r−1)[(Xi−α)(ln(Xi−α))r]

L(α) =↑ in α ∈ [X(n) − 1/e,X(1)].
Thus the MLE of α is α̂n = X(1).
The scale parameter:
f(t; θ) = (r−1)1(t∈(0,θ/e))

t(ln(t/θ))r , r > 1.
Thus the MLE of θ is θ̂n = X(n)e.
An example in Case 4. Let u, v > 1, p ∈ [0, 1],
f(t) = p (v−1)1(t∈(0,1])

(1−lnt)vt + q (u−1)1(t>1)
(1+lnt)ut . Then

F (t) = p1(t∈(0,1))
(1−lnt)v + q[1− 1(t≥1)

(1−lnt)u ], q = 1− p.
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The location parameter α:
f(t;α) = p(v−1)1(t−a∈(0,1])

(1−ln(t−a))v(t−a) + q(u−1)1(t−α>1)
(1+ln(t−a))u(t−a) . Thus

α < X(1). Since L(α)
{
= ∞ if α = X(1)−
< ∞ otherwise, the

MLE is α̂n = X(1).
The scale parameter θ:
f(t; θ) = p (v−1)1(t/θ∈(0,1])

(1−ln(t/θ))vt + q (u−1)1(t/θ>1)
(1+ln(t/θ))ut . Since

lnf = −lnt+
1(t ∈ (0, θ))[ln(p(v − 1))− vln(1− lnt+ lnθ)]
+ 1(t > θ)[ln(q(u− 1))− uln(1 + lnt− lnθ)],

g(lnθ)
def
= lnL(θ) +

∑
i lnXi −

∑
Xi∈(0,θ]) ln(p(v − 1))

−
∑

Xi>θ ln(q(u− 1))
= −

∑
i 1(Xi ∈ (0, θ])vln(1− lnt+ lnθ)

−
∑

i 1(Xi > θ))uln(1 + lnt− lnθ)
= −u

∑n
i>k ln(1 + lnX(i) − lnθ)

− v
∑k

i≥1 ln(1− lnX(i) + lnθ), where
X(k) ≤ θ < X(k+1), k = 0, 1, ..., n and X(0) = 0.
Notice that d

dθg(lnθ) does not exist at θ = Xi ∀ i, and
g′′(t) =

∑
i>k

u
(1+lnX(i)−t)2 +

∑k
i=1

v
(1−lnX(i)+t)2 > 0

if it exists. Thus θ̂n = argmaxθ∈{X(1),...,X(n)}L(θ).
It worth mentioning that the Newton-Raphson algo-
rithm does not work here.

In addition to (α, θ), u, v and p can also be treated
as parameters. One can find the MLE of u:
lnf ∝ ln(u− 1)− uln(1 + lnt).
d
du

∑
i lnf(Xi;u) =

∑
Xi>1[

1
u−1−ln(1+lnXi)] = 0

yields
∑

Xi>1
1

u−1 =
∑

Xi>1 ln(1 + lnXi).

Thus the MLE û = 1 +

∑
Xi>1

1∑
Xi>1

ln(1+lnXi)
,

as d2

du2

∑
i lnf(Xi;u) = −

∑
Xi>1

1
(u−1)2 < 0.

One can also find the MLE of p and v.

Remark 1. Condition (A7) in Casella and Berger [3]
and conditions (A3), (A4), (A5) in Ferguson [5] are
violated if f(x; θ, α) = 1(x∈(α,α+θ/e])

(x−α)(ln((x−α)/θ))2 (an exam-
ple of Case 3).
(A7) fails: f(x; θ, α) is not continuous in θ at θ = θ∗
for x ∈ {α, α+ θ∗/e} and for each θ∗ > 0, due to the
factor 1(x ∈ (α, α+ θ/e]) in f(x; θ, α). The support

of f(x; θ, α) is
{
[0, 1/e] if θ = 1 and α = 0
[0, 1/(2e)] if θ = 0.5 and α = 0

(not the same).
(A3) fails: lim

n→∞
f(x; θn, αn) = ∞ (̸≤ f(x; 1, 0) =

0) if θn = 1 and αn = (−1)n/n+ x.
(A4) fails: Θ is not compact, as Θ = (0,∞) ×
(−∞,∞) ̸= Θ (the closure of Θ).
(A5) fails: If (θo, αo) = (1, 0) and θ ≥ 1, then

f(x;θ,α)
f(x;θo,αo)

=
1(x− α ∈ (0, θ/e])x(lnx)2

(x− α)(ln((x− α)e/θ))21(x ∈ (0, 1/e])
(2)

= ∞, if x = α+ > αo and x < 1/e. If (A5) were
true, then ∃ a functionK(x) such that

Eθo,αo
(|K(X)|) < ∞ and

K(x) ≥ ln f(x;θ,α)
f(x;θo,αo)

∀ (x, θ, α),

then K(x) ≥ ln f(x;θ,α)
f(x;θo,αo)

= ln∞ ∀ x = α+ > αo =

0 and x < 1/e by Eq.(2), i.e. K(x) = ∞ for all
x ∈ (0, 1/e] and

∫ 1/e
0 fo(x; θo)dx = 1. Consequently

∞ > Eθo,αo
(|K(X)|) = E(∞) = ∞, a contradic-

tion.
Since the existing results on the sufficient condi-

tions of the consistency of the MLE are not applica-
ble to the families of distributions in Cases 2, 3 and 4,
we propose a weaker sufficient condition for consis-
tency of the MLE in Theorem 1. The consistency of
the MLEs in the examples in Cases 2, 3 and 4 can be
proved by verifying the sufficient condition proposed
in Theorem 1. This is done in Section 4.

Before we present the main theorem, we shall
present some preliminary results. We shall make use
of the following inequality:
KL inequality. Kdef

=
∫
fo(t)ln(fo/f)(t)dµ(t) ≥ 0;

with equality iff
∫
|f(t)− fo(t)|dµ(t) = 0.

Kullback and Leibler [6] show that K exists, though
it is possible thatK = ∞.

The KL inequality requires that f and fo are both
densities w.r.t. the measure µ. That is,

∫
fodµ =∫

fdµ = 1. However, we encounter the case∫
fdµ < 1 in our proof such as in Example 2.

Example 2. Let f(x; θ) = 1(x ∈ (0, θ])/θ, θ > 0.
F (x; 0) = limθ↓0 F (x; θ) = 1(x ≥ 0) ∀ x. f(·; 0)
is a point mass at 0 and

∫
f(x; 0)dx = 0 < 1 =∫

f(x; θ)dx if θ > 0.
We thus modify the KL inequality as follows.

Lemma 1 (Yu [14]). If f ≥ 0, fo ≥ 0, µ is a mea-
sure,

∫
fo(t)dµ(t) = 1 and

∫
f(t)dµ(t) ≤ 1, then∫

fo(t)lnfo(t)
f(t) dµ(t) ≥ 0, with equality iff f = fo a.e.

w.r.t. µ.
We would also make use of Fatou’s Lemma with

varying measures as follows.
Lemma 2 (Propositions 17 and 18 in Royden ([10]
page 231)). Let (S,B) be a measurable space,
{µn}n≥1 a sequence of measures which converge set-
wise to a measure µ (ı.e., lim

n→∞
µn(B) = µ(B), ∀

B ∈ B), gn and fn are non-negativemeasurable func-
tions, and (fn, gn)(x) converges pointwise to the vec-
tor of functions (f, g)(x). We have
(a)

∫
f dµ ≤ lim

n→∞

∫
fn dµn;
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(b) if fn ≤ gn and lim
n→∞

∫
gndµn =

∫
gdµ, then∫

fdµ = lim
n→∞

∫
fndµn.

Corollary 1. Suppose that µn is a sequence of
measures on the measurable space (S,B) such that
lim
n→∞

µn(B) → µ(B), ∀ B ∈ B, f and fn are inte-
grable functions, n ≥ 1.

(a) If fn are bounded below and f(x) = lim
n→∞

fn(x),
then

∫
f dµ ≤ lim

n→∞

∫
fn dµn.

(b) If fn are bounded below then∫
lim
n→∞

fn dµ ≤ lim
n→∞

∫
fn dµn.

Proof. Statement (a) is the same as Corollary 1 Yu
[14]. We now prove statement (b):

Let gn(x) = inf{fk(x) : k ≥ n}, then gn(x) →
g(x) = lim

n→∞
fn(x). We have∫

lim
n→∞

fn dµ =
∫

lim
n→∞

gn dµ

≤ lim
n→∞

∫
gn dµn (by statement (a),

as gn is bounded below)
= lim

n→∞

∫
inf{fk : k ≥ n} dµn

≤ lim
n→∞

∫
fn dµn.

Lemma 3. Given each sequence of cdf’s
{F (·; θn)}n≥1, ∃ a pointwise convergence sub-
sequence {F (·; θnj

}j≥1 with the limit function
F (·) ∈ F , where F is a collection of all F satisfying
that F (x) is a nondecreasing function on [−∞,∞],
F (−∞) = 0 and F (∞) = 1.

Here F includes F satisfying limx→∞ F (x) < 1,
or limx→−∞ F (x) > F (−∞) = 0, or limt↓x F (t) >
F (x). Lemma 3 is a trivial special case of Helly’s se-
lection theorem (Rudin [11] p.167), thus its proof is
skipped. F (x; θ) =

∫
1(t ≤ x)f(t; θ)dµ(t) if θ ∈ Θ.

If θn ∈ Θ and θn → θ∗ /∈ Θ, then there is a con-
vergent sub-sequence of {F (·; θn)}n≥1 by Lemma 3,
say F (·; θjn) → F (·; θ∗). Then f(x; θ∗) needs to be
defined. For technical reasons in the proof of consis-
tency, define

f(x; θ∗) = lim
n→∞

f(x; θjn). (3)

Remark 2. It is worth mentioning that f(·; θ∗) de-
fined in Eq. (3) may not be a df w.r.t. µ. If θ∗ /∈ Θ
then we may not have

F (x; θ∗) =
∫
1(t ≤ x)f(t; θ∗)dµ(t).

For instance, let fn(x) = 1(x ∈ (0, 1/n))n as in
Example 2, where θn = 1/n → 0 = θ∗ and µ is the
Lebesgue measure. Then
Fn(x) =

∫
1(t ≤ x)fn(t)dt→ 1(x ≥ 0)

def
= F (x; θ∗).

Eq. (3) yields
f(x; θ∗) = lim

n→∞
fn(x) = 0 (not a df w.r.t. µ).

Lemma 4. If (A9) holds and if ∃{θn}n≥1 ⊂ Θ such
that θn → θ∗ and lim

n→∞
F (x; θn) exists ∀ x, then by

defining f(·; θ∗)
def
= lim

n→∞
f(·; θn) if θ∗ /∈ Θ, we have

lim
n→∞

f(x; θn) ≤ f(x; θ∗) if x ∈ W , (4)

where
∫
1(x /∈ W)dµ(x) = 0.

Proof. Assume (A9) holds. If θ∗ ∈ Θ, Eq.(4)
follows from (A9). Otherwise, Eq.(4) follows from
f(·; θ∗)

def
= lim

n→∞
f(·; θn) if θ∗ /∈ Θ.

Remark 3. (A9) is a weakened version of (A3) (the
upper semi-continuity) in three senses:
(a) It does not require lim

n→∞
f(x; θn) ≤ f(x; θ∗)

for all x;

(b) It allows Θ be a nowhere-dense set;

(c) It yields Eq.(4), which does not require θ∗ ∈ Θ,
if Θ is not compact (i.e. (A4) does not hold).

Remark 4. (A9) weakens (A7) too: (a) (A9) is implied
by the existence of ∂f(·;θ)∂θ in (A7); (b) (A9) does not re-
quire that the densities f(x; θ) have common support
as in (A7).
Remark 5. For technical reason, we define the MLE
θ̂ = θ̂n = argmaxθ∈Θ

∏n
i=1 f(Xi; θ), rather than

θ̂ = argmaxθ∈Θ
∏n

i=1 f(Xi; θ). Hereafter, let F̂n be
the empirical distribution function (edf) based onXi’s
and Ωo the subset of the sample space Ω such that
F̂n(x) → F (x; θo) ∀ x, where F (·; θo) = FX(·).

We shall make use of the following condition.
(A10) lim

n→∞
f(x; θ̂jn)(ω) ≤ f(x; θ∗(ω)) ∀ x ∈ W ,

∀ ω ∈ Ωo and ∀ convergent subsequence
{θ̂jn}n≥1 of the MLE θ̂n, where θ̂jn(ω) → θ∗(ω)
and

∫
1(x /∈ W)dµ(x) = 0.

Theorem 1. Suppose that Xi’s are random variables
and (A1) and (A2) hold. Then the MLE θ̂

a.s.→θo and
f(x; θ̂n)

a.s.→f(x; θo) ∀ x ∈ W , if (A9) or (A10) holds.
Proof. By assumptions (A1) and (A2), P (Ωo) = 1.
For each ω ∈ Ωo, let θ∗ be a limiting point of θ̂n(ω),
where θ∗ ∈ Θ. Then the MLE θ̂n is consistent iff
θ∗ = θo, Thus the theorem is proved once we prove
θ∗ = θo, which is done next.

Hereafter, fixed ω ∈ Ωo. Then there ex-
ists a convergent subsequence of {F (·; θ̂n)}n≥1 by
Lemma 3. By taking a convergence subsequences of
{θ̂n}n≥1 and {F (·; θ̂n)}n≥1, without loss of general-
ity (WLOG), we can assume θ̂n → θ∗ and F̂ (·, θ̂n)
converges to F (·; θ∗) (∈ F (see Lemma 3)) point-
wisely. Thus (A9) and Lemma 4 yield Eq.(4), with
θn = θ̂n, i.e.,

lim
n→∞

f(x; θ̂n) ≤ f(x; θ∗), x ∈ W, (5)
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where
∫
1(x /∈ W)dµ(x) = 0. On the other hand,

Eq.(5) follows from (A10) directly.
The normalized log-likelihood is∑n
i=1 lnf(Xi; θ)/n. The MLE θ̂n yields,

0 ≥ 1

n

n∑
i=1

ln
f(Xi; θo)

f(Xi; θ̂n)
=

∫
ln
f(t; θo)

f(t; θ̂n)
dF̂n(t) (6)

=
∫
H( f(t;θo)

f(t;θ̂n)
)f(t;θ̂n)f(t;θo)

dF̂n(t) (H(t)
def
= tlnt).

Denote Ak = {t : f(t;θ̂n)
f(t;θo)

≤ k, ∀ n} and

Bk = Ak \ Ak−1, k ≥ 1. Notice that f(t;θ̂n)
f(t;θo)

is fi-
nite for each n, provided that
t ∈ {x : |F (x + s; θo) − F (x; θo)| > 0 ∀ s ̸= 0}.
Then ∫

1(∪k≥1Bk)dF (t; θo) = 1. (7)

For each k ≥ 1, let ak = 1(t ∈ Bk)ln( f(t;θo)f(t;θ̂n)
) and

define ln0 = −∞. We have
lim
n→∞

∫
Bk

ln f(t;θo)

f(t;θ̂n)
dF̂n(t)

≥
∫
Bk

lim
n→∞

ln f(t;θo)

f(t;θ̂n)
dF (t; θo) (by (b) of Corollary 1

as ak ∈ [−lnk,−ln(k − 1)], k ≥ 1)
=

∫
Bk

ln lim
n→∞

f(t;θo)

f(t;θ̂n)
dF (t; θo) (as ln(x) is continuous)

=
∫
Bk

ln f(t;θo)

lim
n→∞

f(t;θ̂n)
dF (t; θo)

≥
∫
Bk

ln f(t;θo)
f(t;θ∗)

dF (t; θo) (by Eq.(5) and (A9)) (8)

=
∫
Bk

H( f(t;θo)f(t;θ∗)
)f(t;θ∗)f(t;θo)

dF (t; θo) (H(t) = tlnt)

=
∫
Bk

H( f(t;θo)f(t;θ∗)
)f(t; θ∗)dµ(t) (as

dF (t; θo) = f(t; θo)dµ(t))
≥

∫
Bk

(−1/e)f(t; θ∗)dµ(t) (as tlnt ≥ −1/e ∀ t > 0)
≥ −1/e (as

∫
Bk

f(t; θ∗)dµ(t) ∈ [0, 1]). (9)
Finally,

0
≥ lim

n→∞

∫
ln f(t;θo)

f(t;θ̂n)
dF̂n(t) (by Eq.(6))

= lim
n→∞

∑
k≥1

∫
Bk

f(t;θo)

f(t;θ̂n)
dF̂n(t) (by Eq.(7))

= lim
n→∞

∫
k≥1

∫
Bk

ln f(t;θo)

f(t;θ̂n)
dF̂n(t)dν(k)

(dν is the counting measure)
≥

∫
k≥1 lim

n→∞

∫
Bk

ln f(t;θo)

f(t;θ̂n)
dF̂n(t)dν(k)

(by (b) of Corollary 1 and (9))
≥

∫
k≥1

∫
Bk

ln f(t;θo)
f(t;θ∗)

dF (t; θo)dν(k) (by Eq.(8))

=
∫
ln f(t;θo)

f(t;θ∗)
dF (t; θo)

=
∫
ln f(t;θo)

f(t;θ∗)
f(t; θo)dµ(t)

≥ 0 (by Lemma 1).

That is,
∫
ln f(t;θo)

f(t;θ∗)
f(t; θo)dµ(t) = 0. It follows

that
∫
|f(x; θ∗) − f(x; θo)|dµ(x) = 0 by the sec-

ond statement of Lemma 1. Consequently θ∗ = θo
by (A2). Since P (Ωo) = 1, the MLE θ̂

a.s.→θo and
f(x; θ̂n)

a.s.→f(x; θo) ∀ x ∈ W ,
Remark 6. In view of Remarks 3 and 4, under as-
sumptions (A1) and (A2), Theorem 1 presents a sim-
ple sufficient condition, namely (A9) or (A10) alone,
which is much weaker than all similar results in the
literature. Notice that in the literature, even though
some people show that the sufficient conditions in-
clude (A9), it is not known that the sufficient condi-
tion can be (A9) alone. We shall show in Theorem 3
that (A10) alone is the NS condition for the MLE be-
ing strong consistent. But (A9) is easier to verify than
(A10).

3 Main Results for Random Vectors.
In this section, assume thatX is a p×1 random vector.
Notice that (A1) says that X1, ..., Xn are i.i.d. obser-
vations from f(·; θ), θ ∈ Θ. HereXi can be a random
variable or a random vector. (A1), (A2) and (A9), as
well as Eq. (3), Lemmas 2 and 4 do not need to be
revised except replacing x by x (= (x1, ..., xp)), etc..

For a better presentation, we shall first extend The-
orem 1 to the case p = 2. Hereafter, write x =
(x1, x2), etc., denote x ≥ y if xi ≥ yi, i ∈ {1, 2};
denote x > y if x1 ≥ y1 and x2 ≥ y2 with at least
one strict inequality. Lemma 3 is a key in the proof
of Theorem 1, and it is extended as follows.
Lemma 5. Given each sequence of bivariate cdf’s
{F (·; θn)}n≥1, there exists a convergence subse-
quence such that limj→∞ F (x; θnj

) = F (x; θ∗) ∀ x,
where F (x; θ∗) ∈ F2, a collection of all F such that
F (x) ≥ F (y) whenever x ≥ y, F (−∞,−∞) = 0
and F (∞,∞) = 1.
Proof. Given a sequence of cdf’s F (·; θn),
{F (x,∞; θ)}n≥1 is a bounded nondecreasing se-
quence in x. Helly’s selection theorem ensures that
there exists a convergent subsequence. WLOG,
we can assume {F (x,∞; θn)}n≥1 converges. Like-
wise, F (∞, x; θn) is a bounded nondecreasing se-
quence in x. Helly’s selection theorem ensures that
there exists a convergent subsequence. WLOG,
we can assume F (∞, x; θn) converges too. More-
over, {F (x, x; θn)}n≥1 is also a bounded nonde-
creasing sequence, thus Helly’s selection theorem
ensures that there exists a convergent subsequence.
WLOG, we can further assumeF (x, x; θn) converges
again. Denote the limiting functions of F (x,∞; θn),
F (∞, x; θn) and F (x, x; θn), by F1, F2 and F3, re-
spectively. Let Qk be the collection of i/2kth quan-
tiles ofFj’s for i ∈ {1, 2, ..., 2k−1} and j ∈ {1, 2, 3}.
Notice that Qk is a finite set with at most 3(2k − 1)
elements. For k = 1, there is a convergent subse-
quence of {F (x, θn)}n≥1 for x ∈ Q1, denoted by
{F (x, θ1,n)}n≥1. Inductively, for k ≥ 2, there is
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a convergent subsequence of {F (x, θk−1,n)}n≥1 for
x ∈ ∪k

j=1Qj , denoted by {F (x, θk,n)}n≥1. Then
the subsequence {F (x, θn,n)}n≥1 converges ∀ x ∈
∪k≥1Qk. WLOG, we can assume F (x, θn) converges
for x ∈ ∪k≥1Qk.

We now show that F (x; θn) converges point-
wisely. By the previous construction, it suffices to
show that F (x; θn) converges if x /∈ ∪j≥1Qj . In the
latter case, given ϵ > 0, ∃ k > 0 and ∃ z, y ∈ ∪jQj

satisfying z < x < y such thatF (y; θn)− F (z; θn) ≤ ϵ,
|F (y; θm)− F (y; θn)| ≤ ϵ,
F (z; θm)− F (z; θn)| ≤ ϵ,

(10)

whenever n,m ≥ k. It follows that
|F (x; θn)− F (x; θm)|

≤ |F (y; θm)− F (y; θm) + F (y; θn)− F (y; θn)
+ F (x; θn)− F (x; θm) + F (z; θm)− F (z; θm)|

= |F (y; θm)− F (z; θm) + F (y; θn)− F (y; θm)
+ F (x; θn)− F (y; θn) + F (z; θm)− F (x; θm)|

≤ |F (y; θm)− F (z; θm)|+ |F (y; θn)− F (y; θm)|
+ |F (x; θn)−F (y; θn)|+ |F (z; θm)−F (x; θm)|

≤ |F (y; θm)− F (z; θm)|+ |F (y; θn)− F (y; θm)|
+ 2|F (z; θm)− F (y; θm)| (as z < x < y)

≤ 4ϵ, whenever n,m ≥ k by Eq.(10).
Consequently, F (x; θk) converges pointwisely.
Theorem 2. Suppose that (A1) and (A2) hold and
Xi’s in (A1) are 2−dimensional random vector. Then
the MLE θ̂ is consistent if (A9) or (A10) holds.
Proof. Let F̂n be the empirical distribution function
(edf) based on Xi’s and Ωo the subset of the sample
spaceΩ such that F̂n(·) → F (·; θo), where F (·; θo) is
the true cdf of X. Under assumptions (A1) and (A2),
P (Ωo) = 1. For each ω ∈ Ωo, let θ∗ be a limiting
point of θ̂n(ω), where θ∗ ∈ Θ. Then the MLE θ̂n is
consistent iff θ∗ = θo, Thus the theorem is proved
once we prove θ∗ = θo, which is done next.

Hereafter, fixed ω ∈ Ωo. Then there exists a con-
vergent subsequence of {F (·; θ̂n)}n≥1 by Lemma 5.
By taking a convergence subsequences of {θ̂n}n≥1

and {F (·; θ̂n)}n≥1, WLOG, we can assume θ̂n → θ∗
and F̂ (·, θ̂n) converges to F (·; θ∗) pointwisely, where
F (·; θ∗) ∈ F2. Thus either (A10) yields Eq.(5), or
both (A9) and Lemma 4 yield Eq.(4) with θn = θ̂n,
that is,

lim
n→∞

f(x; θ̂n) ≤ f(x; θ∗), x ∈ W,

where
∫
1(x /∈ W)dµ(x) = 0 (see Eq.(5))

The normalized log-likelihood is
∑n

i=1 lnf(Xi; θ)/n.
Let H(t) = tlnt. We have
0 ≥ 1

n

∑n
i=1 ln

f(Xi;θo)

f(Xi;θ̂n)
=

∫
ln f(t;θo)

f(t;θ̂n)dF̂n(t)

=
∫
H( f(t;θo)

f(t;θ̂n))
f(t;θ̂n)
f(t;θo)dF̂n(t) (see (6)).

The rest of the proof is skipped, as it is identical to
the proof of Theorem 1 after Eq.(6), provided that x
is replaced by x.
Remark 7. The extension of Theorem 1 to the case
p > 1 can be done through a mathematical induction
on p. The proof of Theorem 1 can be viewed as the
step p = 1 in the mathematical induction. The proof
of Theorem 2 can be viewed as the simple version of
step p+ 1. For simplicity, we ignore the details.

4 Direct Applications.
We first consider the case of a randomvector specified
in the next example.
Example 3. Let fx(x; θ, α, r) =

∏3
i=1 fi(

xi−α
θ ),

be the df of X = (X1, X2, X3), where
f1(x) = (r−1)1(x>e)

(lnx)rx , f2(x) = (r−1)1(x∈(0,1/e))
(lnx)rx and

f3(x) = 1(x>e)+1(x∈(0,1/e))
2(lnx)rx , r > 1, θ > 0. Notice

that f1, f2 and f3 are the examples corresponding to
Cases 2, 3 and 4 (mentioned in Section 1), respec-
tively. Then the MLE of the parameter (θ, α, r) based
on i.i.d. observations from fx is consistent. It suffices
to show that (A2) and (A9) holds.
⊢: (A2) holds, i.e., (θ, α, r) = (θo, αo, ro) if

F (x; θ, α, r) = F (x; θo, αo, ro) ∀ x.
By taking derivative, it is easy to check that∫ r−1

x(lnx)r dx = −sign(lnx)|lnx|1−r + c, where c is a
constant. Then
F (x; θ, α, r) = 1(x1 > α+ eθ)[1− (lnx1−α

θ )1−r]

× 1(x2 ∈ (α, α+ θ/e))|lnx2−α
θ |1−r

× {1(x3 ∈ (α, α+ θ/e))/|lnx3−α
θ |

+1(x3 > α+eθ)[1−1/(lnx3−α
θ )]}/2. (11)

If (θ, α, r) ̸= (θo, αo, ro), θ, θo > 0, and
r, ro > 1, due to symmetry, it suffices to consider
these 4 cases:

(a) α < αo,
(b) α+ θ/e < αo + θo/e,
(c) α+ θe < αo + θoe,
(d) r < ro.

We shall show that if F (x; θ, α, r) = F (x; θo, αo, ro)
∀ x then none of the 4 cases is possible.

In Case (a), ∃ x2 ∈ (α, αo ∧ (α + θ/e)) and
x1 = x3 ≈ ∞ such that
F (x; θ, α, r) = 1(x2 ∈ (α, α + θ/3))|lnx2−α

θ |1−r

> 0 = F (x; θo, αo, ro), by Eq.(11). Thus Case (a)
is impossible.

In Case (b), ∃ x2 ∈ ((α + θ/e) ∨ αo, αo + θo/e)
and x1 = x3 ≈ ∞ such that F (x; θ, α, r) = 0
< 1(x2 ∈ (αo, αo + θo/e))|lnx2−αo

θo
|1−ro

= F (x; θo, αo, ro) by Eq.(11). Thus Case (b) is im-
possible.

In Case (c), ∃ x1 ∈ (α + θe, αo + θoe) and x2 =
x3 ≈ ∞ such that
F (x; θ, α, r) = 1(x1 > α+ θe))[1− (lnx1−α

θ )1−r]
> 0 = F (x; θo, αo, ro). Thus Case (c) is impossible.
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The previous discussion implies that if
F (x; θ, α, r) = F (x; θo, αo, ro) ∀ x then (θ, α) =
(θo, αo) and thus F (x; θ, α, r) = F (x; θ, α, ro) ∀
x. The latter equality together with Eq.(11) and
x1 = x3 = ∞ further implies

1(x2 ∈ (α, α+ θ/e))|lnx2−α
θ |1−r

= 1(x2 ∈ (α, α+ θ/e))|lnx2−α
θ |1−ro for all x2.

=> 1 = |lnx2−α
θ |ro−r if x2 ∈ (α, α+ θ/e)).

Letting x2 ↓ α, the last equation yields 1 → ∞which
is a contradiction. It implies that r = ro. Thus (A2)
holds.

Finally, fx(x; θ, α, r) is continuous in (θ, α, r) ∀
x /∈ B, where x ∈ B implies that either x1 = α+ θe
or x2 ∈ {α, α+ θ/e} or x3 ∈ {α, α+ θ/e, α+ θe}.
Furthermore,

∫
1(x ∈ B)dx = 0. Thus (A9) holds.

Example 4. Suppose that the survival time
Y ∼ U(0, θ), θ ∈ Θ = R. The censoring time
C ∼ Exp(1). Y and C are independent. The
observable random vector is X = (M, δ), where
M = Y ∧ C and δ = 1(Y ≤ C. Then
f(m, δ; θ) = 1(m∈[0,θ])

θ (θ − m)1−δ. Let (M1, δ1),
..., (Mn, δn) be i.i.d. observations. It can be shown
that the MLE of θ has no closed form solution. It is
easy to verify that (A4), (A5) and (A6) do not hold.
However, it is easy to show that (A9) holds with
W = {0, y} × {0, 1} ∀ y > 0. Thus the MLE of
θ is strong consistent by Theorem 2.

It seems that Theorem 2 is just for non-regression
data, however it can also be applied to the regression
data. For instance, the common regression model is
the linear regressionmodel, which can be specified by
Y = β′Z+W, where Y is a k-dimensional response
vector, Z is a p-dimensional covariate vector which
may take value zero, and E(W ) may not exist. The
conditional df of Y, given Z = z, is

fy|z(y|z) = fw(y− β′z; γ), where β is a

k × p dimensional matrix, β and γ are parameters.
The marginal df of Z is fz(z), which does not depend
on (β, γ). Then the joint df of X = (Y′,Z′)′ becomes

fx(x; θ) = fw(y− β′z; γ)fz(z), where (12)

θ = (β, γ) and x′ = (y′, z′). For a random sample
from the df fx(·; θ), one can apply Theorem 2 to prove
the consistency of theMLE, such as the next example.
Example 5. Suppose that the df of X is as in Eq.(12),
whereW = (W1,W2)

′,W1 andW2 are independent,
fWi

(t; γ) = γi−1
t(lnt)γi 1(t > e) (γi > 1). By Eq.(12),

fx(x; θ)

= fW (x1−
p∑

j=1

β1jzj , γ1)fW (x2−
p∑

j=1

β2jzj , γ2)fz(z),

where θ = (γ1, γ2, β), and β is a 2 × p matrix. The
MLE of θ can be derived by a numerical method, but

the consistency can be proved easily by Theorem 2.
In order to prove its consistency, it is suffices to show

lim
n→∞

fx(x; θn) ≤ fx(x; θ∗), whenever θn, θ∗ ∈ Θ,

and θn → θ∗. Notice that fWi
(ti−

∑p
j=1 βijzj ; γi) =

(γi−1)1((ti−
∑p

j=1
βijzj)>e)

(ti−
∑p

j=1
βijzj)(ln(ti−

∑p

j=1
βijzj))γi

, which is contin-

uous in θ ∈ Θ a.e. in x /∈ Bθ, where
Bθ = {(t1, t2, z1, ..., zp) : ti −

∑p
j=1 βijzj = e}

and
∫
Bθ

1dx = 0. Thus fx(x; θ) is continuous a.e.
in x. Consequently, (A9) holds and thus the MLE is
consistent.

One may modify Theorem 2 for the uncertain
MLE under the uncertain regression analysis.

5 Concluding Remark.
In this paper, assuming (A1) and (A2), it is shown that
(A9) is the only sufficient condition needed for the
MLE θ̂ being consistent. In almost all natural para-
metric distribution families, (A9) is valid and is easy
to verified, thus Theorems 1 and 2 confirm our be-
lief that the MLE is consistent in almost all practical
cases. Is (A9) also the sufficient condition ? See the
next example.
Example 6. Let K = {1, 2, 3, ...} and the density be

f =

{ 1(x ∈ (0, 2])/2 if θ = 0
k+1
k exp(−x(k + 1)/k) if θ = 1/k, k ∈ K,

whereΘ = {0}∪ {1/k : k ∈ K}. Then θ̂n is consis-
tent, (A10) holds but not (A9) and Eq. (1).

The proof is given in a technical report (Yu [15]).
Theorem 3. Suppose that X is a random vector, (A1)
and (A2) hold, θo ∈ Θ and θ̂n is the MLE of θo. Then
statement (A10) holds iff statement (A11) holds.
(A11) θ̂n(ω) → θo and f(x; θ̂n(ω)) → f(x; θo) ∀
x ∈ W and ω ∈ Ωo, where∫

1(x /∈ W)dµ(x) = 0 and Ωo is a subset of the
sample space satisfying P (Ωo) = 1.
Proof. By Theorems 1 and 2, (A10) implies (A11).
On the other hand, letting θ∗ = θo in (A11), it is triv-
ially true that (A11) yields (A10).
Remark 8. Theorem 3 actually presents the NS
condition for the MLE θ̂n being strongly consistent,
though the consistency is referred to both θ̂n and
f(·; θ̂n).
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