
Optimal Factorization of the State-Dependent Riccati Equation
Technique in a Satellite Attitude and Orbit Control System

ALESSANDRO GERLINGER ROMERO

Space Mechanics and Contro Division

Brazilian National Institute for Spaece Research

Astronautas Avenue, 1758 - São José dos Campos

BRAZIL

LUIZ CARLOS GADELHA DE SOUZA

Engineering Center

Federal University of ABC

dos Estados Avenue - São Bernardo do Campo

BRAZIL

Abstract: The satellite attitude and orbit control system (AOCS) can be designed with success by linear control
theory if the satellite has slow angular motions and small attitude maneuver. However, for large and fast maneu-
vers, the linearized models are not able to represent all the perturbations due to the effects of the nonlinear terms
present in the dynamics and in the actuators (e.g., saturation). Therefore, in such cases, it is expected that nonlin-
ear control techniques yield better performance than the linear control techniques. One candidate technique for
the design of AOCS control law under a large maneuver is the State-Dependent Riccati Equation (SDRE). SDRE
entails factorization (that is, parameterization) of the nonlinear dynamics into the state vector and the product of a
matrix-valued function that depends on the state itself. In doing so, SDRE brings the nonlinear system to a
(nonunique) linear structure having state-dependent coefficient (SDC) matrices and then it minimizes a nonlinear
performance index having a quadratic-like structure. The nonuniqueness of the SDC matrices creates extra de-
grees of freedom, which can be used to enhance controller performance, however, it poses challenges since not all
SDC matrices fulfill the SDRE requirements. Moreover, regarding the satellite's kinematics, there is a plethora of
options, e.g., Euler angles, Gibbs vector, modified Rodrigues parameters (MRPs), quaternions, etc. Once again,
some kinematics formulation of the AOCS do not fulfill the SDRE requirements. In this paper, we evaluate the
factorization options (SDC matrices) for the AOCS exploring the requirements of the SDRE technique. Consid-
ering a Brazilian National Institute for Space Research (INPE) typical mission, in which the AOCS must stabilize
a satellite in three-axis, the application of the SDRE technique equipped with the optimal SDC matrices can yield
gains in the missions. The initial results show that MRPs for kinematics provides an optimal SDC matrix.
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1 Introduction
The design of a satellite attitude and orbit control
subsystem (AOCS) that involves plant uncertainties,
large angle maneuvers and fast attitude control fol-
lowing a stringent pointing, requires nonlinear con-
trol methods to satisfy performance and robustness
requirements.

An example is a typical mission of the Brazil-
ian National Institute for Space Research (INPE), in
which the AOCS must stabilize a satellite in three-
axes so that the optical payload can point to the de-
sired target with few arcsecs of pointing accuracy.

One candidate method for a nonlinear AOCS
control law is the State-Dependent Riccati Equation

(SDRE) method, originally proposed by [1] and then
explored in detail by [2, 3, 4]. SDRE provides an
effective algorithm for synthesizing nonlinear feed-
back control by allowing nonlinearities in the system
states while offering great design flexibility through
state-dependent weighting matrices. SDRE entails
factorization (that is, parameterization) of the nonlin-
ear dynamics into the state vector and the product of
a matrix-valued function that depends on the state it-
self. In doing so, SDREbrings the nonlinear system to
a (nonunique) linear structure having state-dependent
coefficient (SDC) matrices and then it minimizes a
nonlinear performance index having a quadratic-like

structure.
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Accordingly, a suboptimal control law is carried
out by a real-time solution of an algebraic Riccati
equation (ARE) using the SDCmatrices bymeans of a
numerical algorithm. Therefore, SDRE linearizes the
plant about the instantaneous point of operation and
produces a constant state-space model of the system.
The process is repeated in the next sampling steps,
producing and controlling several state dependent lin-
ear models out of a nonlinear one.

In this paper, we evaluate the factorization op-
tions (SDC matrices) for the AOCS exploring the
requirements of the SDRE technique. In particular,
the nonuniqueness of the SDC matrices creates ex-
tra degrees of freedom, which can be used to en-
hance controller performance, however, it poses chal-
lenges since not all SDCmatrices fulfill the SDRE re-
quirements. Moreover, regarding the satellite's kine-
matics, there is a plethora of options, e.g., Euler an-
gles, Gibbs vector, modified Rodrigues parameters
(MRPs), quaternions, etc. Once again, some kinemat-
ics formulation of the AOCS do not fulfill the SDRE
requirements.

A good survey of the SDRE method can be found
in [2] and its systematic application to deal with a non-
linear plant in [3]. The SDRE method was applied
by [5, 6, 7, 8, 9] for controlling a nonlinear system
similar to the six-degree of freedom satellite model
considered in this paper. [5] defined a simulator using
Euler angles based on commercial software, whereas,
[6, 7] applied quaternions on commercial software.
[9] extended an opensource project and defined an
opensource simulator based on Euler angles.

The application of SDRE method, and, conse-
quently, the ARE problem that arises, have already
been studied in the available literature, e.g., [8] in-
vestigated the approaches for the ARE solving as well
as the resource requirements for such online solving.
Recently, [6] proposed the usage of differential alge-
bra to reduce the resource requirements for the real-
time implementation of SDRE controllers. In fact, the
intensive resource requirements for the online ARE
solving is the major drawback of SDRE. Nonethe-
less, the SDRE method has three major advantages:
(a) simplicity, (b) numerical tractability and (c) flexi-
bility for the designer, being comparable to the flexi-
bility in the LQR [7].

To the best of our knowledge, since SDC ma-
trices are nonunique, there is no work focused on
the optimal arrangement of the SDC for the satel-
lite attitude control stabilization. Such optimal ar-
rangement has the potential to increase performance
and enhance robustness. Therefore, the first con-
tribution of the present paper is the explicit mod-
eling of the state-space model for a three-axes sta-
bilized attitude-maneuvering satellite using quater-
nions, Gibbs vector and modified Rodrigues param-

eters (MRPs). The second, and most important, is
the evaluation of which of these models is the opti-
mal factorization of the SDRE technique in an AOCS
with nonlinear dynamics for a givenMonte Carlo per-
turbation model based on a set of parameters, initial
conditions and references for the controller.

The models are evaluated for an attitude maneuver
called the upside-down in the launch and early orbit
phase (LEOP). In LEOP, the AOCS must dump the
residual angular velocity and point the satellite so-
lar panels towards the Sun. The results shown that
MRPs provides better performance in the set of sce-
narios considered.

This paper is organized as follows. In next section,
the problem is described. Afterwards, the satellite is
modelled and the basic equations are shared. In the
sequel, the state-space models are presented. Finally,
the controllability of such models is explored as well
as parametrization are evaluated. At the end, conclu-
sions are presented.

2 Problem Description
The SDRE technique entails factorization (that is,
parametrization) of the nonlinear dynamics into the
state vector and the product of a matrix-valued func-
tion that depends on the state itself. In doing so,
SDRE brings the nonlinear system to a (nonunique)
linear structure having SDC matrices given by Equa-
tion 1.

~̇x = A(~x)~x+B(~x)~u

~y = C~x (1)

where ~x is the state vector and ~u is the control vec-
tor. The SDC form has the same structure as a lin-
ear system, but with the system matrices, A and B,
being functions of the state vector. The nonunique-
ness of the SDCmatrices creates extra degrees of free-
dom, which can be used to enhance controller perfor-
mance, however, it poses challenges since not all SDC
matrices fulfill the SDRE requirements, e.g., the pair
(A,B) must be pointwise stabilizable.

The system model in Equation 1 is subject of the
cost functional described in Equation 2.

J( ~x0, ~u) =
1

2

∫ ∞

0
(~xTQ(~x)~x+ ~uTR(~x)~u)dt (2)

where Q(~x) ∈ Rn×n and R(~x) ∈ Rm×m are the
state-dependent weighting matrices. In order to en-
sure local stability, Q(~x) is required to be positive
semi-definite for all ~x andR(~x) is required to be pos-
itive for all ~x [8].

The SDRE controller linearizes the plant about
the current operating point and creates constant state
space matrices so that the LQR method can be used.
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This process is repeated in all samplings steps, re-
sulting in a pointwise linear model from a non-linear
model, so that an ARE is solved and a control law is
computed also in each step.

Therefore, according to LQR theory and Equa-
tion 1 and Equation 2, the state-feedback control law
in each sampling step is ~u = −K(~x)~x and the state-
dependent gainK(~x) is obtained by Eq. 3 [3].

K(~x) = R−1(~x)BT (~x)P (~x) (3)

where P (~x) is the unique, symmetric, positive-
definite solution of the algebraic state-dependent Ric-
cati equation (SDRE) given by Equation 4 [3].

P (~x)A(~x) +AT (~x)P (~x)

−P (~x)B(~x)R−1(~x)BT (~x)P (~x)

+Q(~x) = 0

(4)

Considering that Equation 4 is solved in each sam-
pling step, it is reduced to an ARE.

Finally, among other conditions [3], for the ap-
plication of the SDRE technique in a given system
model, the following one is the cornerstone for the
current paper: pair(A,B) is pointwise stabilizable (a
sufficient test for stabilizability is to check the rank of
the controllability matrix).

3 Satellite Physical Modeling
The satellite model is designed based on the
Amazonia-1, a typical mission developed by INPE, in
which the AOCS must stabilize the satellite in three-
axis so that the optical payload can point to the desired
target. Therefore, the satellite model is defined to
be a three-axis stabilized, attitude-maneuvering satel-
lite, a zero-bias-momentum system. A major control
requirement is to remove the unwanted accumulated
angular momentum, which would drive the satellite
pointing away from the desired target. Thus, an ac-
tive control system is needed to dump the residual
body angular velocity that is created by perturbation
torques from the space environment and launch vehi-
cles [10, 11].

The satellite model available, which is based on
the Amazonia-1, uses reaction wheels (momentum
exchange actuators) to provide fine attitude control
and to maneuver the satellite [11].

The simulator models two types of sensors to com-
pute and propagate the attitude: (1) a set of Sun sen-
sors, and (2) a gyro, which provide all the necessary
information for the LEOP attitude maneuver to ac-
quire the Sun pointing. The sensor models are ideal
and simplified. In other words, they can read the
physical quantities at any moment with infinite accu-
racy.

The kinematics and rotational dynamics are briefly
shared in the next subsections.

3.1 Kinematics
The satellite attitude is represented by means of
quaternions in the model. Hence, the dynamic equa-
tion of the quaternionQ that rotates the ECI reference
frame into alignment with the satellite body reference
frame is Equation 5 [10].

Q̇ =
1

2
Ω(~ω)Q =

1

2
Ξ(Q)~ω

Ω(~ω) :=

 0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0



Ξ(Q) :=

 q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3

 , (5)

where ~ω = [ω1 ω2 ω3]
T is the angular velocity mea-

sured in the satellite body reference frame.
Equation 5 can be rearranged in Equation 6, using

the vector g (Gibbs vector or Rodrigues parameter) as
Q = [gT |q4]T .

Q̇ = −1

2

[
ω×

ωT

][q1
q2
q3

]
+

1

2
q4

[
I3×3

0

]
ω (6)

Once more Equation 6 can be written as in Equa-
tion 7, using the vector p = g

1+q4
(Modified Ro-

drigues Parameters).

ṗ =
1

2
[
1

2
(1− pT p)I3×3 + p× + ppT I3×3]ω (7)

3.2 Rotational Dynamics
The model of the rotational dynamics of the satellite
is based on the Euler-Newton formulation of the ro-
tational motion and in the definition that the satellite
has a set of 3 reaction wheels, each one aligned with
its principal axes of inertia. One can define the iner-
tia moment of the satellite coupled with the 3 reaction
wheels (Ib) using the Equation 8.

Ib := I −
3∑

n=1

In,sana
T
n (8)

where I is the inertia moment of the satellite, In,s
is the inertia moment of the reaction wheels in their
symmetry axis an.

Assuming that there is no net external torque and
using Equation 8, the rotational dynamics of the satel-
lite is modeled by Equation 9.

~̇ωb = I−1
b ~gcm − I−1

b ω×Ib~ω

−I−1
b ω×

3∑
n=1

hw,n ~an − I−1
b

3∑
n=1

gn ~an
(9)
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where, ω is the angular velocity, gn is the torque gen-
erated by the n reaction wheel and hw,n is the angular
momentum of the n reaction wheel about its center of
mass.

4 Nonlinear Control Based on

State-Dependent Riccati Equation

(SDRE)
In such zero-bias-momentum system, there are two
dynamics states that must be controlled: (1) the atti-
tude (perhaps described by unit quaternions Q) and
(2) its stability (derivative of Q, in other words, the
angular velocity, ω, of the satellite). Considering the
satellite model, the following high-level requirements
are derived: (1) is refined in "the attitude must be sta-
bilized and must follow the sun according to a given
sun vector in the satellite" and (2) is refined in "the an-
gular velocity read by the gyroscope must be as close

as possible of 0". These are typical requirements of
the LEOP, in most of missions the most critical phase,
in which the demand for the reaction wheels is the
highest one.

The state and the control vectors, for the control
loop, can be defined by Equation 10.[

~x1
~x2

]
=

[
Q
~ω

]
[ ~u1] =

[∑3
n=1 gn ~an

]
(10)

The following subsections presents the state-space
models.

4.1 Quaternions
Taking into account the control vector de-
fined in Equation 10, the state space model
can be defined using Equation 5 and Equa-
tion 9 by the equations 11 and 12.

[
ẋ1
ẋ2

]
=

[
1
2Ω 0

0 −I−1
b ω×Ib + I−1

b (
∑3

n=1 hw,nan)
×

] [
x1
x2

]
+

[
0

−I−1
b

]
[u1]

[y] = I

[
x1
x2

]
(11)

[
ẋ1
ẋ2

]
=

[
0 1

2Ξ

0 −I−1
b ω×Ib + I−1

b (
∑3

n=1 hw,nan)
×

] [
x1
x2

]
+

[
0

−I−1
b

]
[u1]

[y] = I

[
x1
x2

]
(12)

Nonetheless, such state-space models, in Equa-
tion 11 and Equation 12, do not fulfill the SDRE re-
quirements, in particular, the pair(A,B) is not point-
wise stabilizable. Therefore, it is impossible to use
such models with SDRE technique.

4.2 Gibbs Vector
An option for the definition of the state-space model
is to use Equation 6, which leads to Equation 13.

[
ẋ1
ẋ2

]
=

−1
2

[
ω×

ωT

]
0

[
1
2q4I3×3

0

]
0 0 −I−1

b ω×Ib + I−1
b (

∑3
n=1 hw,nan)

×

[
x1
x2

]
+

[
0

−I−1
b

]
[u1]

[y] = I

[
x1
x2

]
(13)
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Equation 13 has been shown to satisfy SDRE con-
ditions, moreover, in it onlyA is a function of the state
vector, consequently, A(~x).

4.3 Modified Rodrigues Parameters

(MRPs)
Another alternative for the definition of the state-
spacemodel is to use Equation 7, which leads to Equa-
tion 14.

[
x3
x2

]
=

[
p
~ω

]
[
ẋ3
ẋ2

]
=

[
−1

2ω
× + 1

2(ω
T p)I3×3

1
4(1− pT p)I3×3

0 −I−1
b ω×Ib + I−1

b (
∑3

n=1 hw,nan)
×

] [
x3
x2

]
+

[
0

−I−1
b

]
[u1]

[y] = I

[
x3
x2

]
(14)

Equation 14 has been shown to satisfy SDRE con-
ditions.

5 Controllability Comparison
According to [3], an effective approach for selecting
the optimal state-space model for the SDRE is to at-
tempt to maximize the pointwise stabilizability of the
possible models, since pointwise control effort can
be directly linked with controllability. Controllability
criterion requires the value of determinant of the con-
trollability matrix to be different from zero, therefore,
a graphical comparison of the absolute value of the
determinant of controllability matrix can be used to
reveal when pointwise controllability is maximized.
For multi-input systems, as the one studied in the
present paper, the controllability matrix is nonsquare,
then the controllability matrix multiplied by its trans-
pose is used to evaluate the determinant.

In order to compare the performance of the con-
trollers, a simulation test was conducted with the
full Monte Carlo perturbation model described as fol-
lows: (1) the initial Euler angle errors of the nonlinear
spacecraft system are randomly selected using inde-
pendent normal distributions (µ = 0, σ = 1) multi-
plied by 90◦; and (2) the initial angular velocity errors
are randomly selected using independent normal dis-
tributions (µ = 0, σ = 1) multiplied by 0.11 rad/s.

Numerical simulations were performed to deter-
mine which of the equations (13 or 14) maximizes
the controllability of the system for the given satel-
lite characteristics, initial conditions and references in
Table 1. In order to compare the controllability, a full
Monte Carlo perturbation model was conducted with
two independent systems each one defined by equa-
tions 13 and 14 applying a SDRE controller (Q = 1
and R = 1). The Monte Carlo perturbation model
is described as follows: (1) the initial Euler angle er-
rors of the nonlinear spacecraft system are randomly
selected using independent normal distributions (µ =

Table 1: Satellite characteristics and references.

Name Value
Satellite Characteristics

inertia tensor (kg.m2) diag(310.0,
360.0, 530.7)

Actuators Characteristics - Reaction Wheels

inertia (kg.m2) 0.01911
maximum torque (N.m) 0.075

maximum angular velocity (RPM ) 6000
References for the controller

solar vector body (XYZ) [1 0 0]
T

angular velocity (r/s, XYZ) [0 0 0]
T

0, σ = 1)multiplied by 90◦; and (2) the initial angular
velocity errors are randomly selected using indepen-
dent normal distributions (µ = 0, σ = 1) multiplied
by 0.01 rad/s.

The Monte Carlo model ran 20 times and in each
time one simulation of the two systems was executed.
Such executions used simulation time 700 seconds,
fixed step 0.01 seconds and the data presented in Ta-
ble 1.

Fig. 1(a) shows the controllability of the state-
space model defined by Equation 13 (using quater-
nions and the Gibbs vector), whereas Fig. 1(b) shows
the controllability of the state-space model defined by
Equation 14 (MRPs).

Based on Fig. 1, it is possible to conclude that
MPRs maximizes the controllability through the sim-
ulations. Once MRPs provides better controllabil-
ity the next step is to further parametrize such state-
model using different SDCs, which is explored in the
subsection below.
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5.1 Parametrization of MRPs

For multivariable state-space models, as the one stud-
ied in the present paper, given two distinct SDCmatri-
ces A1(x) and A2(x) then there is an infinite number
of SDC parametrizations. Such infinite parametriza-
tions can be constructed using Equation 15 [3].

A(x, α) = αA1(x) + (1− α)A2(x) (15)

Focusing on MRPs, which provides better con-
trollability as evaluated earlier, and taking into
account the rule of thumb that the selection of the
state-dependent factorization should place a nonzero
entry in the {i, j}−element of the A(x, α) matrix if

the ith state derivative depends on the jth state [3],
the state-space model in Equation 16 is defined (it is
based on algebraic manipulations of Equation 7).

[
ẋ3
ẋ2

]
=

[
0 1

4(1− pT p)I3×3 +
1
2p

× + 1
2(pp

T )I3×3

0 −I−1
b ω×Ib + I−1

b (
∑3

n=1 hw,nan)
×

] [
x3
x2

]
+

[
0

−I−1
b

]
[u1]

[y] = I

[
x3
x2

]
(16)

Fig. 2 shows the controllability of the state-space
model defined by Equation 16 based on MRPs apply-
ing a SDRE controller (Q = 1 and R = 1). Con-
trollability is better than the one shown in Fig. 1(a) so
MRPs has still better controllability than quaternions
with Gibbs vector (Equation 13). Moreover, this sec-
ond option based on MRPs (Equation 16) has bet-

ter controllability than the first one defined by Equa-
tion 14.

Equation 14 and Equation 16 provide two
distinct parametrizations for the same system,
therefore, it is possible to use Equation 15 to eval-
uate if the combination of these two equations
provides even better controllability. Equation 17
shown the parametrizations to be used in A.

A1x3
(x3) =

[
−1

2ω
× + 1

2(ω
T p)I3×3

1
4(1− pT p)I3×3

]
A2x3

(x3) =
[
0 1

4(1− pT p)I3×3 +
1
2p

× + 1
2(pp

T )I3×3

]
(17)

Applying parametrizations defined in Equation 17
into Equation 15, a simulation test was conducted
with a full Monte Carlo perturbation model, in which
α was randomly selected in the interval 0 ≤ α ≤ 1.
The goal was to evaluate the impact of α based on
a given satellite characteristics, initial conditions and
references in Table 1.

The Monte Carlo model ran 90 times and in each
time one simulation using a differentαwas performed
for the same data in Table 1. Fig. 3 shown the re-
sulting controllability of each run. It is possible to
conclude that parametrization defined by Equation 16
is the optimal since the controllability is the highest
through the entire simulation when α = 0 (high-
lighted in the legend, when only A2 in Equation 17
is active).

Therefore, the state-space model defined by Equa-
tion 16, which results for the controllability is shown
in Fig. 2, is the optimal factorization for the SDRE
technique applied to the AOCS as described in the
current work. Such conclusion is based on the char-

acteristics of the satellite, the initial conditions, the
references for the controller in Table 1 and the Monte
Carlo perturbation model so it neither valid for the
general case nor even for a different initial condi-
tion out of the range of the Monte Carlo perturba-
tion model. Moreover, as Equation 16 is defined us-
ing MRPs, which has singularity for 360◦, it is nei-
ther unique nor global, whereas the Equation 13 based
on quaternions with Gibbs vector is global but not
unique.

6 Simulation Comparison
Numerical simulations were performed to confirm
that the state-space model described by Equation 16
is optimal for the given satellite characteristics, initial
conditions and references in Table 1. In order to com-
pare the performance, another full Monte Carlo per-
turbation model was conducted with three indepen-
dent systems each one defined by equations 13, 14 and
16 applying a SDRE controller (Q = 1 and R = 1).
The Monte Carlo perturbation model is described as
follows: (1) the initial Euler angle errors of the non-
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(a) Controllability of state-space model defined using quaternions

with Gibbs vector (Equation 13).

(b) Controllability of state-space model defined using MRPs (Equa-

tion 14).

Figure 1: Comparison between state-space models.

Figure 2: Controllability of state-space model defined
using MRPs (Equation 16).

Figure 3: Controllability of state-space model defined
using MRPs (Equations 14 and 16 parametrized).

linear spacecraft system are randomly selected using
independent normal distributions (µ = 0, σ = 1)
multiplied by 90◦; and (2) the initial angular veloc-
ity errors are randomly selected using independent
normal distributions (µ = 0, σ = 1) multiplied by
0.01 rad/s.

The Monte Carlo model ran 20 times and in
each time one simulation of the three systems was
executed. Such executions used simulation time
700 seconds, fixed step 0.01 seconds and the data pre-
sented in Table 1.

Fig. 4 shows that the scalar part of quaternion (q4)
converges to 1 (q4 → 1) as well as that the vectorial
part of the quaternion converges to 0 ([q1 q2 q3]

T →
[0 0 0]T ) in the sense that attitude of the satellite
reached the target attitude. It is clear that the model
applying quaternion with Gibbs (Fig. 4(a)) exhibits
the worst performance, nonetheless, the two models
applying MRPs have similar results (Fig. 4(b) and
Fig. 4(c)).

Focusing on the effort to control the system and
taking into account that reaction wheels angular ve-
locity must not converge to a determined velocity, the
norm of the set of reaction wheels angular momen-
tum is shared in Fig. 5. Since angular momentum
(Kgm2/s) is a conservative quantity the changes in
such norm indicate how much torque was applied.

Once again it is clear that the model applying
quaternion with Gibbs (Fig. 5(a)) exhibits the worst
performance since it has the highest peak in the
norm (over 18Kgm2/s). Although the two models
applying MRPs have similar results (Fig. 5(b) and
Fig. 5(c)), it is possible to note that second peak is
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(a) Quaternion error using quaternions with Gibbs

vector (Equation 13).

(b) Quaternion error using MRPs (Equation 14).

(c) Quaternion error using MRPs (Equation 16).

Figure 4: Comparison between quaternion errors.

(a) Norm of reaction wheels angular momentum using quaternions

with Gibbs vector (Equation 13).

(b) Norm of reaction wheels angular momentum using MRPs (Equa-

tion 14).

(c) Norm of reaction wheels angular momentum using MRPs (Equa-

tion 16).

Figure 5: Comparison between norms of reaction
wheels angular momentum.
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lower in the Fig. 5(c), indicating that it is saving
torque, and, consequently, energy.

Such simulations results are neither valid for the
general case nor for initial conditions out of the range
of theMonte Carlo perturbation models due to the un-
derlining nonlinear dynamics.

7 Conclusion
To the best of our knowledge, this is an original con-
tribution for the optimal arrangement of the SDC for
a three-axis stabilized satellite model. The results
shown that different SDCs can produce extremely dif-
ferent results ranging from non-applicability of the
SDRE technique to differences in the controllability
and, consequently, in the performance and robustness
of the system. Unfortunately, the optimal factoriza-
tion found is neither valid for the general case nor
even for different initial conditions out of the range of
the Monte Carlo perturbation model due to the under-
lining nonlinear dynamics. However, the procedure
applied can provide guidance for engineers.

A secondary contribution is the kinematical part
of the state-space models in equations 13, 14 and 16,
since they can be used in any system that exhibit rota-
tional motion, e.g., airplanes. The simulations were
performed using a portable simulator developed at
INPE [9, 12], such simulator has capabilities for the
unloading of the angular momentum of the reaction
wheels (based on a magnetometer and a set of mag-
netorques) not explored in the current paper due to the
lack of space. Furthermore, this simulator is heavily
based on Hipparchus [13].

Regarding the discussion whether the SDC factor-
ization of SDRE technique in AOCS can yield gains
in the missions developed by INPE, since perfor-
mance in the LEOP is critical to the success of a mis-
sion and the simulation results show that the perfor-
mance and robustness of SDRE controllers can be en-
hanced by optimal factorizations (in particular, with
kinematics based on MRPs); SDRE can yield gains.
Nonetheless, its implementation requires more com-
puting resources and tend to exhibit difficulties for
verification. Therefore, it is too early to draw a defini-
tive conclusion.

In conclusion, the optimal factorization of SDC in
the SDRE technique is of utmost importance for per-
formance and robustness of nonlinear systems con-
trolled by such technique.
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