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1 Introduction

The past few years the world experienced an eco-
nomic meltdown in part due to inappropriate manage-
ment of financial securities. A derivative financial se-
curity may be defined as a security whose value de-
pends on the value of other more basic underlying
variables which may be priced or traded securities,
prices of commodities or stock indices [5].

The Black-Scholes equation is a partial differential
equation that governs the value of financial deriva-
tives. Determining the value of derivatives had been
a problem in finance for almost 70 years since 1990.
In the early 70s, Black and Scholes made a pioneer-
ing contribution to finance by developing a Black-
Scholes equation under very restrictive assumptions
and the option valuation formula. Scholes obtained
a Nobel Prize for economics in 1997 for his contri-
bution (Black had passed on in 1995 and could not
receive the prize personally) [5].The widely used
one-dimensional model (one state variable plus time)
is described by the equation

1
uy + 5A%ﬂum + Bzuy, —Cu=0 (1)
with constant coefficients A, B and C. [2]

Lie group theory is applied in the mathematical
model of finance. In their work ([2]), Ibragimov and
Gazizov determined the complete symmetry analysis
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of the one-dimensional Black-Scholes equation and
constructed invariant solutions for some examples. In
the present project we determine the same using Euler
formulas.

The one-dimensional Black-Scholes equation (1)
is transformed using the following change of vari-
ables.
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Therefore
TUp = Uy
) ©6)

T Upy = Upyr — Up

where 7 is given by (3). We substitute for (8) in equa-
tion (1) and define

2
p-p-*L
2

then the Black-Scholes one dimensional equation
transforms to

1
ug + §A2uw + Du, — Cu = 0. (7
Therefore
TUE = Uy
) ®)

T Upy = Upyr — Up

where 7 is given by (3). We substitute for (8) in equa-
tion (1) and define

A2

D=B-"—
27

then the Black-Scholes one dimensional equation
transforms to

1
g + §A2uw + Du, — Cu = 0. 9)
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2 Solution of determining equation

The infinitesimal generator for point symmetry admit-
ted by equation (10) is of the form

0 0 0
X =&\t 2(t t,r)— (10
Et )5 + ()5 +tr) 5 (10)
Its first and second prolongations are given by
0 0 0
x@ = x 4+ @ M =2 @2 11
TG T g T g~ (D
where X is defined by equation (10).
The determining equation is given by
A+ S 4Dy~ Cy=0 (12)
when 5
Upp = (— A2)[ut + Du, — Cu] (13)
where we define the following from ([1],[3])
n=futg
o = ge + feu+ [f — € ue — €2,
) = go+ frut [f = Eur — &uy (14)

777(“3‘) = Ggrr + frTu + [2f7’ - &%«]Ur - gk"ut
+ [f = 267 s — 26 usr

The substitutions of 17,51), ﬁ ) and Nrr

mining equation yields that

U in the deter-

gt ot 1f = €l = Gy + (542 (g + v

+ [zf’f - g?’r]u"‘ - gﬁrut + [f - 257%}
(gl + D — C) — 261} + (D)lgr + fr

+[f = Euy — '] — Cfu—Cg =0

5)

We set the coefficients of w,, us-, u; and those free of
these variables to zero. We thus have the following
defining equations

ur o & =0, (16)
up : —& 282 =0 a7

1

u, : —& 4 A%f. + D¢ — §A2§3r =0, (18)
1

Dt gt 5 A% + Dy~ Cg =0, (19)

u ft + %AZfrr + Dfr,« — 2053 =0 (20)
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From defining equation (17) we have that

& =0 2y
Thus

E=ar+b (22)

which can be expressed using Euler formula with in-
finitesimal w as

7 7

€ = a sin(“F) + bo cos(“<-)

where ¢ = sin(g).
{2

—w

(23)

We differentiate equation (23) with respect to r and ¢
and obtain the following equations

§ = a cos(0) —bo sin(<1), (24

&€ =asin() T bgcos(Dh), (@29
1 1 1 2

€ a sin(%F) —I—.l')qﬁ cos(“") 26)

—w

and from defining equation (17) we have ¢} = 2¢2
which implies that
£l = 2at cos(w—,r) — 2btg sin(w—,r) +C. (27
i i
We substitute for equations (24), (25) and (26) in the

defining equation (18) to get the expression for f,
given by

i (wr){ wa a
sin(—){ — — —
7 21 A2iw

Integrating equation (28) with respect to r gives the
expression for f

bp  bp  Dia
f=sinCO{ =5~ s a) 29
wr.(a a Dibgp 29)
+ COS(T){§ + o A% } + k(t)

We use the equations (28) and (29) to get the expres-
sions for f, and f; given by

. T w?bp  bp  Daw
2 ] Dbwo
+cos(—r){w—a+ﬂ+ }
) 2 A? A2
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and
wr bop b Dia
ft - Sln(i){ ? A2w2 AZW} (31)
wr. (a a Diag ,
FeosCEN G+ g~ T ) RO

We substitute for the equations (24), (28), (30) and
(31) in the defining equation (20) and solve the equa-
tion

wr bo b Dia
SIH(T){ 2 A2,2 A2y + 2Cb¢}
wr., (a a Dibgp
.wr bA%w2 ¢ i)qb Daw
‘HMTH_ 4 _?+2¢}
wr, (aA?w? @  Dbwe
COS(‘Ef){ 1 Tty }‘F
cos(ﬂ){ _ Dbwo _ Dbo _ Dga}
7 21 AZjw A?
. owr Daw Da D2b¢
$M7ﬁ_2i_ﬁm 1@}_0

(32)

We collect all the coefficients of sine function together
and equate them to zero. Similarly with the cosine

function. For the coefficients of sine function we
have:
_bp  b¢  Dia  bA*¢ b
2 A%2w? A2w 4 2
Daw Daw Da D?bg
_ _ _ 92 —
5 "o T A a2 T2Ce=0
(33)

which simplifies to a second-order ordinary linear dif-
ferential equation

bA*w* D%

b+ bA%w? + et 20 A4%%b =0 (34)

Solving for equation (34) we proceed as follows. Let

A2 2
b= 2w , and
- (35)
]{?1 - _ﬁ — 20
We also set

a; =bB% — k, then
ay = bp?, (36)
a1 = bp?
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Equation (34) transforms to
a1+ 201 + a1 5% = 0. (37)

To find the solution of equation (37) we proceed as
follows. We set

a1 = cz (38)

where ¢ = ¢(t), z = z(t). Then
of = dz+cd (39)
of = d"z+2d2 +c (40)

We substitute for equations (38), (39) and (40) in
equation (37) and after rearranging we solve the equa-
tion

e+ (2c+2 )24 (" +2d + B2c)2 =0 (41)

The choice for c is such that

2¢c+2c =0, 42)
whence
c=e". (43)
The equation (41) simplifies to
(B2 -1)z2=0 (44)
The solution for (37) is now written
inw wt
oy = e_t<Cl s1anosw )
. (45)
4 Cyet sm_ wt

so that when 8 = +1 or w — 0 the solution for z is
linear, and we define

71

We substitute for b in equation (36) to obtain that

(46)

w =

b et{(clsind)cosd)t)
- it

_tsin@t} :J D? N 4C

W p2Az - B

47)
+ Che

Similarly for the coefficients of the cosine function we
have

a N i¢  Dib¢ N aA’w’  a
2 A2w? A%w 4 2

Dbw¢ Dbwp Dby D2 B
Y 5 A Az T20C0=0

(48)
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which simplifies to a second-order ordinary linear dif-
ferential equation

4, 4 2
QA4°" _ C‘A% — 20 A%,%C = 0 (49)

i+ aA%w? +

Solving for equation(49) we find the solution for a to
be

—t

a e {<C3sinwcoswt>+c4sinwt}

= ﬁ — —
50
L D4 o
pg2A?2
and we also have that
Eit)=0 = k(t)=Cs (51)

We differentiate eqqations (47) and (50) to obtain ex-
pressions for @ and b

et sin w cos wt
C3————

-

a:

w
ot —t
+ C4smw ) + eﬁ—z ( — Cysinwsinwt + Cy coswt)
(52)
Similarly
- _%(CIW 4o, et
w w
ot (53)
4 W ( — Csinwsinwt + Cy COS@t)

We substitute for equations (35),(47),(50),(51),(52)
and (53) in equation (29) and get the expression for
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f given as fe Sin(ﬂ"){ ~ Cige™ Siniﬂ cos wt
i 232w
., wr Croe~tsin @ cos wt Cope~ ! sin wit D?¢
f= Sm(T){ N 2826 DY 233 A2
Copetsinwt  D?¢p  4C¢ Cide tsinwcoswt 4C¢  Crpe tsinw coswt
T 255 — 5t 25w
n Corpetsinwt  Crpe tsinw coswt n Corpe tsinwt  Crpe tsinw cos ot
2330 233 23300 233
Cypetcoswt  CzDiwe ! sinw cos ot Cope tcoswt  CsDiwe ! sinw coswt
o 233 - 233 o 233 a 233
CyDiwet sin wt D3iw CyDiwe tsinwt  D3iw
a 233 2ﬁ3A2} B 233 a 253/12}
Cse tsinwcoswt Cyetsinwt Cse tsinwcoswt Chetsinwt
+ COS( i ){ 2320 23200 * COS( i ){ 2320 2/32%
i D? 4Cp Czetsinwcoswt Chetsinwt n D? _ 4C¢ _ Cse tsinw cos wt
263A2 B 253@ 2535) 253A2 B 253@
Cze~ ! sin W sin wt Cye tsinwt Cye !sinwsinwt
B 233 28w 2,33
Cie tcoswt CrpDiwe ! sin@ coswt Cuetcoswt  Cr¢pDiwe ! sinw coswt
- 233 - 233 o 233 - 233
CopDiwe tsinwt  D3¢piw o _ CypDiwe 'sinwt  D*¢iw o
B 233 B 253A2} > 233 2,33A2} >
54) 67

2.1 Infinitesimals

The linearly independent solutions of the defining
equations (15) lead to the infinitesimals

= () {2

2
)

()2
(01 sin @ cos wt) + C5 sin wt}

2tpD?
,82A2

{ (Cg sin @ cos wt)
+ Cysin wt} +

(35

+ ——5 -l-C@}

—t
wr e
{2 = sin (—) {27 (Cg sin w cos wt
i B2wiot

+ Cy sin@t) - MZBD;AQ}

+ cos (wr>{ ;2%
D?¢

m}

(56)
(Cl sin  cos wt

— (9 sin wt) —
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2.2 The symmetries

According to (15), the infinitesimals: (57), (55)
and (56), lead to the generators

2te tp —y (cur)) 0
SN W COS Wt S1N | — -
B2@ i ot

wr 0
sin  cos wt cos ( ) )
or

X = (-
e tig
+ (ﬁ%
(- st smaemaren ()
— —— SInwCcosSwtsS1n | —
232w i

e—t

2833w
—t
233
Digwe™t

(58)

L . Jwr
+ sinw cos wt sin (| —
7
wr
+ ——sinwcoswtsin [ —
7

sin w cos wt

2p°

COS

g
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w 1 ot

— (;Zf sin wt cos (Lur)) 887“

+{ e_tqb ot (wr)
— —Cgsinwtsin { —
232w i

X :( 21;2 gbsmwtsm <wr>>g

—t
233
e to
257
_ Digwe 'sinwt cos (g)}ug
i ou
(

+ sin wt sin (—

wr)
1
. Jwr
cos Wt sin (—)
7
233
2te~t
X ::(
3 25
t:

+ (;2@2 sin @ cos wt cos (wr)) ({i

—t

. _ wr\\ 0
sin w cos wt cos —)) —
) ot

L _ wr
+ {2572@ Sin w cos wt cos (7)
et _ wr
— %73@ sin w cos wt cos (7)
L wr
— 2—63 sin w sin wt cos (7)
Diwe tsinwcoswt . [fwr 0
- ()l

Xy = (27;2_;¢ sin Wt cos (ﬂ)>ﬁ

+ <52 sin wt sin (%))

{2ﬁ2 sin Wt cos ( >

e—t

— 253 smwtcos( ; )

wr
cos wt cos
)

263
4.
B Dzwzﬁgsmwt sin (%) }u%
5 = S (con () —on (%)) 5
o) i ()2
~ s (sn (5F) = oeon (45 )z
X = u%
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(61)

(62)

(63)
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X7 =~ (64)

Xg = 450 (gf) sin (%) — oS (UJZT))U;U (65)

The defining equation (19) gives an infinite symmetry

0
Xoo = g(t,r)a—u (66)

2.3 Invariant solutions through the symme-
try X 3

The invariants are determined from solving the equa-
tion

2te~t
XI:(——
3 e
et ol

+ <ﬁ2@ smwcoswtcos( )) o

et . _ wr

+ {2572@' SIn w cos wt cos <T>
et
233w
et L. wr
— —— sinw sin wt cos (7)

2533

Diwe

oI

sin @ cos wt cos ( > )
ot

(67)

L _ wr
sin w cos wt cos | —
)

—t
=0

sin  cos wt sin (ﬂ)} ol
233 Ou

The characteristic equation of (67) is given by

dt

2te—* sin W cos Wt cos (%)
B2w
dr

e~ tisin @ sin @t cos %)
B2ow
du 1

282
Ue " sin @ cos Wt cos (%) (68)
1
— 233
sin @ cos wt cos (%)
1
_ 253
sin ¢ sin wt cos (%)
1
— 26°}

Diw sin @ cos @t sin (%)
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From equation (68) we have that
dt
2te—t sin @ cos Wt cos (%)
2w
dr
e~ tisin @ sin @t cos (%)

B2ow

simplifies to

dt
— = 2£dr
t 1

whose solution is

2wr

t=Ce i

The first invariant is given by

2wr

e i
t
From equation (68) we also have that
dr

e~ tisin @ sin wt cos (W )

B2ow

du
—1

ue

Y =

262w
sin  cos wt cos (%)
233w
sin & cos wt cos (%)
1
_ ) 253

sin ¢ sin wt cos (%

233

Diw sin @ cos wt sin (%)

Equation (73) simplifies to
f—1-w— Diwwtan(¥) w du

(

We integrate equation (74) and obtain

20 i U

Bwr  wr  owr

2B8i  2Bi 2B
DéaowIn |cos(%F)|

% +C=Inu

We approximate

Bwr wr wwr
2680 2081 2[i

_ Dowln[cos(“F)|  wr

23 T
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)(&dr =

(69)

(70)

(71

(72)

(73)

(74)

(75)

(76)
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Integrating equation (73) we obtain

U

o =C (77)
e’
The equation (77) simplifies to
U
o = U2 (78)
e
which is our second invariant. If we define
o = h(11) (79)

where 1 is given by equation (72), then an invariant
solution is given by

u=ei (80)

h(x1)

We differentiate equation (80) with respect to ¢ and
twice with respect to 7 and get the following expres-
sions for u¢, u, and wy.

2wr e i
up = — LW () 81)
7t
W wr 20.) 3wr /
Up = —€ 7 (wl) -+ —e i h (77/)1) (82)
9 wr 2w 3wr _,
Upp = —w e h(P1) — —e &« h'(¢1)
6 A (83)
w 3wr w Swr
- e W (1) — gz h"(¢1)

We substitute for equations (81), (82) and (83) in the
original equation (9) and get the following equation

3wr

2wre i
— = M) — W h(y)
A2 Bw'r‘ 3A2 3Swr
- h (1) — el h (1)
2A2w2 Swr
- t2 € h”(wl)
DCL) wr 2Dw Bwr wr
ZEe () + e R (W) - Ce T h() =0

(84)

Equation (84) is a second order equation in h(1)1). We
rearrange it in the order of derivatives of h (1), and
apply equation (35)

3wr

2wre i

h/(wl){i
65 o

4/6 5u:z'r

_761
t2

R (1) —

4 wTr
+—53 +

TR

— BT —CeT}=0

(85)
Dkw wr
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Letting w — 0 equation (85) simplifies to

4 4
S )T ) -2
(86)
which can be simplified to
) | OB | (54 o) = 0. (87

We eliminate ¢ from equation (87) by applying the fol-
lowing change of variables. From equation (72) we let

d\ = tdy,

88
h(n) = h (®9)

then
W (1) = thy (89)

and

() = go-{tha} (90)

_dt dh
= dgr It tag

dhy
1dx

2wr

T}

For w — 0 equation (90) simplifies to

__ _at

= tQ{hA/\ — hye™

R (Y1) = t*{hyy — hy} 1)

The substitution of equations (89), (91) transforms
equation (87) to

4Bhyy + 6B~y + (B+ C)h = 0. 92)

The solution to equation (92) is given by

—38—1/982—-48(8+C)
h = Cyel i J[eV

—38+v982-48(8+C) )(}\) (93)
4B

+ 026(

Thus the invariant solution is

wr —38—1/982—48(8+C)
u= eT{Cle( ap )R

n 026( —3ﬁ+\/9ﬁfﬂ—4ﬁ(ﬁ+c) )(/\)}

(94)

However the equation (94) can be expressed as

wr —36—iv/—(982—4B(8+C))
u = eT{Cle( 18 Y

(VO BB () )

+ Csqe

}
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Figure 1: Plot of the solution in (101) .

This simplifies to

U= e%{Cle%Ae*m)‘ + 026%3)‘6"&‘}
V=982 —4B(B + C)) (96)
43

Since A < 0, we express equation (96) as

where A =

u= ewT'T{Cle%/\ sin(AM\)

_s CH)
A
+ Coet *cos(AN)}
We however advance the same reason that for equa-
tion (97) to return to the linear form as A — 0 it has
to be transformed to be

wTr AA
u=-ei{Cie1 —A cos(A)

Coe A==}

where ¢ = sin(7)
(98)

2.3.1 Solutions for equation 98

This equation (98) has some few solutions as w — 0.
We recall that

2wr

A=t [} des 99)

_ o 2er ey dy

=ei f% T

= —0062":'W Int

1.1 Solution 1
u = AeT et IUEN) (100)
_ Aege(%COe%Tr Int) Sin(A(7€%€A¥ Int))
as w — 0, the solution becomes
3

u = ZC'Ot (101)

One of the assumptions of the Black-Scholes
model is that the option value is perfectly linear. The
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e

Figure 2: Plot of the solution in (103) .

linearity of the graph illustrates an important feature
of the Black-Scholes model in that it provides an ex-
cellent approximation to the value of the option with
variable volatility as long as mathematical expectation
of the volatility is known ([4])

1.2 Solution 2

u=AeT e 1A (102)
sin(AX
= A(cos(wr) — sm(wr)e( A) —(1A )
as w — 0, the solution becomes
u= Ae(%A)M (103)

—iA
This invariant solution is consistent with one of

the solutions obtained by Ibragimov and Gazizov
in their paper ([2].)

The plot of this invariant solution is given in Figure

().
1.3 Solution 3

wr ¢1+w Sll’l(Af 1w tdwl)
—A 5 *Zf Y1
U wei e — Ay
Ao 3 $1+w o d sin( Afwﬁwtd@bl)
fry i 1
were dw —iA )
Ao o= S ST iy dyy d sin Afwlwtd%)]
= Awe'i e
dw dw —iA
r 7/11+w
wr ditw . Ope i Cos(A
= Awe i e 4f1 i Te f )]t
it —A
2wr
wr 3 [Y1tw .
= Awe i e 4f¢11 dwl%?it
it
:AWZTG.SL;T
7
(104)
But

we i = w cos(3wr) — iw sin(3wr)

3wr .
wle™ = w? cos(3wr) — iw?

sin(3wr) (105)

1
= —{w? cos(3wr) — iw?sin(3wr)}
w
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(106)

3wr

2r1 1
u= Aw= = e (107)
1 wWwr
as w — 0, the solution becomes
2A
u=— (108)
wr

The plot of this invariant solution is given in Fig-
ure (3).

2.4 Conclusion

In this paper, new symmetries were obtained for the
Black-Scholes equation, and one was used to deter-
mine group invariant solutions. Some of the symme-
tries are comparable to the ones [2].

3 APPENDIX A: Euler’s formulas
and the infinitesimal w

It is well-known that Lie’s group theoretical meth-
ods seek to reduce procedures for solving differential
equations of any challenging form to simple ones that
may also have the form

(109)

for y = y(x), with parameters ag, by and cg. It is also
that accepted Euler’s formulas are suitable for solving
such equations. They are:

aopy + boy + coy = 0,

bo
¢ a0 (Ae “T 4 Be¥), bg > dagco,
A + Bz, b = 4agco,
y= — 20y -
e 2% [Acos(Wr)]
—|—Be_%x[sin(®$)]> b2 < 4apco
(110)
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where & = /b3 — 4agco/(2a).

But there is a problem with this system: It does
not reduce to y = A + Bx when by = ¢o = 0. This is
because Euler did not solve the equation to get the for-
mulas. There has never been a need to do so, primarily
because the formulas have been very successful in ap-
plications, and they still are.

The need for an exact solution here, is driven
by the desire understand solutions for equation (9)
through symmetry methods. It is impossible through
Euler’s formulas. To get such exact formula, first let

y = Bz,
with 8 = B(x) and z = z(x), so that
y=Pz+ Pz,
and ) )
= PBz+2B%2+ BZ.
These transform (109) into

ao (Bz 1285 + ﬂé) + by (Bz + 52) T Bz = 0.

That is,

a0+ (2008 + boB) i+ (a08 + boB + coB) 2 = 0.

_ (111)
Choosing 3 to satisfy 2a¢8+bo 8 = 0 simplifies equa-
tion (111). That is,

b,
5 = 0006 2a0 )

for some constant Cpg. Equation (111) assumes the
form . .
aof + bof + co8
F - —
aof

. <b(2) - 4@000 >
4ag

But Z can be written as Zdz/dx. Therefore,

,dé’ - (b%—4aoco)
Z— = —_— ] %,

That is,

dz 4a?
or
2dz = <b(2)—4aoco> zdz.
4a3
That is,

E-ISSN: 2224-2678
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for some constant Cy;. That is,

. b — dagep \ 22
z = \/(4@% < t Cou,

dz

b2 —danc
\/( ) ioc0> 22+ 2Cn
ag

dz - bg — 4agey

VA — 2° - daj

. [ b2-4
with A%, = 2Cp1/4/—2 4(1%000. Hence,
2C0n ) b — 4aopco
Z2=——-—"" sin 7072w+002 ,
bg—4a[)C(] 4@0
_ ba—taoc

4ag

or
=dx.

That is,

dzx,

for some constant Cys. That is,

—bg 20, ) b2 — dage
y= Cpemio™ — 20 g [, [-Bzdac o)
_ b3—4aoco 4ag
40%
Letting
- B b% — 4(1060
w= 2
dag
we have ,
—bo
Y = 00062!10 * Q‘C;é sin ((I} x + 002) s
or ,
—bo ,-
y = Cpe2” 20y [bm(w&?) cos(wx) +
cos (Coz) m(wfwm)]
A reduction to the trivial case § = 0 requires that

sin(Coz) = Copzsin(w) and cos(Cpz) = Cog cos(@).
That is, C3; + C2, = 1. Hence,

o, Cogz sin(@)
y = Cpe®o 20y [E"Fcos(@z) +
Coq cos () sm(@iwz)]
or simply

)

Cos sin () cos (W)

—by
Yy = Cooe 0 “2Cy;

—bo (@
+Cope 2%0 IQC(H Cogsin(@ o) s1£(w 2),

It is very vital to indicate that if the parameters @ in
the denominator and sin (@) are absorbed into the co-
efficients Cp; and Cps, then formula (112) would re-
duce to one of Euler’s formulas. But the consequences
would be fatal, as formula (112) would not reduce to
y = A+ Bx when by = ¢g = 0, that is, when w = 0.

Unfortunately, this result cannot be found in any
university textbook.

gl

(112)
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APPENDIX B: Useful limit results

It is true that

lim {sin (%t) } = E
pn—0 M (3

This can be written in the form

nx
. {n<) B é} o
n—0 %) {2

ut
lim {sm() — Ecos ('Ut)}
pn—0 ) 1 1

Removing the ‘lim’ for greater clarity:

) s (1),

I i i

or

That is

t t

sin <) = - /L COos (M> ,

7 )

or .
214
o (/ﬂf) _ isin (&)
1 t

We then have

cos (’%) cos (“—t)

po T

Carrying out the derivative on the right hand side:

cos (“t) —u( ) sin (& )+cos (“t)
uq u‘ﬁ’l ’
Substituting (114):
Ccos (“t) _ —p? (%)Qcos (& ) + cos (” )
,LLq B Hq-&-l :
That is,

t t t
4 COS <,u) =L 242 cos (ﬂ ) + cos (/J >, (114)
i i i

which can be expressed in the form

t t ) t
/LQ Ccos (H) — pth Cos <H) = Esin (H) .
7 ) t )

(115)

Since sin ( ) = 0 for p small, it follows then that

t t
u2 cos <M) = u3t2 cos (H) .
1 {

E-ISSN: 2224-2678
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Since e ca be expressed in the form cos(ut/i) +
isin(ut/1), then

. t
p2ett = 1312 cos <,u) , (117)
7
so that
1
t\11
\/ﬁe”t/4 [u cos (L; )] Vi, (118)
or

\/ﬁe*“t/4 = [,u?’ cos (T)} ! Vi, (119)

Therefore (119) and (123) can then be written in the
form

v ) (120)
[t cos ()] Ve

with 1 = w*(w? — 1) in the case of (119) and p =
w(w? + 1) for (123). That is,

1
U= mdn) (121)
for (119), and
U= ———=—0(n) (122)

for (121).

86 Volume 20, 2021



WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2021.20.10

References:

[1] Blumen,G.W. Anco,S.C. 2002. Symmetries
and Integration methods for Differential
Equations. New York. Springer-Verlag.

[2] Gazizov, R.K and Ibragimov, N.H.1998. Lie
Symmetry Analysis of Differential Equations in
Finance. Nonlinear Dynamics 17:387 - 407. June.

[3] Ibragimov, N.H.1999. Elementary Lie Group
Analysis and Ordinary Differential Equations.
London. J. Wiley & Sons Ltd.

[4] Miller, R.M. 1993.
Economic and  Financial
Mathematica. Springer Verlag.

Option Valuation.
Modelling  with

[5] Silberberg,G.(2001).Derivative Pricing with
Symmetry
Analysis.http://www.econ.ceu.hu/download/thesis/
Thesis-Silberberg. pdf

[6] Ivan V. Kazachkov , Numerical Simulation of
the Turbulent Two-Phase Jet
Pages 107-119, Volume 2, 2020, Engineering
World

[7] Kittipong Tripetch, An Analysis of an Input
Impedance of a Regulated Cascode Cross Couple
Power Amplifier, Pages 100-106, Volume 2,
2020, Engineering World
[8] Nazli Goker, Mehtap Dursun, Elif Dogu, A
Cognitive Mapping Approach for Evaluation of
Success Indicators of IT Transformation Project,
Pages 96-99, , Volume 2, 2020, Engineering
World

E-ISSN: 2224-2678

87

Tshidiso Masebe

Sources of funding for research presented in a
scientific article or scientific article itself

Report potential sources of funding if there is
any

We thank the Reviewer for their positive
comment and careful review, which helped
improve the manuscript.

Creative Commons Attribution License 4.0
(Attribution 4.0 International , CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/dee

d.en_US

Volume 20, 2021


https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



