
Robust Tracking and Disturbance Rejection for Descriptor-Type
Neutral Time-Delay Systems

Two general requirements in controller design are stability
and performance. One of the most important performance
requirements is asymptotic tracking, where a certain output
of the system is required to track a given reference signal
asymptotically. Furthermore, in many cases, such a tracking
must be achieved despite certain disturbances affecting the
system. Moreover, since an exact model of any physical sys-
tem, in general, can not be obtained, both stability and track-
ing must be robust against perturbations in the system model.
The problem of designing a robust controller to achieve sta-
bility and asymptotic tracking despite disturbances is usually
called as the robust servomechanism problem. This problem
has extensively been studied for linear time-invariant (LTI)
finite-dimensional systems (e.g., see [1]–[11]). Besides finite-
dimensional LTI systems, finite-dimensional nonlinear [12]–
[14] and discrete-event [15] systems have also been studied.

Many systems, however, may involve time-delays. Since
the state of such systems, usually called as time-delay sys-
tems, can not be represented by a finite-dimensional vector

,

these systems are infinite-dimensional [16]. The dynamics
of these systems can, in general, be described by delay-
differential equations [17]. For such systems, when the delay-
differential equations describing the system dynamics do not
involve delayed versions of the highest derivative, the system
is said to be retarded. Otherwise, it is said to be neutral.

However, delay-differential equations alone may not be
sufficient to describe the dynamics of some time-delay sys-
tems. One may need to use delay-algebraic equations coupled
with delay-differential equations to describe the dynamics of
some time-delay systems [18]. These systems are inherently
neutral [19] and sometimes are called as descriptor-type
systems [20].

Earlier considerations of the robust servomechanism prob-
lem for time-delay systems can be found, e.g., in [21]–[23].
The necessary and sufficient conditions for the solvability
of the robust servomechanism problem for LTI time-delay
systems, has first appeared in [24]. In [24], however, only
retarded time-delay systems were considered. Neutral time-

delay systems were later considered in [25]. The consid-
eration in [25], however, was restricted to non-descriptor-
type systems. In the present work, we extend the results
of [25] to LTI descriptor-type time-delay systems. We first
formally state the strong and weak versions of the robust
servomechanism problem for descriptor-type neutral time-
delay systems. We then derive the necessary and sufficient
conditions for the solvability of both problems. The structure
of the controller, which solves these problems (when exists)
is also presented.

Throughout the paper, det(·) and rank(·) respectively
denote the determinant and the rank of the indicated matrix.
For positive integers k and l, Ik, 0k, and 0k×l respectively
denote the k × k dimensional identity matrix, the k × k
dimensional zero matrix, and the k × l dimensional zero
matrix. When the dimensions are apparent, I and 0 are used
to denote, respectively, the identity and the zero matrices of
appropriate dimensions. Rk and Rk×l respectively denote
the spaces of k dimensional real vectors and k×l dimensional
real matrices. For ξ : I → Rl, where I is an interval of
the real line, ξ̇, ξ̈, and ξ(k) respectively denote the first, the
second, and the kth derivative of ξ. Finally, ⊗ denotes the
Kronecker product.

We consider a LTI descriptor-type neutral time-delay
system with ν discrete time-delays whose dynamics are
described as

ẋ1(t) +
ν∑
i=1

F 1
i ẋ1(t− hi) =

ν∑
i=0

[
A11
i x1(t− hi)

+A12
i x2(t− hi) +B1

i u(t− hi) +G1
iw(t− hi)

]
(1)

0 =
ν∑
i=0

[
A21
i x1(t− hi) +A22

i x2(t− hi)

+B2
i u(t− hi) +G2

iw(t− hi)
]

(2)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are the state vectors for
the delay-differential and delay-algebraic parts, respectively,
at time t. Furthermore, u(t) ∈ Rnu is the control input and
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w(t) ∈ Rnw is the disturbance input at time t. Moreover,
hi > 0, i = 1, . . . , ν, are the time-delays. We use h0 := 0
for notational convenience (i.e., i = 0 in (1)–(2) corresponds
to the delay-free part of the system). All the matrices
shown in (1)–(2) are appropriately dimensioned constant
matrices. It is assumed that det

(
A22

0

)
6= 0. This assumption

guarantees existence and uniqueness of solutions to (1)–(2)
under appropriate initial conditions [16].

The system (1)–(2) is assumed to have two kinds of
outputs:

i) The output to be regulated, z(t) ∈ Rnz , which is given
as:

z(t) =
ν∑
i=0

[
C11
i x1(t− hi) + C12

i x2(t− hi)

+D1
i u(t− hi) + E1

i w(t− hi)
]

(3)

ii) The measured output, y(t) ∈ Rny , which is given as:

y(t) =
ν∑
i=0

[
C21
i x1(t− hi) + C22

i x2(t− hi)

+D2
i u(t− hi) + E2

i w(t− hi)
]

(4)

All the matrices shown in (3)–(4) are appropriately di-
mensioned constant matrices. Here, the measured output
(which, hereafter, will be called the measurement), y(t), is
available to the controller, which is to determine the control
input (which, hereafter, will be called the input), u(t). The
output to be regulated (which, hereafter, will be called the
output), z(t), which is not directly available to the controller,
on the other hand, is required to track a reference, r(t),
asymptotically. i.e., it is required that

lim
t→∞

e(t) = 0 (5)

where
e(t) := z(t)− r(t) (6)

is the tracking error (which, hereafter, will be called the
error).

The reference, r(t), is assumed to be available on-line
but not known in advance. The disturbance input (which,
hereafter, will be called the disturbance), w(t), on the other
hand, is assumed to be neither available, nor measurable, nor
known in advance. It is, however, assumed that both r(t) and
w(t) satisfy

Dr(t) = 0 and Dw(t) = 0 , (7)

where

D :=
ν∑
i=0

µ∑
j=0

ajip
jδhi

(8)

is a linear delay-differential operator of neutral-type, where µ
is the differential degree of D, aji ’s are constant coefficients,
pj := dj

dtj is the differentiation operator of order j, and δh
is the delay operator by h (i.e., δhf(t) = f(t − h), for any
(vector) function f(·)). Here, it is assumed that aµ0 6= 0.
Thus, hereafter, without loss of generality, we will assume
aµ0 = 1.

Remark 1: The time-delays of the system (1)–(4) and of
the operator D are assumed to be the same for notational
simplicity. This assumption can be made without loss of
generality, since any time-delay of the system, which is not
a time-delay of D, can be included in (8) by taking the
corresponding coefficients as zero and any time-delay of the
operator D, which is not a time-delay of the system, can be
included in (1)–(4) by taking the corresponding matrices as
zero.
Remark 2: The assumption that r(t) and w(t) satisfy the
same delay-differential equation is also made for notational
simplicity. This assumption can also be made without loss
of generality, since if, say, Drr(t) = 0 and Dww(t) = 0, for
two different linear delay-differential operators, Dr and Dw,
of neutral-type, then they satisfy (7), where D is the least
common multiple of Dr and Dw.

The formal statement of our problem then is as follows.
Problem 1: Design a controller to determine u(t), using y(t),
and r(t), such that the overall closed-loop system is globally
asymptotically stable and, for all r(t) and w(t) satisfying (7),
for all initial conditions of the system (1)–(2), and for all
non-destabilizing (for the closed-loop system) perturbations
in the matrices appearing in (1)–(4), (5) is satisfied.

A weaker version of this problem can also be stated:
Problem 2: Design a controller to determine u(t), using y(t),
and r(t), such that the overall closed-loop system is globally
asymptotically stable and, for all r(t) and w(t) satisfying (7),
for all initial conditions of the system (1)–(2), and for all
non-destabilizing (for the closed-loop system) perturbations
in the matrices appearing in (1)–(2), (5) is satisfied.

Note that the only difference between the two problems is
that, in the weaker version (Problem 2) no perturbations in
the output and the measurement matrices are allowed.

To present a solution to either problem, let us first note
that the system (1)–(4) can be compactly written as

ν∑
i=0

Fiẋ(t− hi) =
ν∑
i=0

[Aix(t− hi)

+Biu(t− hi) +Giw(t− hi)] (9)

z(t) =
ν∑
i=0

[
C1
i x(t− hi) +D1

i u(t− hi) + E1
i w(t− hi)

]
(10)

and

y(t) =
ν∑
i=0

[
C2
i x(t− hi) +D2

i u(t− hi) + E2
i w(t− hi)

]
(11)

where x(t) :=

[
x1(t)
x2(t)

]
∈ Rnx (nx := n1 + n2) is the

overall state vector at time t, and, for i = 0, . . . , ν,

Fi :=

[
F 1
i 0
0 0n2

]
, Ai :=

[
A11
i A12

i

A21
i A22

i

]
,

where F 1
0 := In1

,

Bi :=

[
B1
i

B2
i

]
, Gi :=

[
G1
i

G2
i

]
, C1

i :=
[
C11
i C12

i

]
,
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and C2
i :=

[
C21
i C22

i

]
.

Next, let us note that, the signals r(t) and w(t) satisfying
(7) can be represented as

r(t) = Crq(t) and w(t) = Cwq(t) , (12)

where Cr and Cw are arbitrary constant matrices and q(t) ∈
Rµ is the solution to the fictitious system:

ν∑
i=0

Fiq̇(t− hi) =
ν∑
i=0

Aiq(t− hi) , (13)

with arbitrary initial condition q(θ), θ ∈ [−hmax, 0], where
hmax := max{hi , i = 1, . . . , ν | aji 6= 0 , for at least one
j ∈ {0, . . . , µ}} (the actual initial condition and the actual
Cr and Cw define the actual signals r(t) and w(t); however,
since these signals are assumed to be unknown, both the
initial condition q(θ), θ ∈ [−hmax, 0], and the matrices Cr

and Cw are arbitrary), where F0 := Iµ (this follows from
the assumption that aµ0 = 1, which guarantees existence and
uniqueness of solutions to (13)),

A0 :=


0 0 · · · 0 −a00
1 0 −a10
0 1 −a20
...

. . .
...

0 1 −aµ−10

 ,

and, for i = 1, . . . , ν, Fi :=
[

0µ−1 0
0 aµi

]
, and

Ai :=


0 0 · · · 0 −a0i
0 0 · · · 0 −a1i
0 0 · · · 0 −a2i
...

...
...

...
0 0 · · · 0 −aµ−1i

 .

Finally, let us state the following assumptions:

Assumption 1: The state q(t) of the fictitious system (13)
is observable through the output[

r(t)
w(t)

]
=

[
Cr

Cw

]
q(t) . (14)

Assumption 2: rank(G) = nw, where G :=

 G0...
Gν

 and

Gi :=

 Gi
E1
i

E2
i

, i = 0, 1, . . . , ν.

Assumption 3: For any solution q(t) of (13), limt→∞ q(t) =
0, only if q(θ) = 0, ∀θ ∈ [−hmax, 0].

Assumption 4: rank(B) = nu, where B :=

 B0

...
Bν

.

Assumption 5: rank(C) = nz , where C :=[
C1

0 · · · C1
ν

]
.

Remark 3: Assumptions 1–5 are made to avoid triviality. All
these assumptions can be made without loss of generality.
Assumption 1 means that what is produced by the fictitious
system determines either the reference or the disturbance. If
any part of this system is not observable through both r(t)
and w(t), then this part can be removed. If Assumption 2
does not hold, then the linearly dependent columns of G
can be removed together with the corresponding elements of
w. Assumption 3 means that the fictitious system is totally
unstable. Since our problem is concerned with asymptotic
tracking, if the fictitious system has any stable part, then
this part can be removed. If Assumption 4 does not hold,
then the linearly dependent columns of B can be removed
together with the corresponding elements of u. Finally, if
Assumption 5 does not hold, then the linearly dependent
rows of C can be removed together with the corresponding
elements of z.

In this section we will present the necessary and sufficient
conditions for the solvability of Problems 1 and 2. We will
also present the structure of the controller when a solution
exists. For this, let us first define

F̂i := Fi ⊗ Inz
, Âi := Ai ⊗ Inz

, i = 0, . . . , ν ,

and

B̂ :=

[
1

0µ−1×1

]
⊗ Inz

.

Let us also define the following system
ν∑
i=0

[
Fi 0

0 F̂i

]
ξ̇(t− hi) =

ν∑
i=0

([
Ai 0

B̂C1
i Âi

]
ξ(t− hi)

+

[
Bi
B̂D1

i

]
v(t− hi)

)
(15)

where ξ(t) ∈ Rnx+nzµ is the state and v(t) ∈ Rnu is the
input vector at time t. Our first result gives necessary and
sufficient conditions for the solvability of Problem 1.

Theorem 1: Under Assumptions 1–5, there exists a solution
to Problem 1 if and only if the following are satisfied:

1) The system (9) is stabilizable through the input u and
is detectable through the measurement y, given in (11).

2) The system (15) is stabilizable through the input v.
3) The measurement y, given in (11), contains the output

z, given in (10), i.e., there exists T ∈ Rnz×ny , such
that z(t) = Ty(t), ∀t ≥ 0.

Proof: We first prove the only if part. If Condition 1 is not
satisfied, then there esxists no controller which can stabilize
the given system. Hence, Condition 1 is necessary.

To show the necessity of Condition 2, let us define

ẽ(t) :=


eµ−1(t)

...
e1(t)
e(t)

 (16)

3. Main Results 
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where

e1(t) :=
ν∑
i=0

[
aµi ė(t− hi) + aµ−1i e(t− hi)

]

e2(t) :=
ν∑
i=0

[
aµi ë(t− hi) + aµ−1i ė(t− hi) + aµ−2i e(t− hi)

]
...

eµ−1(t) :=
ν∑
i=0

[
aµi e

(µ−1)(t− hi) + . . .+ a1i e(t− hi)
]
.

Then, we obtain
ν∑
i=0

aµi ė(t− hi) = e1(t)−
ν∑
i=0

aµ−1i e(t− hi) , (17)

ėj(t) = ej+1(t)−
ν∑
i=0

aµ−j−1i e(t− hi) , j = 1, . . . , µ− 2 ,

(18)
and

ėµ−1(t) = De(t)−
ν∑
i=0

a0i e(t− hi) . (19)

Next, let ζ(t) :=
[
x̃(t)
ẽ(t)

]
, where x̃(t) := Dx(t). Also let

ũ(t) := Du(t). Then, using (9), (10), (6), and (7), (17)–(19)
gives
ν∑
i=0

[
Fi 0

0 F̂i

]
ζ̇(t− hi) =

ν∑
i=0

([
Ai 0

B̂C1
i Âi

]
ζ(t− hi)

+

[
Bi
B̂D1

i

]
ũ(t− hi)

)
(20)

and
e(t) =

[
0nz×(nx+(µ−1)nz) Inz

]
ζ(t) (21)

Thus, under Assumptions 1–5, in order to be able to find an
input ũ, which drives e(t) to zero (i.e., which satisfies (5))
under all initial conditions, the observable part (through e(t))
of the system (20)–(21) must be stabilizable. Since the part
x̃ of the overall state ζ is already stabilizable by Condition 1
and the part ẽ is observable because of relations (17)–(19),
this condition, however, is equivalent to the condition that
the system (20) must be stabilizable through ũ. The system
(20), however, is equivalent to system (15), which means that
Condition 2 is necessary.

To show the necessity of Condition 3, note that, for robust
tracking, error must be fed back. The error, however, can not
be obtained unless Condition 3 holds. This completes the
proof of the only if part.

We will give a constructive proof for the if part. By
Condition 3, z(t) can be obtained as z(t) = Ty(t). Thus,
since, both r(t) and y(t) are available to the controller, e(t)
can be obtained as

e(t) = Ty(t)− r(t) (22)

Then, as a part of the controller, the following system, called
the servocompensator, can be build:

ν∑
i=0

F̂iṡ(t− hi) =
ν∑
i=0

Âis(t− hi) + B̂e(t) (23)

where s(t) ∈ Rµnz is the state vector at time t. Then, the
system (9) augmented by (23) is described as
ν∑
i=0

[
Fi 0

0 F̂i

]
η̇(t− hi) =

ν∑
i=0

([
Ai 0

B̂C1
i Âi

]
η(t− hi)

+

[
Bi
B̂D1

i

]
u(t− hi) +

[
Gi
B̂E1

i

]
w(t− hi)

)
−
[

0

B̂

]
r(t) (24)

where η(t) :=

[
x(t)
s(t)

]
∈ Rnx+µnz is the overall state

vector at time t. Recall that x(t) is detectable through y(t)
by Condition 1. Furthermore, s(t) is directly measurable,
since (23) is a part of the controller. Thus, the state η(t)
is detectable to the controller, which can use both y(t) and
s(t). Furthermore, by Condition 2, the augmented system
(24) is stabilizable through the input u(t), since (24) is
equivalent to (15), apart from the exogenous signals w(t)
and r(t). Therefore, there exists a controller which globally
asymptotically stabilizes (24). Such a controller, augmented
by the servocompensator (23), then globally asymptotically
stabilizes the original system (9) (equivalently, (1)–(2)). Now,
it remains to be shown that such a controller also satisfies
(5) under all conditions stated in Problem 1. For this, let us
define η̃(t) := Dη(t). Then, using (7), (24) becomes:
ν∑
i=0

[
Fi 0

0 F̂i

]
˙̃η(t− hi) =

ν∑
i=0

([
Ai 0

B̂C1
i Âi

]
η̃(t− hi)

+

[
Bi
B̂D1

i

]
ũ(t− hi)

)
(25)

where ũ(t) := Du(t). Now, consider a feedback controller,
which uses y(t) and s(t) to produce u(t), that globally
asymptotically stabilizes (24). Let us apply the same con-
troller by using ỹ(t) := Dy(t) and s̃(t) := Ds(t) to produce
ũ(t). Then, this controller will globally asymptotically sta-
bilize (25). Since (25) does not have any exogenous inputs,
however, this would imply limt→∞ η̃(t) = 0. Since, (25) is
equivalent to (20), however, this implies that limt→∞ ζ(t) =
0. Then, (21) implies (5). This completes the proof. �

Our next result gives necessary and sufficient conditions
for the solvability of Problem 2.

Theorem 2: Under Assumptions 1–5, there exists a solution
to Problem 2 if and only if the following are satisfied:

1) The system (9) is stabilizable through the input u and
is detectable through the measurement y, given in (11).

2) The system (15) is stabilizable through the input v.
3) There exists T ∈ Rnz×ny , such that C1

i = TC2
i and

E1
i = TE2

i , i = 0, . . . , ν.
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Proof: Under the assumption that no perturbations are al-
lowed in the matrices appearing in (3) and (4), Condition
3 implies that the output can be constructed from the
measurement and the input as follows:

z(t) = Ty(t) +
ν∑
i=0

(
D1
i − TD2

i

)
u(t− hi) (26)

Then, the result follows from Theorem 1. �

Remark 4: Note that Assumptions 1–5 are needed only for
the only if parts of Theorems 1 and 2. Even if any one of
these assumptions fail, the if parts of both theorems continue
to hold.

From the proof of the if part of Theorem 1, it can be
deduced that the solution (when exists) to both problems
involves two parts:

i) A servocompensator whose dynamics is defined by
(23) and its input is obtained as in (22) for Problem
1 and as in (26) for Problem 2 (of course, if the
stronger Condition 3 given in Theorem 1 holds, the
input to the servocompesator can also be obtained as
in (22) for Problem 2). This part of the controller
is used to suppress the disturbance and to achieve
asymptotic tracking. Note that, the dynamics of the
servocompensator, in fact, mimics the dynamics of the
fictitious system which produce the reference and the
disturbance.

ii) A stabilizing compensator whose inputs are y(t) and
s(t) and whose output is u(t), to be applied to the given
system (1)–(2). This controller is designed to globally
asymptotically stabilize the augmented system (24).
Any stabilizing controller design method developed for
descriptor-type neutral time-delay systems (e.g., [26]––
[38]) can be used to design this part.

Both the strong and weak versions (respectively Problems
1 and 2) of the robust servomechanism problem for LTI
descriptor-type neutral time-delay systems have been consid-
ered. Necessary and sufficient conditions for the solvability
of both problems have been derived and the structure of
the controller, which solves these problems (when exists)
has been presented. The necessary and sufficient conditions
for both problems are generalizations of the conditions
given in [5] for finite-dimensional LTI systems and the
conditions given in [24] for LTI retarded time-delay systems
to the present case. Furthermore, as in the case of finite-
dimensional LTI systems [5] and LTI retarded time-delay
systems [24], the general structure of the controller which
solves the problem (when exists) involves two parts: (i) a
servocompensator, which is used to suppress the disturbance
and to achieve asymptotic tracking; and (ii) a stabilizing
compensator which is designed to stabilize the given system
augmented by the servocompensator.
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[36] S. M. Özer and A. İftar, “Controller design for neutral time-delay
systems by nonsmooth optimization,” in Preprints of the 13th IFAC
Workshop on Time-delay Systems, Istanbul, Turkey, Jun. 2016, pp.
212–217.
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