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Abstract: - This paper newly proposes the robust RLS Wi ener FIR prediction algorit hm based on th e
innovation theory for the linear stochastic sy stems including with param eters. In the robu st RLS Wien er
predictor, the following information is used. (1) The system matrices for the signal an d the degraded
signal. (2) The observation m atrices for the signal and the degraded signal. (3) The variance of the

state for the degraded signal. (4) The cross-variance of the state for the signal with the state. (5) The
variance of the observation noise. As a step to obtain the robust RLS Wiener FIR prediction algorithm, this
paper presents the robust prediction algorithm of t he signal using the covariance infor mation etc. In the

predictor, the following information is used. (1) The observation m atrices for the signal a nd the degraded
signal. (2) The variance of the state for the deg raded signal. (3) The auto-covariance inform ation of the

state for the degraded signal. (4) The cross-covarian ce information of the state for the signal with that for the
degraded signal. (5) The variance of t he observation noise. The estimation accuracy of the proposed robust
RLS Wiener FIR predictor is superior to the existing RLS Wiener FIR predictor.
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1 Introduction

Finite impulse response (FIR) filter is known in
the areas of the digital filter and the filter for signal
or state esti mations. Concerning the digital filter,
Wong, et al. [1], based on stochastic com putation,
proposes the finite im pulse response digital filter
with an improved scaling scheme. Nazaripou ya, et
al. [2] designs the digital FIR filter by using the
convex and quasi-convex optimization methods.
The digital FIR filter has the properties of
minimum-phase, minimum-length, lower group
delay with f ewer design parameters and faster
convergence in com parison withtot he existing
design techniques.

From the aspects of the theory and applications,
the robust prediction and filtering techniques have
been investigated, e.g. [3]-[5]. In [3], by
introducing an iteratively re-weighted least-squares
optimization criterion, the robust Kalman filter is
designed. The robust filter is applied t o a problem
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in vision. I n [4], three different methods are
proposed by designing the robust Kalman filter for
outliers int he one-step-ahead prediction of the
wind speed. In [ 5], for multi-sensor systems with
the uncertainty parameters, a new robust Kalman
prediction technique is proposed for compensating
parametric uncertainty by fictitious noise. The
approach is reduced to the robust Kal man
prediction problem for thesy stem with the
uncertain noise variance s, and the local and
centralized robust Kalman predictors are proposed.
The recursive least-squares (RLS) Wiener
estimators use the complete information ofthe
state-space model but the information of the input
matrix and the inputn oise variance [6]. For the
discrete-time stochastic sy stems with the uncertain
parameters, in the estim ation of the signal, the
robust RLS Wiener estimators [7] and the robust
RLS Wiener finite im pulse response filter [ 6] are
proposed. The estimation accuracy of the robust
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RLS Wiener esti mators [7] are superior to the

robust Kalman filter [9] and the RLS Wiener filter
[6]. The FIR Kal man filter [10]-[14] isl ess
sensitive to the uncertainties in the state-space
model. In Nakam ori [8] it is shown that, as the
finite interval increases, the mean square-value

(MSV) of the estimation errors by the robust RLS
Wiener FIR filter [ 8] becomes gradually small and
approaches that by ther obust RLS Wiener filter
[7].

Nakamori [15] proposes the RLS Wie ner FIR
prediction and filtering algorithms based on the
innovation approach in linear discrete-time
stochastic systems. Apart from the filter and
smoother, the predictor is useful int he prediction
of the air pollution levels etc. [16]. Since the robust
RLS Wiener FIR prediction problem is not referred
in Nakamori [8], this paper newly proposes the
robust RLS Wiener FIR prediction al gorithm in
Theorem 3, based on the i nnovation theory, for the
linear discrete-time stochastic systems with the
uncertain parameters. Itis assumed that the signal
process is fitted to the auto-regressive (AR) model
of the finite order. Also , the degraded signal,
caused by the uncertain param eters in the
observation and system matrices, is fitted to the AR
model of the finite order. Theorem 1 proposes the
equation, which the o ptimal impulses response
function satisfies, in the robust RLS FIR prediction
problem. Theorem 3 proposes the robust RLS
Wiener FIR prediction algorithm which uses the
following information. (1) The sy stem matrices for
the signal z(k) and the degraded signal Z(k). (2)
The observation m atrices for the signal and the
degraded signal. (3) The variance K(k, k) of the
state X(k) for the degraded signal. (4) The
cross-variance K,z(k, k) of the state x(k) for the
signal with the state X(k). (5) The variance of the
observation noise. As a step tothe predictor in
Theorem 3, Theorem 2 presents the robust RLS
FIR prediction algorit hm ofthe signal. The
predictor In Theore m 2 uses the following
information. (1) The observation m atrices for the
signal and the degraded signal. (2) The variance
of the s tate for the degraded sign al. (3) The
auto-covariance information of the state for the
degraded signal. (4) The cross-covarianc e
information of the state for the signal with that for
the degraded signal. (5) The varia nce of the
observation noise.

The prediction characteristics of the robust RLS
Wiener FIR predictor are shownin ~ comparison
with those by the RLS Wiener FIR predictor [15]
and the robust RLS Wiener FIR filt er [8]. The
estimation accuracy of the proposed r obust RLS
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Wiener FIR predictor is s uperior by far to that of
the RLS Wiener FIR predictor [15].

In this paper, the typos  intherob ust RLS
Wiener FIR filter [8] are also corrected.

2 Robust least-squares FIR prediction

problem
Let an m-dimensional observation equation and an
n-dimensional state equation be given by

y(k) = z(k) + v(k),

2(k) = H(k)x(k),

H(k) = H + AH(k),

x(k + 1) = d(k)x(k) + Tw(k), (1)

®(k) = © + AP (k),

E[v(k)v"(s)] = RO (k — s),

E[w()wT (s)] = Qdx (k — s),
in linear disc rete-time stochastic systems with the
uncertain quantities AH(k) and A®(k). v(k)
and w(k) are the white obs ervation and input
noises with the variances R and Q respectively.
Their auto-covariance functions are given in (1) by
use of the Kronecker delta function Og(k—5).
The state e quation for x(k + 1) includes the
uncertain quantity A®(k) additionally to the
system matrix @ (k). Also, the observation matrix
H(k) contains the uncertain quantit y AH(k) .
Hence, Z(k) shows the devia ted trajectory from
the nominal trajectory ofthes ignal z(k)
generated by the precise state-space model (2). In
(1), asthe sum ofthe d egraded signal Z(k) and
the observation noise v(k), the degraded observed
value y(k) is obtained. Compared with (1), the
precise state-space model is given by

y(k) = z(k) + v(k),
z(k) = Hx(k), (2)
x(k + 1) = dx(k) + Tw(k).

In (2), z(k) is the signal to be esti mated. H is an
m by n observation matrix, x(k) is the state.
The observation noise v(k) and the input noise
w(k) have the same auto-covariance functions as
those in (1). It is assu med that the sequences of the
signal and the observation noise are statistically
independent and have zer o means. This paper,
based on the innovation approach, newly designs
the robust RLS FIR predictor using the covariance
information in Theorem 2 and the robust RLS
Wiener FIR predictor in Theorem 3 for estimating
the signal z(k) with the degraded observed value
¥(k). Here, both the robust predictors do not use
any information on the uncertain quantities Ad (k)

Volume 19, 2020



WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2020.19.13

and AH (k).

Suppose that the sequence of the degraded signal
Z(k) is fitted to t he AR model of the finit e order
N as

(k) = —a2(k — 1) — ay2(k — 2) -
—ayZ(k — N) + é(k), 3)
E[é(k)éT(s)] = Qbx(k — s).

Let the degraded signal Z(k) be represented with
the state X(k) by

Z(k) = Hx(k),
[ X1 (k) ]
ngk)

fN_;(k)‘
Xy (k)
7(0) @
2(k + 1)

x(k) =

Hk+N-2)|
Lk + N — 1)

—

H=[lpxm 0 0 - 0 0]

Henceforth, the state equation for the state ¥(k) is
expressed by

X (k+1) 1

X (k+1)

Fyoa(k+ 1)
[ X
1|\ 500 5)

{(k) = é(k +N),

E[{(k)ST(s)] = Q6 (k — ).
Let K(k,s) = K(k —s) represent the
auto-covariance function ofthe sta te X(k) in
wide-sense stationary stochastic sy stems [17].
K(k,s) is expressed in the sem i-degenerate kernel
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form of

o« [AUOBT(s)0<s <k,

K(k,s) = {B(k)AT(S):() <k<s, (6)
A(k) = B BT (s) = 8K (s,5).

Here, ® is the sy stem matrix for the state ¥(k).
From (5), the system matrix ® is expressed by

[ 0 Lnsm 0

0 0 Inxm
P = | : : :
l 0 0 0
_dN _dN—l _dN—Z
0 (7
0
Ime‘
—d,

By putting K;(k,s) = Ky(k — s) = E[2(k)ZT (s)],
the auto-variance function K(k,k) of the state
X(k) is expressed by

[ Z(k)
Ak + 1)
Rk, k) = E :
A+ N —2)
lli(k +N-1)

x[#T(k) #T(k+1)
FTk+N—=2) #T(k+N-1)]
K»(0) K;(—1)
| kv ko - ®
|K,(N=2) Ky(N-3)
LK, (N = 1) Ky(N = 2)
K;(-N+2) Ky(—N +1)
K;(=N +3) Ky(=N +2)

K, (0) Ke(=1)
K> (1) K>(0)

With Kj;(k — s), the Yule-Walker equation for t he
AR parameters is formulated as
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ay-1
| al |

[ K7 (1) ]
K7 (2)

)

KI(N - 1)
L kv

Rk, k) Q)

K»(0) K; (1)

K7 (1) K»(0)

KI(N—2) KI(N—3)
lKT(N—1) KN —2)
Ky(N=2) Ky(N—1)]
Ky(N =3) Ky(N —2)

K;(O) Kz.(l)
K7 (1) K»(0)

Let K,z(k,s) = K,z(k —s) = E[x(k)XT(s)] be
the cross-covariance function of the  state x(k)
with the state X¥(s) in wide-sense stationary
stochastic systems. K, i(k,s) is expressed in the
functional form of

Kex(k,s) = a(k)BT(s),0 < s <k,
a(k) = @K, BT(s) = dTKyx(s, 5).

Here, from (2), ® is the s ystem matrix for the
state x (k).

Under the above prerequisites on the signal and
the degraded signal, etc., Theorem 1, based on the
innovation theory, presents the equation, which the
optimal impulse response function satisfies, in the
robust RLS FIR prediction problem.

Theorem 1 Let the l-step ahead FIR prediction
estimate X(k + |k — L + 1) of the state x(k + )
be expressed by

2k+1k—L+1)

(10)

K
= > gtin®, o
i=k—L+1
v(@) = y()
—HOX(i—1li—1—-L+1),
in terms of the innovation process {v(i),k — L +

1<i<k}. In(11), g(k,i) represents the
time-varying impulse response function and ¥(i —
1li —1—L +1) is the FIR filtering estimate of
the state X(i — 1). Let the FIR fi Itering estimate
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X(k|k — L +1) of ¥(k) be given by
X(klk —L+1)
K
. (12)
= D gt
i=k-L+1
as alinear com bination of the im pulse response
function gy(k,i) and thei nnovation sequence
{fv(i),k—L+1<i<k} . Thentheoptim al
impulse response function g(k,s) satisfies
gk, )N(s) = Kz (k + 1, s)HT
s—1
= ) gtDADGS - 1D
i=s—1-L+1
x ®THT,
Kpz(k + L,s)HT = K,y (k + 1, 5).

In (13), K,x(k + 1,s)HT is equivalent to the
cross-covariance function of the state x(k + 1)
with the degraded signal Z(s), K,y(k +1,s).
Proof

Consider the estimation problem, which minimizes
the MSV

(13)

J=E[llx(k+D
—%(k + Uk = L+ D]

of the FIR prediction errors. From
projection lemma [17]

x(k + )
k
- ). 9@ Lo(s),
i=k—-L+1
k—L+1<s<k,

(14)

an orthogonal

(15)

the impulse response function g(k,i) satisfies the
Wiener-Hopf equation

E[x(k + DvT(s)]
k
_ Z g (e, DE[uOVT ()],
i=k—L+1
k—L+1<s<k.

In (15),° L ° denotes the notation of the
orthogonality. Let the co variance function oft he
innovation process be given by

E[v(v"(s)] = Ak (i — s). )

From (16),(17) and the expression for the
innovation process v(s), g(k,s) satisfies

(16)
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gk, $)A(s) = E[x(k + DvT(s)]
= E[x(k + D (s)
—H®X(s —1|s—1—L+ 1))7]
= E[x(k + Dy" (s)]
—E[x(k +1)
Xxx'(s—1]s—1-L+1)]®TH".
The term E[x(k + D)¥7(s)] is developed as
E[x(k + Dy (s)]
= E[x(k + D)(Z(s) + v(s)]
= E[x(k + 1)Z7(s)]
= E[x(k + DxT(s)]HT
= Kyz(k + 1,5)HT.
From (18) and (19), the o ptimal impulse response
function g(k,s) satisfies (13).

(18)

(19)

(QE.D)
Starting with (13), the robustR LS FIR
prediction  algorithm using the covariance

information etc. is presented in Theore m 2. Then
Theorem 3 proposes the robust RLS Wiener FIR
prediction algorithm.

3 Robust RLS FIR predictor using
covariance information and robust

RLS Wiener FIR predictor

Theorem 2 proposes the robust RLS FIR prediction
algorithm using the covariance inform  ation
K(k,s) of the state ¥(k) for the degraded signal
Z(k) and the cross-covariance information
K, x(k,s) of thestate x(k) for the signal z(k)
with the state X¥(s) for the degraded signal Z(s),
etc.

Theorem 2 Let thes tate equation and the
observation equation, which contains t he uncertain
quantities A® and AH respectively, be given by
(1). Let H represent the observation matrix for the
signal z(k). Let ® and H represent the s ystem
and observation m atrices respectively for the
degraded signal Z(k), fitted to the AR m odel (3).
Let the variance K(k,k) of the state ¥(k) for the
degraded signal Z(k) be given. Letthe
auto-covariance function K(k,s) of X(k) be
expressed by (6) in ter ms of A(k) and B(s). Let
the cross-covariance function K, x(k,s) of x(k)
with ¥(s) be given by (10) in terms of a(k) and
B(s). Let the variance of the white observation
noise v(k) be R. Then the robust RLS estimation
algorithm for the [-step ahead FIR prediction
estimate Z(k + 1|k — L + 1) of thesignal z(k +
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) consists of (20)-(40) in linear dis crete-time
stochastic systems.
l-step ahead FIR prediction estimate of the signal

z(k+D): 2(k+ k=L +1)

e+ 1k—L+1)
=He(k+1lk—L+1) (20)

l-step ahead FIR prediction esti mate of the state
x(k+10: X(k+1llk—L+1)

2+ 1lk—L+1)

=a(k + De(k) D

FIR filtering estimate of the signal z(k): Z(k|k —
L+1)

Z(klk —L+1)=Hx(k|k—L

+1) (22)

FIR filtering esti mate of the state x(k): X(k|k —
L+1)

X(klk—L+1)=a(k)e(k) (23)

Initial condition of X(k|k—L+1) at k=1L:
x(L|1D)

FIR filtering estimate of the state ¥(k): X(k|k —
L+1)

2(klk — L+ 1) = A(k)ey (k)

Initial condition of ¥(k|k —L + 1) at k = L:
X(L|1)
Recursive equation for e(k):
e(k) =e(k —1) +J(k)([F (k)
—HA(k)eo(k — 1))

24

~J(k = L)k~ L) 2
—HA(k — L)ey(k — L — 1))
Initial condition of e(k) at k = L: e(L)
Recursive equation for ey (k):
eo(k) = eo(k — 1) + Jo (k) (¥ (k)
—HA(k)ey(k — 1))
~Jolk = L)k — L) 20
—HA(k — L)eg(k — L — 1))
Initial condition of ey(k) at k = L: ey(L)
Equation for J(k):
J(k) =[BT (k)H" 27)
—r(k — DAT(k — 1)OTHT|A 1 (k)
r(k) =r(k — 1) +J()AMK)G (k) 28)

=/ (ke = LYA(k — L)Jg (k — L)
Equation for J,(k):
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Jo(k) = [BT (k)H"

—1o(K)AT (k — DPTHTIA (k) 29)
Recursive equation for 14 (k):

ro(k) =10(k — 1)

+o (YA (k) (30)

—Jo(k — L)ACk — L)Jg (k — L)
Initial condition of ry(k) at k = L: 74(L)
Equation for A(k):

A(k) = HK(k,k)AT + R 31)

—HA®k)re(k — DAT (K)HT

Initial condition of FIR filtering estimate X(k|k —
L+1) of x(k) at k=1L: x(L|1)

X(L|1) = a(L)e(L)
Recursive equation for e(L):
eL)y=2lL-1+JL)FL)
—HA(L)eo(L — 1)),
e(0)=0
Equation for J(L):
J(L) = BTWAT
-7 (L — DAT(L — DAT()HAT)
x A (L)

(32)

(33)

(34

Recursive equation for r(L):

F(L) = (L — 1) + J(LAL), (L),

(35)
7(0) = 0

Initial condition of FIR filtering estimate ¥(k|k —
L+1) of ¥(k):at k =L: X¥(L|1)

X(L|1) = A(L)eo(k) (36)
Recursive equation for ey(L):
eo(L) =eo(L — D) +J,(LFL)
—HA(L)ey(L — 1)), (37)
ey(0)=0
Equation for jo (L):
7 — (RT(INET
]0_(L) = (B (LH o 38)
—To(L — DAT(LADA (L)
Recursive equation for 7(L):
To(L) =7o(L — 1)
- — T
+/o (L) Ao (L)] o (L), (39)
79(0) =0

Equation for A(L):
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A(L) = HR(L,L)AT + R
—HA(L)To(L — DAT(L)AT

Proof of Theorem 2 is deferred to Appendix A.
Based ont he robust RLS FIR prediction
algorithm in Theorem 2, Theorem 3 presents the

robust RLS Wiener FIR prediction algorithm.
Theorem 3 Let the state and the observation
equations, including the uncertain quantities A®
and AH be given by (1). Let @ and H represent
the system and observation m atrices respectively
for the signal z(k). Let ® and H represent the
system and observation matrices respectively for
the degraded signal Z(k), which is fitted to the AR
model (3).L et the variance K(k, k) of the state
X(k) for the degraded signal Z(k) and the
cross-variance K,z(k, k) of the state x(k) for the
signal z(k) with the state ¥(k) be given. Let the
variance of t he white obs ervation noise v(k) be
R . Thenthe robustRL S Wiener estim ation
algorithm for the [-step ahead FIR prediction
estimate Z(k + 1|k — L + 1) of thesignal z(k +
1) consists of (41)-(57) in linear dis crete-time
stochastic systems.
l-step ahead FIR prediction estimate of the signal
z(k+1): 2(k+1lk—L+1)
Z(k+1llk—L+1)
=Hx(k+1lk—-L+1)
l-step ahead FIR prediction esti mate of the state
x(k+1): ¥(k+1llk—L+1)
X(k+1lk—-L+1)
= ®R(klk—L+1)
FIR filtering estimate of the signal z(k): Z(k|k —
L+1)

(40)

(41)

(42)

2(klk—L+1) = He(klk — L
+1)

FIR filtering esti mate of the state x(k): X(k|k —
L+1)

(43)

X(klk—L+1)
=bx(k—1k—-1-L+1)
+G (k) (¥ (k)
—A®X(k—1lk—1—-L+1))
—®LGk— L)k —L)—HD
X¥k—-L—-1lk—L—-1-L+1))
Initial condition of X(k|k—L+1) at k=1L:
X(L1)
FIR filtering estimate of the state ¥(k): X(k|k —
L+1)

(44)
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X(klk —L+1)
=dX¥(k—1k—1-L+1)
+€o£li)(37(k)

—H®¥(k— 1k —1—-L+1))
—®LGy(k —L)F(k—L)—HD
XX¥(k—L—1k—L—-1-L+1))

condition of X¥(k|k—L+1) at k=1L:

(45)

Initial
X(L|1)
FIR filter gain for X(k|k — L + 1): G(k)

G(k) = [Kex(k, )HT
—®S(k — DPTHTIA (k)
FIR filter gain for X¥(k|k — L + 1): Gy (k)
Go(k) = [K(k,k)H"
—®Sy(k — DPTHTIA (k)
Equation for A(k):
A(k) =R+ HK(k,k)HT
—H®Sy(k — 1)PTHT

(46)

(47)

(48)

Recursive equation for S(k):

S(k) = &Sk — 1)DT

+G (K)A(K)Gg (k)

—®LG(k — Ak — L)GE (k- L)
X (CDT)L

(49)

Initial condition of S(k) at k = L: S(L)
Recursive equation for Sy(k):
So(k) = ®Sy(k — 1)®dT
+Go(kK)A(k)Gg (k)
—®LGy(k — L)A(k — L)GE (k — L)
x (BT)L

(50)

Initial condition of Sy(k) at k = L: So(L)
Recursive equation for x(L|1):
X(L|1) = dx(L —1]1)
+G(L)(F(L) — HPE(L - 1]1),
x(0|1) =0

(D

Filter gain for £(L|1) in (51): G(L)
G(L) = [Kxz(L, L)
—0S(L - DBTHTA (L),
Kz (L, L) = Kyx (L, L)HT

(52)

Recursive equation for ¥(L|1):
X(L|1) = dX(L — 1|1)
+Go(L)(F(L) — HPX(L — 1|1)),
X¥(0|1) =0

(53)
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Filter gain for £(L|1) in (53): Go(L)
Go(L) = [K(L,L)AT
—&S,(L - DHITATA (L)
Equation for A(L):

A(L) =R+ HK(L,L)HT
—H®Sy (L —1)®THT

(54

(35)

Recursive equation for S(L):
S(L) = dS(L — 1)PT
B
+G(L)AL)Go (L),
$(0)=0

(56)

Recursive equation for So(L):
So(L) = ®Sy(L — 1)®T
- = =T
+Go(L)A(L)Go (L),
S0(0)=0

Proof of Theorem 3 is deferred to Appendix B.
Necessary conditions on the stabilit y of the

robust RLS Wiener FIR prediction and filtering

algorithms are as follows.

(1) Allthe real parts in the eigenvalues of the

matrix @ are negative.

(2) Allthe real parts in the eigenvalues of the

matrix ® — Go(k)H® are negative.

()R + H[K(k, k) — ®Sy(k — 1)PT]HT > 0

(4) Allthe real parts in the eigenvalues of the

matrix ® — Go(k)H® are negative.

(5)R + H[K (k, k) — ®Sy(k — 1)®T]HT > 0
Section 4 proposes the re cursive algorithm for

the prediction error variance function of the robust

RLS Wiener FIR predictor presented in Theorem 3.

Also, the existence of the robust RLS Wiener FIR

prediction estimate Z(k +Illk —L+ 1) of the

signal z(k + 1) is shown.

(57)

4 Prediction error variance function

of signal
Let the variance function of t he FIR prediction
error z(k +1) — Z(k + l|k — L 4+ 1) be denoted by
P,(k+1) . Letthe auto-covariance functi on
K(k,s) ofthe state x(k) be expressed by

K(k,s)

_ [Ax(K)BI(s),0<s <k,

B {Bx(k)Ag(s),o <k<s,

A (k) = a(k) = o,

BI(s) = ®75K(s, s).

(58)
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From (16) and (A.10) , the FIR pred iction error
variance function P,(k) is formulated as

Bk+0)=HKk+Lk+1)
—E[f(k+1k—L+1)
x £T(k + Uk = L + D)])HT
= H(K(k, k)
—E[x(k + DT (k + Uk — L + 1)])
x HT
= H(K(k, k)
—(I)k+l£(k)(q)T)k+l)HT,

k

(59)

r(k) = J DA@]T (D).

i=k—-L+1

r(k) is calculated recursively by

r(k) = r(k) +J(R)AK)]T (k)
—J(k = L)ACk — L)]" (k — L),
r(0) = 0.

Hence, the RLS Wiener FIR predic tion error
variance function P,(k + [) is calculated by (27)
~ (31), (59) and (60) recursively. Since P,(k + [)
is positive-semidefinite, the RLS Wiener FIR
prediction variance of  thesignal z(k +1) ,
HE[®(k + |k — L+ DXT(k+ |k — L+ D]HT
is upperbo unded by HK(k,k)HT and lower
bounded by the zero matrix as

0<
HE[x(k+1llk—L+1)
x XT(k+ 1|k — L+ 1)]HT
< HK(k,k)HT.
This validates the existence of the robust RLS

Wiener FIR prediction esti mate Z(k + |k — L +
1) ofthe signal z(k + ).

(60)

(61)

5 A numerical simulation example

Let a scalar observation equation fo r the signal
z(k) and the state equation for x(k) be described
by
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y(k) = z(k) + v(k),
z(k) = Hx(k),
H=[1 0],

_ [x1(B)
x@—mw,

x(k + 1) = dx(k) + Tw(k),

0 1
¢ = [—az —a1]' (62)
a; =-0.1,a, = —0.8,
0
r= [1]
E[v(k)v(s)] = Réx(k — 5),
Efw(l)w(s)] = Qdx(k — s),
Q = 0.52
From (2) it is noted that the signal z(k) is

generated by the second-orde r AR model. Let us
consider to calculate the [-step ahead prediction
estimate of the signal z(k + 1) with the degraded
observed value y(k), whichis generated by the
state-space model (63) including the uncertain
quantities AH(k) and A®(k).

y(k) = Z(k) + v(k),

(k) = H(k)x(k),

_ oy [* (k)]

200 = [a0]

H(k) = H + AH (k)

= [1+43(k) 0],

AH(K) = [A3(k) 0],

A;(k) = 0.1,

x(k+1) = ®(k)x(k) + Tw(k),

®(k) = ® + Ad(k),

0 0
oo = | |
€)= [a,000 8,00
Ai(k) =0.01,A,(k) =-0.1
Without any usages of a priori inf  ormation of
AH(k) and A®(k), the robust RLS Wiener FIR
predictor calculates the prediction estimate of the
signal recursively. The degraded signal ~ Z(k) is
fitted to the AR model of the N-th order.
Z(k) = —a,Z(k — 1) — dZ(k — 2)
—-—dyZ(k—N) + é(k),
N =10
Efe(k)e(s)] = Qo (k — s).
From (4) and (64), Z(k) is expressed with the 1
by N observation vector H as

(k) = Hx(k),
H=[1 0 0 0 0]

In the simulation example, the state e quation for
X(k) in (5) corresponds to the case of m=1.

(63)

(64)

(65)
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K(k,s) = K(k — s) represents the auto-covariance
function of the state X(k) in wide-sense stationary
stochastic systems. K(k,s) is expressedin the
semi-degenerate kernel form  (6). ® in (6)
represents the sy stem matrix for the state X(k).
Also, from the auto-covariance functi on K;(k —
s) =K;(s — k) =E[Z(k)Z(s)] of the degraded
signal Z(k), the auto-variance function K(k,k) of
the state X(k) is expressed as

Z(k)
Z(k+ 1)
K(k,k) =E :
#(k+ N —2)
Z(k+N—1)

x [2(k) #(k+1)
Z(k+N-2) zZ(k+N-1)]]
K»(0) K;(1)

[lqn K00 - (60
- K,(N=2) Ky(N—3) '
K;(N—1) Ky(N—2)
Ke(N —2) Ky(N - 1)
K;(N—-3) Kz(N - 2)]

K0) K1) |

K1) K0 ]
Let K,3(k,s) = E[z(k)Z(s)] represent the
cross-covariance function of the signal z(k) with
the degraded signal Z(s). From (4) and (65), the

cross-covariance function K, z(k,s) is expressed
as

Seiichi Nakamori

Kyx(k,s) = cbk_SKxJZ(S: s),
0<s<k,
Kooz (k, k)
[ Kt
K,z(k+1,k)
K,>(k,k+1) - 67)
K,>(k+1,k)
K,>(k,k + N — 2)
K,(k+1,k+N-2)
K,>(k,k+N—1)
K,(k+1,k+ N — 1)]

The AR param eters dq,dy, ,dy_1,dy in (64)
are calculated by the Yule-Walker equation

ay
[ a; ]
K(, k)| & |
Ly, |
| ay |
Kz(1)
Kz(2) l
[@w—ﬁ
K>(N)
By substituting H, H, ®, ®, K(kk),
K(k,k) = K(L,L) and R into the robust RLS
Wiener FIR prediction algorithm of Theorem 3, the
prediction estimates are calculated recursively. In
evaluating ® in (7), K(k,k) in (66) and

K, z(k, k) in (67), the 2,000 number of signal an d
degraded signal data are used.

(68)

Signal and robust FIR filtering estimate

— Signal
— — Filtering estimate

3 L '
200 250 300

400 450 500

time k

Fig.1 Signal z(k+1) and robust RLS Wiener FIR prediction estimate Z(K+1|k—L+1),
L =200, I =3 vs. k for white Gaussian observation noise N(0,0.3%).
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Fig.2 MSVs of one-step ahead prediction errors Z(K+1)—Z2(k+1|k—L+1) by robust RLS

Wiener FIR predictor in Theorem 3 vs. finite interval L, 50 < L <500, and MSVs of filtering

errors Z(k)—2(k|1), 1<k <L, by robust RLS Wiener FIR filter [8] vs. L, 50 <L <500,
for white Gaussian observation noises N(0,0.12), N(0,0.32), N(0,0.5%) and N(0,0.73).

0.95

0.9

0.85

0.8

0.75

0.6

MSVs of FIR prediction errors

0. 55

0.5

FIR predictor
FIR predictor
FIR predictor
FIR predictor
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for
for
for
for
for

S s =

N(0,0.01) and
N(0,0.09) and
N(0,0.25) and
N(0,0.49) and
N(0,0.01) and
N(0,0.09) and
N(0,0.25) and
N(0,0.49) and

€11 LN e L LI L L

0. 45
50
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150

200

250 300
Finite interval L

350

400 450

500

Fig.3 MSVs of robust RLS Wiener prediction errors Z(K+1)—2(k +1 |k —L+1)

interval L, in the cases of | =3 and | =35, for white Gaussian observation noises

N(0,0.1*), N(0,0.3*), N(0,0.5*) and N(0,0.7%).
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4.5

—&— FIR predictor for N(D.0.01) and |

5 ! —£&— FIR predictor for N(0,0.09) and =1

~<t~ FIR predictor for N(0,0.25) and 1=1.
—&— FIR predictor for N(0,0.49) and 1=1.
—8— FIR predictor for N(0.0.01) and 1=3.
—7— FIR predictor for N(0.0.09) and 1=3.
—&— FIR predictor for N(0.0.25) and |=3.
—%— FIR predictor for N(0,0.49) and |=3.

1.
1

MSVs of FIR prediction errors

2 1 1 1
50 100 150 200

250

300 350 400 450 500

Finite interval L

Fig.4 MSVs of prediction errors Z(K+1)—Z(k+1|k—L+1) by RLS Wiener FIR predictor
[15] vs. finite interval L, in the cases of | =1 and | =3, for white Gaussian observation

noises N(0,0.1%), N(0,0.3*), N(0,0.5*) and N(0,0.7%).

Fig.1 illustrates the signal z(k + 1) and
the robust RLS Wiener FIR predic tion
estimate Z(k+!Illk—L+1), L=200,
=3 vs. k, 1<k <500, for the white
Gaussian observation noise N(0,0.32) .
Fig.2 shows the MSVs of the one-step
ahead prediction errors z(k + 1) — 2(k +
1|k — L + 1) of the sign al by the ro bust
RLS Wiener FIR predictor in Theorem 3 vs.
the finite int erval L, 50 < L < 500, and
the MSVs of the filtering errors z(k) —
2(k|1), 1<k <L, by the robust RLS
Wiener FIR filter [8] vs. L, 50 < L < 500,
for the white Gaussian observation noises
N(0,0.1%), N(0,0.3%), N(0,0.5%) and
N(0,0.7%) . As the variance of the
observation noise becomes large, the
estimation accuracies of the robust RLS
Wiener FIR predictor and the robust RLS
Wiener FIR filter beco  me degraded
respectively. For each observation  noise
variance, the estimation accuracy of the
robust RLS Wiener FIR filter is superi or to
that of the robust RLS Wiener FIR
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predictor. For 50<L<200, as L
becomes large, the MSVs of the robust RLS
Wiener FIR prediction and filtering errors
become small steeply. At L =500, the
MSVs oftherobust R LS Wiener FIR
prediction and filtering errors attain the
smallest values for each observation noise.
Fig.3 shows the MSVs of the prediction
errors z(k+ 1) —2(k+1llk—L+1) of
the signal by the robust RLS Wiener FIR
predictor vs. the finitei nterval L, 50 <
L <500, inthecases of [ =3 and [ =5,
for the white Gaussian observation noises
N(0,0.1%), N(0,0.3%), N(0,0.52) and
N(0,0.7%). The MSV of the pre  diction
errors for [ = 3 is smaller than that for
l=5 for each observation noise. For
50 < L <200, as L becomes large, the
MSVs oft he prediction errors be come
small steeply. Fig.4 shows the MSVs of the
prediction errors z(k + 1) —Z(k + 1k —
L 4+ 1) of the signal by the RLS Wiener
FIR predictor [ 15] vs. the finite interval L,
50 <L <500, inthecase s of [ =1 and
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[ = 3, for the white Gaus sian observation
noises N(0,0.1%), N(0,0.32%), N(0,0.52)
and N(0,0.7%) . From Fig.2-Fig. 4, the
MSVs of the estimation errors by the robust
RLS Wiener FIR predictor, for [ =1 and
[ = 3, are smaller than those by the RLS
Wiener FIR predictor [15]. Her e, the MSV
of the FIR prediction errors is evaluated by
Y00t (z(k+ 1) —2(k + |k — L +
1))?/1001.

6 Conclusions

This paper has newly proposed the robust
RLS Wiener FIR prediction algorithm  in
Theorem 3, based on the innovation theory,
for the linear discr  ete-time stochastic
systems with the uncertain parameters. As a
step to Theore m 3, Theorem 2 has
presented the robust prediction algorithm of
the signal using the covariance infor mation
etc. Also, in section 4, the recurs ive
algorithm for the prediction error variance
function has been proposed.

The prediction character istics ofth e
robust RLS Wiener FIR predictor have
been shown in section 5. The esti  mation
accuracy of the propos ed robust RLS
Wiener FIR predictor is by far superior to
that of the RLS Wiener FIR predictor, but is
inferior to that of the robust RLS Wiener
FIR filter.

Appendix A: Proof of Theorem
2

By introducing an equation
J(S)AGs) = BT ()"
s—-1

- > JOADGI -1 (Al
i=s—1-L+1

x ®THT,
from (13) and (A.1), the optimal impulse
response function g(k,s) satisfies

gk, s) = ak +DJ(s). (A2)

Likewise g(k,s) in (18), it is seen that
go(k,s) satisfies

E-ISSN: 2224-2678

97

Seiichi Nakamori

Go(k, ) (s) = E[X(k)v" ()]

=E[x(k)(¥(s)
—H®X(s —1|s—1—L+1))7]
= E[X(k)y" (s)]
= ) BRIV OIgE G OBTHT (a3
i=s—L+1
= A(k)B" (s)HT
= D 9o (kDA ~ 1,0)
i=s—L+1
x ®THT,
By introducing
Jo($)Ao(s) = BT (s)A"
s—-1
= D S A1) (Ad)
< BT,
go(k,s) satisfies
9o(k,s) = A(k)]o(s). (A.5)
By substituting (A.5)i nto (A.1), and
introducing
r(k)
$ A.6)
= Y Jomago. *
i=k—L+1
— BT (INEGT
JUOA(K) = BT (A A

—r(k —1DAT(k — 1)®THT
is obtained. Subtracting r(k —1) from
r(k), we get

r(k) —r(k — 1) = J()AU)g (k)
—J(k — L)A(k — L)J§ (k — L),
r(0) = 0.
Substituting (A.2) into (11) and introducing
e(k), given by

(A.8)

e(k) = J@v@®, (A9)

i=k—L+1

we obtain
Xtk+llk—L+1)

k
=a(k+1) J (@), (A.10)

= a(k + De(k).
By subtracting e(k —1) from e(k), it
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follows that
e(k) —e(k—1) =J(k)([F(k)

—H®X(k—1lk—1—L + 1))

—J(k = L)Yk - L)

—HO

XX(k—L—1lk—L—1-L+1)).
Let the FIR filtering esti mate ¥(k|k — L +
1) of ¥(k) be given by

X(klk — L+ 1)
k
= ) gt
i=k—L+1
v(i) = y(@)
—H®X(i—1]i—1—-L+1).

(A.12)

Also, by introducing
1o (k)
K

= > hOMORO,

i=k—-L+1

(A.13)

(A.4) is rewritten as
Jo(k)Ao (k) = BT (k)H"
—1o(K)AT (k — 1)®THT.

Subtracting 15(k — 1) from 71y(k), we
have

(A.14)

ro(k) =1k — 1)

= Jo(k)Ao(K)Jg (k) (A.15)
—Jo(k — LYAo(k — L)J5 (k — L).
By introducing
K
eo(k) = Jo (D), (A.16)
i=k—L+1

from (A.5), the FIRf iltering estimate
X(k|lk — L +1) of ¥(k) is given by

X(klk—L+1)

= A(k)ey (k).
By subtracting eq(k — 1) from ey(k), it
follows that

(A.17)
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eo(k) —eo(k —1)

= Jo(K)(F(k) — HA(k)eo (k — 1))
—Jo(k = L)(¥(k = L)

—HA(k — L)ey(k — L — 1)),

A(k)eo(k —1) (A.18)
=d¥(k—1k—1-L+1),
Ak — Leg(k—L—1)
=%
Xx%(k—L—1k—L—1-L+1).
From (A.13), (A.16) and (A.17), the

variance A(k) of the innovation process
v(k) is expressed by
Ak) = E[u(k)v" (k)]
- EG 0
—H®%(k — 1|k — 1 — L + 1))
x (¥ (k)
—H®X(k —1lk—1—L+1))7]
= HK(k,k)AT + R
—HPE[X(k—1k—1-L+1)
xXT(k—1lk—1-L+1)]®THT
= HR(k, k)HT + R
—HAW) Ty (k — DAT(K)HT.
Let the initial condition of the FIR filtering
estimate of x(k) at k =L be X(L|1).

L
fmn=;§wm®. A20)
v(i) = y(i) — HOX(i — 1|1)

Let the variance of the in novation process
o(L) be A(L).
A(L) = E[LYY (1)]
= E[(F(L) = HDX(L - 1]1))
x (¥(k) — HOX(L — 1]1)"]
= HR(L,L)H" +R
—H®E[X(L —1]1)
x XT(L —1|1)]®THT
= HR(L,L)H" +R
—HAL)7o(L — DAT(L)AT

(A.19)

(A.21)

Here,

L
Fol) = ) Jo DR, (A22)
i=1

Let the initial condition of the FIR filtering
estimate of X¥(k) at k = L be X(L|1).
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L
£(LI1) = Z GoLVO, 5oy
v(k) = y(k) — HdX(k — 1]1)
Here, g,(L,s) satisfies

9oL, $)A(s) = K(L,s)H"

s—1
-5, W OR@FL s~ 1) (A24)
i=1
x THT.
g(L,s) in (A.20) satisfies
gL, A(s) = Kyz(L,s)H"
s—1
- GWORDF, (s — LOBTAT,  (A25)
i=1
Kz (L, S)HT = K,»(L,s).
By introducing
J($)A(s) = BT ()AT
s—1

=Y TOAOT (s — 1L,OBTHT, (A-20)
i=1

g(L,s) is given by

g(L,s) = a(L)](s). (A.27)
By introducing

L
F(L) = ) JORD,M),  (A28)
i=1

(A.26) is rewritten as

JAAL) = BT(L)HT
—7(L - DAT(L - 1)PTHT, (A.29)
T = AT(1).

By substituting (A.27)i nto (A.20) and
introducing

L
By = ) D, (A30)
i=1

2(L|D) = a(L)e(L) (A31)

is obtained, Subtracting 7r(k —1) from
r(k), we obtain

P =0 = D) +JORWT, (), (5 32
7(0) = 0.
By subtracting e(L —1) from e(L), it
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follows that

el)=¢elL-1
H(LFL) — HPE(L — 1]1)), (A.33)
7(0) = 0.

By introducing
Jo($)A(s) = BT (s)H"
s-1
- e A.34
= > T, ORWDT (s~ LHITH, (A9
i=1
g, (k,s) is given by

Go(L,s) = A(L)] (5. (A.35)
From (A.22), (A.25)

jo_(L)K(L) = BT(LV)HT (A36)
—7o(L — DAT(L)AT

is obtained. Subtracting 7,(L —1) from
To(L), we obtain

Fo(L) = Fo(L = 1)
WAL, ), (A7)
70(0) = 0.

By substituting (A.35)1 nto (A.23) and
introducing

L
2) = ) J, (50, (A38)
i=1

X(L|1) = A(L)ey (L) (A.39)

is obtained. Subtracting ey(L —1) from
ey (L), we obtain

eo(L) =eo(L—1)

+, LT L)

—HA(L)e,(L — 1)), (A.40)
A(L)ey(L — 1) = dX(L — 1|1),

2,(0) = 0.

(QE.D.)

Appendix B: Proof of Theorem

3
By substituting (A.11)i nto (A.10) and
introducing

G (k) = a(k)](k), (B.1)
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(42) and (44) are clear. By substituting
(A.18) into (A.17) and introducing

Go (k) = A(k)]o (K, (B.2)

(45) is obtained. By substituting (A.7) into
(B.1), using (10) and introducing

S(k) = a(k)r(k)a’(k),  (B.3)

(46) is obtained. By substituting (A.14) into
(B.2), using (6) and introducing

So(k) = A(K)ro(l)AT (k),  (B.4)

(47) is obtained. From (A-19) and (B.4), by
using A(k) = @, (48) is obtained . By
substituting (A.8) into (B.3) and using (B.1)
with a(k) = ®% and A(k) = ®*, (49)is
obtained. By substituting (A.15) into (B.4)
and using (B.2) with A(k) = &k, (50)is
obtained.

By substituting (A.33)into (A.31)and
introducing

G(L) = a(L)J (L), (B.5)

(51) is obtained. By substituting (A.29) into
(B.5) and introducing

S(L) = a(L)T(LAT(L), (B.6)

(52) is obtained. By substituting (A.40) into
(A.39) and introducing

Go(L) = A(L)] (L), (B.7)

(53) is obtained. By substituting (A.36) into
(B.7) and introducing

So(L) = A(L)To(L)AT(L),  (B.8)

(54) is obtained. From (A.21) and (B.8),
(55) is obtained. By substituting (A.32) into
(B.6), (56) is obtained. By substituting
(A.37) into (B.8), (57) is obtained.

(QE.D.)

References:

[1] M. M. Wong, D. Wong, C. Zhang,I.
Hijazin, Stochastic inner product core
for digital FIR filters, WSEAS Trans.
Systems and control, Vol. 12,2 017,
pp.246-252

[2] H. Nazaripouya, P. Chu, H. Pota, R.
Gadh, Designof m inimum-length,
minimum-phase, low-group-delay FIR

E-ISSN: 2224-2678

100

Seiichi Nakamori

Filter
method,
Processing,
170-178.

[3] R. P.N. Rao, Robust Kal man filters
for prediction, recognition, and
learning, Technical Report 645, The
University of Rochester, Computer
Science Department, 1996, pp.1-14.

[4] C. D. Zuluaga, M. A. Alv arez and E.
Giraldo, Short-term wind speed
prediction based on robust Kal man
filtering: An experimental comparison,
Applied Energy, Vol.156, 2015,
pp-321-330.

[5] X. Wang, W. Liu and Z. Deng, Robust
centralized fusion steady-state Kalman
predictor with uncertain parameters,
Proceedings of the 2015 Chinese
Intelligent Automation Conference, pp.
23-31.

[6] S. Nakamori,

using convex
WSEAS
Vol. 14,

optimization
Trans.  Signal
2018, pp.

Recursive estimation
technique of signal from output
measurement data in linear
discrete-time systems, IEICE Trans.
Fundamentals of Electronics,
Communication and Computer
Sciences, Vol.E78-A, No.5, 1995, pp.
600-607.

[7] S. Nakamori, RobustR LS Wiener
signal estimators for discrete-ti  me
stochastic systems with uncertain
parameters, Frontiers in  Signal
Processing, Vol.3, No.l, 2019,
pp.1-18.

[8] S. Nakamori, Robust RLS Wiener FIR
filter for sig nal estimation in linear
discrete-time stochastic s ystems with
uncertain parameters, Frontiers in
Signal Processing, Vol.3, No.2, 2019,
pp-19-36.

[9] X. Zhu, Y. C. Soh and L. Xie, Design
and analysis of discrete-time robust
Kalman filters, Automatica, Vol.38,
No.6, 2002, pp.1069—1077.

[10] A. H.Jazwinski, Lim ited memory
optimal filtering. |EEE  Trans.
Automatic Control, Vol.13, No.10,
1968, pp.558-563.

[11] W. H. Kwon and S. Han,
Horizon Control: Model

Receding
Predictive

Volume 19, 2020



WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2020.19.13 Seiichi Nakamori

Control for State Models,
Springer-Verlag, 2005.

[12] S. Zhao, Y. S. Shmaliy, P. Shi and C.
K. Ahn, Fusion Kalman/UFIR filter for
state  estimation  with uncertain
parameters and noise statistics. |EEE
Trans. Industrial Electronics, Vol.64,
No.4, 2017, pp.3075-3083.

[13]S. Zhao, Y. S. S hmaliy and F. Liu,
Fast Kalman-like optimal unbiased
FIR filtering with applications, |EEE
Trans. Signal Processing, Vol.64,
No.9, 2016, pp.2284-2297.

[14] S. Zhao, Y. S. S hmaliy and F. Liu,
Fast Kalman-like optimal FIR filter for
time-variant systems with improved
robustness, ISA Transactions, Vol.80,
2018, pp.160—168.

[15]S. Nakamori, RLS Wiener FIR
predictor  and filter based on
innovation  approach in line ar
discrete-time  stochastic  systems,
Frontiers in Signal Processing, Vol.1,
No.2, 2017, pp.49-61.

[16] S. Nakamori and A. Hataji, Design o f
new predictorusin g covariance
information and its application to
prediction of air pollut ion levels,
Electronics and Communications in
Japan (Part 1: Communications),
Vol.63, No.9, 1980, pp.29-38.

[17] A. P. Sage and J. L. Melsa, Estimation
Theory  with  Applications  to
Communications and Control,
McGraw-Hill, 1971.

E-ISSN: 2224-2678 101 Volume 19, 2020





