
Robust Recursive Least-Squares Finite Impulse Response 
Predictor in Linear Discrete-Time Stochastic Systems with 

Uncertain Parameters 
 

SEIICHI NAKAMORI 
Kagoshima University 

Department of Technical Education 
1-20-6, Korimoto, Kagoshima 

JAPAN 
k6165161@kadai.jp 

 
 

Abstract: - This paper newly  proposes the robust RLS Wi ener FIR prediction algorit hm based on th e 
innovation theory for t he linear stochastic sy stems including with param eters. In the robu st RLS Wien er 
predictor, the following information is used. (1) The system matrices for the signal an d the d egraded 
signal. (2) The observation m atrices for the signal and the degraded signal. (3) The variance of the 
state for the degraded signal. (4) The cross-variance of the state for the signal with the state. (5) The 
variance of the observation noise.  As a step to obtain the robust RLS Wiener FIR prediction algorithm, this 
paper presents the robust prediction algorithm  of t he signal using the covariance infor mation etc. In the 
predictor, the following informati on is used. (1) The observation m atrices for the signal a nd the degra ded 
signal. (2) The variance of the state for the deg raded signal. (3) The auto-covariance inform ation of the 
state for the degraded signal. (4) The cross-covarian ce information of the state for the signal with that for the 
degraded signal. (5) The variance of t he observation noise. The estimation accuracy of the proposed robust  
RLS Wiener FIR predictor is superior to the existing RLS Wiener FIR predictor.   
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1 Introduction 

Finite impulse response (FIR) filter is known in 
the areas of the digital filter and the filter for signal 
or state esti mations. Concerning the digital filter, 
Wong, et al. [1], based on stochastic com putation, 
proposes the finite im pulse response digital filter  
with an improved scaling scheme. Nazaripou ya, et 
al. [2] designs the digital FIR filter by  using the 
convex and quasi-convex optimization methods. 
The digital FIR filter has the properties of  
minimum-phase, minimum-length, lower group 
delay with f ewer design parameters and faster 
convergence in com parison with to t he existing 
design techniques. 

From the aspects of the theory and applications, 
the robust prediction and filtering techniques have 
been investigated, e.g. [3]-[5]. In [3], by 
introducing an iteratively re-weighted least-squares 
optimization criterion, the robust Kalman filter is 
designed. The robust filte r is applied t o a problem 

in vision. I n [4], three different methods are 
proposed by designing the robust Kalman filter for 
outliers in t he one-step-ahead prediction of  the 
wind speed. In [ 5], for multi-sensor systems with 
the uncertainty parameters, a new robust Kalman  
prediction technique is proposed for compensating 
parametric uncertainty by fictitious noise. The 
approach is reduced to the robust Kal man 
prediction problem for the sy stem with the 
uncertain noise variance s, and the local and 
centralized robust Kalman predictors are proposed.  

The recursive least-squares (RLS) Wiener 
estimators use the complete information of the  
state-space model but the information of the input  
matrix and the input n oise variance [6]. For the 
discrete-time stochastic systems with the uncertain 
parameters, in the estim ation of the signal, the 
robust RLS Wiener estimators [7] and the robust 
RLS Wiener finite im pulse response filter [ 6] are 
proposed. The estimation accuracy of the robust  
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RLS Wiener esti mators [7] are superior to the 
robust Kalman filter [9] and the RLS Wiener filter 
[6]. The FIR Kal man filter [10]-[14] is l ess 
sensitive to the uncertainties in the state-space 
model. In Nakam ori [8] it is shown that, as the 
finite interval increases, the mean square-value  
(MSV) of the estimation errors by  the robust RLS 
Wiener FIR filter [ 8] becomes gradually small and 
approaches that by the r obust RLS Wiener filter 
[7].  

Nakamori [15] proposes the RLS Wie ner FIR 
prediction and filtering algorithms based on the  
innovation approach in linear discrete-time 
stochastic systems. Apart from the filter and 
smoother, the predictor is useful in t he prediction 
of the air pollution levels etc. [16]. Since the robust 
RLS Wiener FIR prediction problem is not referred 
in Nakamori [8], this paper newly  proposes the 
robust RLS Wiener FIR prediction al gorithm in 
Theorem 3, based on the i nnovation theory, for the 
linear discrete-time stochastic systems with the  
uncertain parameters. It is  assumed that the signal 
process is fitted to the auto-regressive (AR) model 
of the finite order. Also , the degraded signal, 
caused by the uncertain param eters in the  
observation and system matrices, is fitted to the AR 
model of the finite order. Theorem 1 proposes the 
equation, which the o ptimal impulses response 
function satisfies, in the robust RLS FIR prediction 
problem. Theorem 3 proposes the robust RLS 
Wiener FIR prediction algorithm which uses the  
following information. (1) The sy stem matrices for 
the signal ݖሺ݇ሻ and the degraded signal ̆ݖሺ݇ሻ. (2) 
The observation m atrices for the signal and the  
degraded signal. (3) The variance ܭ෱ሺ݇, ݇ሻ of the 
state ݔ෬ሺ݇ሻ  for the degraded signal. (4) The  
cross-variance ܭ௫௫෬ሺ݇, ݇ሻ of the state ݔሺ݇ሻ for the 
signal with the state ݔ෬ሺ݇ሻ. (5) The variance of the 
observation noise. As a step to the predictor in 
Theorem 3, Theorem  2 presents the robust RLS 
FIR prediction algorit hm of the signal. The 
predictor In Theore m 2 uses the following 
information. (1) The observation m atrices for the  
signal and th e degraded signal. (2) The variance 
of the s tate for the degraded sign al. (3) The 
auto-covariance information of the state for the 
degraded signal. (4) The cross-covarianc e 
information of the state for the signal with that for 
the degraded signal. (5) The varia nce of the  
observation noise.  

The prediction characteristics of the robust RLS 
Wiener FIR predictor are shown in comparison 
with those by  the RLS Wiener FIR predictor [15] 
and the robust RLS Wiener FIR filt er [8]. The 
estimation accuracy of the proposed r obust RLS 

Wiener FIR predictor is s uperior by far to t hat of 
the RLS Wiener FIR predictor [15].   

In this paper, the typos  in the rob ust RLS 
Wiener FIR filter [8] are also corrected.  
 
 
2 Robust least-squares FIR prediction 
problem 
Let an m-dimensional observation equation and an 
n-dimensional state equation be given by  

 

෬ሺ݇ሻݕ ൌ ሺ݇ሻݖ̆ ൅ ,ሺ݇ሻݒ
ሺ݇ሻݖ̆ ൌ ሜܪ ሺ݇ሻ̄ݔሺ݇ሻ,
ሜܪ ሺ݇ሻ ൌ ܪ ൅ Δܪሺ݇ሻ,
ሺ݇ݔ̄ ൅ 1ሻ ൌ Φሜ ሺ݇ሻ̄ݔሺ݇ሻ ൅ Γݓሺ݇ሻ,
Φሜ ሺ݇ሻ ൌ Φ ൅ ΔΦሺ݇ሻ,
ሻሿݏሺ்ݒሺ݇ሻݒሾܧ ൌ ௄ሺ݇ߜܴ െ ,ሻݏ
ሻሿݏሺ்ݓሺ݇ሻݓሾܧ ൌ ௄ሺ݇ߜܳ െ ,ሻݏ

 (1)

in linear disc rete-time stochastic systems with the 
uncertain quantities Δܪሺ݇ሻ  and ΔΦሺ݇ሻ  ሺ݇ሻݒ .
and ݓሺ݇ሻ  are the white obs ervation and input 
noises with the variances ܴ and ܳ respectively. 
Their auto-covariance functions are give n in (1) by 
use of the Kronecker delta function ߜ௄ሺ݇ െ  .ሻݏ
The state e quation for ̄ݔሺ݇ ൅ 1ሻ  includes the 
uncertain quantity ΔΦሺ݇ሻ  additionally to the 
system matrix Φሺ݇ሻ. Also, the  observation matrix 
ሜܪ ሺ݇ሻ  contains the uncertain quantit y Δܪሺ݇ሻ . 
Hence, ̆ݖሺ݇ሻ shows the devia ted trajectory from 
the nominal trajectory of the s ignal ݖሺ݇ሻ 
generated by the precise state-space model (2). In 
(1), as the sum of the d egraded signal ̆ݖሺ݇ሻ and 
the observation noise ݒሺ݇ሻ, the degraded observed 
value ݕ෬ሺ݇ሻ is obtained. Compared with (1), the 
precise state-space model is given by 

 
ሺ݇ሻݕ ൌ ሺ݇ሻݖ ൅ ,ሺ݇ሻݒ
ሺ݇ሻݖ ൌ ,ሺ݇ሻݔܪ
ሺ݇ݔ ൅ 1ሻ ൌ Φݔሺ݇ሻ ൅ Γݓሺ݇ሻ.

 (2)

In (2), ݖሺ݇ሻ is the signal to be esti mated. ܪ is an 
݉  by ݊  observation matrix, ݔሺ݇ሻ  is the state.  
The observation noise ݒሺ݇ሻ and the input  noise 
ሺ݇ሻ have the saݓ me auto-covariance functions as 
those in (1). It is assu med that the sequences of the 
signal and the observation noise are statistically  
independent and have zer o means. This paper, 
based on the  innovation approach, newly designs 
the robust RLS FIR predictor using the covariance 
information in Theorem 2 and the robust RLS 
Wiener FIR predictor in Theorem 3 for estimating 
the signal ݖሺ݇ሻ with the degraded observed value 
 ෬ሺ݇ሻ. Here, both the robust predictors do not useݕ
any information on the uncertain quantit ies ΔΦሺ݇ሻ 
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and Δܪሺ݇ሻ.  

Suppose that the sequence of the degraded signal 
ሺ݇ሻ is fitted to tݖ̆ he AR model of the finit e order 
ܰ as  

 
ሺ݇ሻݖ̆ ൌ െܽଵ̆ݖሺ݇ െ 1ሻ െ ܽଶ̆ݖሺ݇ െ 2ሻ⋯
െܽே̆ݖሺ݇ െ ܰሻ ൅ ݁̆ሺ݇ሻ,
ሻሿݏሾ݁̆ሺ݇ሻ்݁̆ሺܧ ൌ ෰ܳߜ௄ሺ݇ െ .ሻݏ

 
 

(3)

Let the degraded signal ̆ݖሺ݇ሻ be represented with 
the state ݔ෬ሺ݇ሻ by  

 

ሺ݇ሻݖ̆ ൌ ,෬ሺ݇ሻݔ෱ܪ

෬ሺ݇ሻݔ ൌ

ۏ
ێ
ێ
ێ
ۍ
෬ଵሺ݇ሻݔ
෬ଶሺ݇ሻݔ
⋮

෬ேିଵሺ݇ሻݔ
෬ேሺ݇ሻݔ ے

ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ

ሺ݇ሻݖ̆
ሺ݇ݖ̆ ൅ 1ሻ

⋮
ሺ݇ݖ̆ ൅ ܰ െ 2ሻ
ሺ݇ݖ̆ ൅ ܰ െ 1ሻے

ۑ
ۑ
ۑ
ې

,

෱ܪ ൌ ሾܫ௠ൈ௠ 0 0 ⋯ 0 0ሿ.

 (4)

Henceforth, the state equation for the state ݔ෬ሺ݇ሻ is 
expressed by  

 

ۏ
ێ
ێ
ێ
ۍ
෬ଵሺ݇ݔ ൅ 1ሻ
෬ଶሺ݇ݔ ൅ 1ሻ

⋮
෬ேିଵሺ݇ݔ ൅ 1ሻ
෬ேሺ݇ݔ ൅ 1ሻ ے

ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
0 ௠ൈ௠ܫ 0
0 0 ௠ൈ௠ܫ
⋮ ⋮ ⋮
0 0 0

െ ෬ܽே ෬ܽேିଵ ෬ܽேିଶ
⋯ 0
⋯ 0
⋱ ⋮
⋯ ௠ൈ௠ܫ
⋯ െ෬ܽଵ ے

ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ۍ
෬ଵሺ݇ሻݔ
෬ଶሺ݇ሻݔ
⋮

෬ேିଵሺ݇ሻݔ
෬ேሺ݇ሻݔ ے

ۑ
ۑ
ۑ
ې

൅

ۏ
ێ
ێ
ێ
ۍ
0
0
⋮
0

ے௠ൈ௠ܫ
ۑ
ۑ
ۑ
ې

,ሺ݇ሻߞ

ሺ݇ሻߞ ൌ ݁̆ሺ݇ ൅ ܰሻ,
ሻሿݏሺ்ߞሺ݇ሻߞሾܧ ൌ ෰ܳߜ௄ሺ݇ െ .ሻݏ

 (5)

Let ܭ෱ሺ݇, ሻݏ ൌ ෱ሺ݇ܭ െ ሻݏ  represent the 
auto-covariance function of the sta te ݔ෬ሺ݇ሻ  in 
wide-sense stationary stochastic sy stems [17]. 
,෱ሺ݇ܭ ሻ is expressed in the semݏ i-degenerate kernel 

form of 

 
,෱ሺ݇ܭ ሻݏ ൌ ቊ

ሻ,0ݏሺ்ܤሺ݇ሻܣ ൑ ݏ ൑ ݇,
ሻ,0ݏሺ்ܣሺ݇ሻܤ ൑ ݇ ൑ ,ݏ

ሺ݇ሻܣ ൌ Φ෱௞, ሻݏሺ்ܤ ൌ Φ෱ି௦ܭ෱ሺݏ, .ሻݏ
 (6)

Here, Φ෱  is the sy stem matrix for the state ݔ෬ሺ݇ሻ. 
From (5), the system matrix Φ෱  is expressed by 

 

Φ෱ ൌ

ۏ
ێ
ێ
ێ
ۍ
0 ௠ൈ௠ܫ 0
0 0 ௠ൈ௠ܫ
⋮ ⋮ ⋮
0 0 0

െ ෬ܽே െ ෬ܽேିଵ െ ෬ܽேିଶ
⋯ 0
⋯ 0
⋱ ⋮
⋯ ௠ൈ௠ܫ
⋯ െ෬ܽଵ ے

ۑ
ۑ
ۑ
ې

.

 (7)

By putting ܭ௭෬ሺ݇, ሻݏ ൌ ௭෬ሺ݇ܭ െ ሻݏ ൌ  ,ሻሿݏሺ்ݖሺ݇ሻ̆ݖሾ̆ܧ
the auto-variance function ܭ෱ሺ݇, ݇ሻ  of the state  
  ෬ሺ݇ሻ is expressed byݔ

 

,෱ሺ݇ܭ ݇ሻ ൌ ܧ

ۏ
ێ
ێ
ێ
ێ
ۍ

ۏ
ێ
ێ
ێ
ۍ

ሺ݇ሻݖ̆
ሺ݇ݖ̆ ൅ 1ሻ

⋮
ሺ݇ݖ̆ ൅ ܰ െ 2ሻ
ሺ݇ݖ̆ ൅ ܰ െ 1ሻے

ۑ
ۑ
ۑ
ې

ൈ ሾ்̆ݖሺ݇ሻ ሺ்݇ݖ̆ ൅ 1ሻ ⋯
ሺ்݇ݖ̆ ൅ ܰ െ 2ሻ ሺ்݇ݖ̆ ൅ ܰ െ 1ሻሿ

ൌ

ۏ
ێ
ێ
ێ
ۍ

௭෬ሺ0ሻܭ ௭෬ሺെ1ሻܭ ⋯
௭෬ሺ1ሻܭ ௭෬ሺ0ሻܭ ⋯
⋮ ⋮ ⋱

௭෬ሺܰܭ െ 2ሻ ௭෬ሺܰܭ െ 3ሻ ⋯
௭෬ሺܰܭ െ 1ሻ ௭෬ሺܰܭ െ 2ሻ ⋯

௭෬ሺെܰܭ ൅ 2ሻ ௭෬ሺെܰܭ ൅ 1ሻ
௭෬ሺെܰܭ ൅ 3ሻ ௭෬ሺെܰܭ ൅ 2ሻ

⋮ ⋮
௭෬ሺ0ሻܭ ௭෬ሺെ1ሻܭ
௭෬ሺ1ሻܭ ௭෬ሺ0ሻܭ ے

ۑ
ۑ
ۑ
ې

.

 (8)

With ܭ௭෬ሺ݇ െ ሻ, the Yule-Walker equation for tݏ he 
AR parameters is formulated as  
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,෡ሺ݇ܭ ݇ሻ

ۏ
ێ
ێ
ێ
ێ
ۍ ܽଵ

்

ܽଶ
்

⋮
ܽேିଵ
்

ܽே
் ے
ۑ
ۑ
ۑ
ۑ
ې

ൌ െ

ۏ
ێ
ێ
ێ
ێ
ۍ ௭෬ܭ

்ሺ1ሻ
௭෬ܭ
்ሺ2ሻ
⋮

௭෬ܭ
்ሺܰ െ 1ሻ
௭෬ܭ
்ሺܰሻ ے

ۑ
ۑ
ۑ
ۑ
ې

,

,෡ሺ݇ܭ ݇ሻ

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

௭෬ሺ0ሻܭ ௭෬ሺ1ሻܭ ⋯
௭෬ܭ
்ሺ1ሻ ௭෬ሺ0ሻܭ ⋯
⋮ ⋮ ⋱

௭෬ܭ
்ሺܰ െ 2ሻ ௭෬ܭ

்ሺܰ െ 3ሻ ⋯
௭෬ܭ
்ሺܰ െ 1ሻ ௭෬ܭ

்ሺܰ െ 2ሻ ⋯
௭෬ሺܰܭ െ 2ሻ ௭෬ሺܰܭ െ 1ሻ
௭෬ሺܰܭ െ 3ሻ ௭෬ሺܰܭ െ 2ሻ

⋮ ⋮
௭෬ሺ0ሻܭ ௭෬ሺ1ሻܭ
௭෬ܭ
்ሺ1ሻ ௭෬ሺ0ሻܭ ے

ۑ
ۑ
ۑ
ې

.

 (9)

Let ܭ௫௫෬ሺ݇, ሻݏ ൌ ௫௫෬ሺ݇ܭ െ ሻݏ ൌ ሻሿݏ෬்ሺݔሺ݇ሻݔሾܧ  be 
the cross-covariance function of the  state ݔሺ݇ሻ 
with the state ݔ෬ሺݏሻ  in wide-sense stationary 
stochastic systems. ܭ௫௫෬ሺ݇,  ሻ is expressed in theݏ
functional form of 

 
,௫௫෬ሺ݇ܭ ሻݏ ൌ ሻ,0ݏሺ்ߚሺ݇ሻߙ ൑ ݏ ൑ ݇,
ሺ݇ሻߙ ൌ Φ௞, ሻݏሺ்ߚ ൌ Φି௦ܭ௫௫෬ሺݏ, .ሻݏ

 (10)

Here, from (2), Φ is the s ystem matrix for the 
state ݔሺ݇ሻ.  

Under the above prerequisites on the signal and 
the degraded signal, etc., Theorem 1, based on the 
innovation theory, presents the equation, which the 
optimal impulse response function satisfies, in the 
robust RLS FIR prediction problem.  
Theorem 1 Let the ݈-step ahead FIR prediction 
estimate ݔොሺ݇ ൅ ݈|݇ െ ܮ ൅ 1ሻ of the state ݔሺ݇ ൅ ݈ሻ 
be expressed by 

 

ොሺ݇ݔ ൅ ݈|݇ െ ܮ ൅ 1ሻ

ൌ ෍ ݃

௞

௜ୀ௞ି௅ାଵ

ሺ݇, ݅ሻ߭ሺ݅ሻ,

߭ሺ݅ሻ ൌ ෬ሺ݅ሻݕ
െܪ෱Φ෱ݔ෬෠ሺ݅ െ 1|݅ െ 1 െ ܮ ൅ 1ሻ,

 (11)

in terms of the innovation process ሼ߭ሺ݅ሻ, ݇ െ ܮ ൅
1 ൑ ݅ ൑ ݇ሽ . In (11), ݃ሺ݇, ݅ሻ  represents the 
time-varying impulse response function and ݔ෬෠ሺ݅ െ
1|݅ െ 1 െ ܮ ൅ 1ሻ is the FIR filtering estimate of 
the state ݔ෬ሺ݅ െ 1ሻ. Let the FIR fi ltering estimate 

݇|෬෠ሺ݇ݔ െ ܮ ൅ 1ሻ of ݔ෬ሺ݇ሻ be given by  

 

݇|෬෠ሺ݇ݔ െ ܮ ൅ 1ሻ

ൌ ෍ ݃଴

௞

௜ୀ௞ି௅ାଵ

ሺ݇, ݅ሻ߭ሺ݅ሻ 
(12)

as a linear com bination of the im pulse response 
function ݃଴ሺ݇, ݅ሻ  and the i nnovation sequence 
ሼ߭ሺ݅ሻ, ݇ െ ܮ ൅ 1 ൑ ݅ ൑ ݇ሽ . Then the optim al 
impulse response function ݃ሺ݇,   ሻ satisfiesݏ

 

݃ሺ݇, ሻݏሻΛሺݏ ൌ ௫௫෬ሺ݇ܭ ൅ ݈, ෱்ܪሻݏ

െ ෍ ݃ሺ݇, ݅ሻΛሺ݅ሻ݃଴
்

௦ିଵ

௜ୀ௦ିଵି௅ାଵ

ሺݏ െ 1, ݅ሻ

ൈ Φ෱்ܪ෱்,
௫௫෬ሺ݇ܭ ൅ ݈, ෱்ܪሻݏ ൌ ௫௭෬ሺ݇ܭ ൅ ݈, .ሻݏ

(13)

In (13), ܭ௫௫෬ሺ݇ ൅ ݈,  ෱் is equivalent to theܪሻݏ
cross-covariance function of the state ݔሺ݇ ൅ ݈ሻ 
with the degraded signal ̆ݖሺݏሻ, ܭ௫௭෬ሺ݇ ൅ ݈,   .ሻݏ
Proof  
Consider the estimation problem, which minimizes 
the MSV 

 
ܬ ൌ ሺ݇ݔ||ሾܧ ൅ ݈ሻ
െݔොሺ݇ ൅ ݈|݇ െ ܮ ൅ 1ሻ||ଶሿ

 (14)

of the FIR prediction errors. From  an orthogonal 
projection lemma [17] 

 

ሺ݇ݔ ൅ ݈ሻ

െ ෍ ݃

௞

௜ୀ௞ି௅ାଵ

ሺ݇, ݅ሻ߭ሺ݅ሻ ٣ ߭ሺݏሻ,

݇ െ ܮ ൅ 1 ൑ ݏ ൑ ݇,

 (15)

the impulse response function ݃ሺ݇, ݅ሻ satisfies the 
Wiener-Hopf equation 

 

ሺ݇ݔሾܧ ൅ ݈ሻ்߭ሺݏሻሿ

ൌ ෍ ݃

௞

௜ୀ௞ି௅ାଵ

ሺ݇, ݅ሻܧሾ߭ሺ݅ሻ்߭ሺݏሻሿ,

݇ െ ܮ ൅ 1 ൑ ݏ ൑ ݇.

 (16)

In (15), ‘ ٣ ’ denotes the notation of the  
orthogonality. Let the co variance function of t he 
innovation process be given by  

ሻሿݏሾ߭ሺ݅ሻ்߭ሺܧ  ൌ Λሺ݅ሻߜ௄ሺ݅ െ ሻ. (17)ݏ

From (16), (17) and the expression for the 
innovation process ߭ሺݏሻ, ݃ሺ݇,  ሻ satisfiesݏ
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݃ሺ݇, ሻݏሻΛሺݏ ൌ ሺ݇ݔሾܧ ൅ ݈ሻ்߭ሺݏሻሿ
ൌ ሺ݇ݔሾܧ ൅ ݈ሻሺݕ෬ሺݏሻ
െܪ෱Φ෱ݔ෬෠ሺݏ െ ݏ|1 െ 1 െ ܮ ൅ 1ሻሻ்ሿ
ൌ ሺ݇ݔሾܧ ൅ ݈ሻݕ෬்ሺݏሻሿ
െܧሾݔሺ݇ ൅ ݈ሻ
ൈ ݏ෬෠்ሺݔ െ ݏ|1 െ 1 െ ܮ ൅ 1ሻሿΦ෱்ܪ෱்.

 (18)

The term ܧሾݔሺ݇ ൅ ݈ሻݕ෬்ሺݏሻሿ is developed as  

 

ሺ݇ݔሾܧ ൅ ݈ሻݕ෬்ሺݏሻሿ
ൌ ሺ݇ݔሾܧ ൅ ݈ሻሺ̆ݖሺݏሻ ൅ ሻሻ்ሿݏሺݒ
ൌ ሺ݇ݔሾܧ ൅ ݈ሻ்̆ݖሺݏሻሿ
ൌ ሺ݇ݔሾܧ ൅ ݈ሻݔ෬்ሺݏሻሿܪ෱்

ൌ ௫௫෬ሺ݇ܭ ൅ ݈, .෱்ܪሻݏ

 (19)

From (18) and (19), the o ptimal impulse response 
function ݃ሺ݇,   .ሻ satisfies (13)ݏ

(Q.E.D.)   
 

Starting with (13), the robust R LS FIR 
prediction algorithm using the  covariance 
information etc. is presented in Theore m 2. Then 
Theorem 3 proposes the robust RLS Wiener FIR 
prediction algorithm.  
 
 
3 Robust RLS FIR predictor using 
covariance information and robust 
RLS Wiener FIR predictor 
Theorem 2 proposes the robust RLS FIR prediction 
algorithm using the covariance inform ation 
,෱ሺ݇ܭ  ෬ሺ݇ሻ for the degraded signalݔ ሻ of the stateݏ
ሺ݇ሻݖ̆  and the cross-covariance information 
,௫௫෬ሺ݇ܭ  ሺ݇ሻݖ ሺ݇ሻ for the signalݔ ሻ of the stateݏ
with the state ݔ෬ሺݏሻ for the degraded signal ̆ݖሺݏሻ, 
etc.  
Theorem 2 Let the s tate equation and the  
observation equation, which contains t he uncertain 
quantities ΔΦ and Δܪ respectively, be given by 
(1). Let ܪ represent the observation matrix for the 
signal ݖሺ݇ሻ. Let Φ෱  and ܪ෱ represent the s ystem 
and observation m atrices respectively for the 
degraded signal ̆ݖሺ݇ሻ, fitted t o the AR m odel (3). 
Let the variance ܭ෱ሺ݇, ݇ሻ of the state ݔ෬ሺ݇ሻ for the 
degraded signal ̆ݖሺ݇ሻ  be given. Let the 
auto-covariance function ܭ෱ሺ݇, ሻݏ  of ݔ෬ሺ݇ሻ  be 
expressed by (6) in ter ms of ܣሺ݇ሻ and ܤሺݏሻ. Let 
the cross-covariance function ܭ௫௫෬ሺ݇, ሻݏ  of ݔሺ݇ሻ 
with ݔ෬ሺݏሻ be given by (10) in terms of ߙሺ݇ሻ and 
 ሻ. Let the variance of the white observationݏሺߚ
noise ݒሺ݇ሻ be ܴ. Then the robust RLS estimation 
algorithm for the ݈ -step ahead FIR prediction 
estimate ̂ݖሺ݇ ൅ ݈|݇ െ ܮ ൅ 1ሻ of the signal ݖሺ݇ ൅

݈ሻ  consists of (20)-(40)  in linear dis crete-time 
stochastic systems.  
݈-step ahead FIR prediction estimate of the signal 
ሺ݇ݖ ൅ ݈ሻ: ̂ݖሺ݇ ൅ ݈|݇ െ ܮ ൅ 1ሻ  

 
ሺ݇ݖ̂ ൅ ݈|݇ െ ܮ ൅ 1ሻ
ൌ ොሺ݇ݔܪ ൅ ݈|݇ െ ܮ ൅ 1ሻ (20)

݈-step ahead FIR prediction esti mate of the state  
ሺ݇ݔ ൅ ݈ሻ: ݔොሺ݇ ൅ ݈|݇ െ ܮ ൅ 1ሻ 

ොሺ݇ݔ  ൅ ݈|݇ െ ܮ ൅ 1ሻ
ൌ ሺ݇ߙ ൅ ݈ሻ݁ሺ݇ሻ (21)

FIR filtering estimate of the signal ݖሺ݇ሻ: ̂ݖሺ݇|݇ െ
ܮ ൅ 1ሻ  

݇|ሺ݇ݖ̂  െ ܮ ൅ 1ሻ ൌ ݇|ොሺ݇ݔܪ െ ܮ
൅ 1ሻ (22)

FIR filtering esti mate of the state ݔሺ݇ሻ: ݔොሺ݇|݇ െ
ܮ ൅ 1ሻ 

݇|ොሺ݇ݔ  െ ܮ ൅ 1ሻ ൌ ሺ݇ሻ݁ሺ݇ሻ (23)ߙ

Initial condition of ݔොሺ݇|݇ െ ܮ ൅ 1ሻ  at ݇ ൌ ܮ : 
  1ሻ|ܮොሺݔ
FIR filtering estimate of the state ݔ෬ሺ݇ሻ: ݔ෬෠ሺ݇|݇ െ
ܮ ൅ 1ሻ 

݇|෬෠ሺ݇ݔ  െ ܮ ൅ 1ሻ ൌ ሺ݇ሻ݁଴ሺ݇ሻ (24)ܣ

Initial condition of ݔ෬෠ሺ݇|݇ െ ܮ ൅ 1ሻ at ݇ ൌ  :ܮ
  1ሻ|ܮ෬෠ሺݔ
Recursive equation for ݁ሺ݇ሻ: 

 

݁ሺ݇ሻ ൌ ݁ሺ݇ െ 1ሻ ൅ ෬ሺ݇ሻݕሺ݇ሻሺܬ
െܪ෱ܣሺ݇ሻ݁଴ሺ݇ െ 1ሻሻ
െܬሺ݇ െ ෬ሺ݇ݕሻሺܮ െ ሻܮ
െܪ෱ܣሺ݇ െ ሻ݁଴ሺ݇ܮ െ ܮ െ 1ሻሻ

 (25)

Initial condition of ݁ሺ݇ሻ at ݇ ൌ   ሻܮሺ݁ :ܮ
Recursive equation for ݁଴ሺ݇ሻ: 

 

݁଴ሺ݇ሻ ൌ ݁଴ሺ݇ െ 1ሻ ൅ ෬ሺ݇ሻݕ଴ሺ݇ሻሺܬ
െܪ෱ܣሺ݇ሻ݁଴ሺ݇ െ 1ሻሻ
െܬ଴ሺ݇ െ ෬ሺ݇ݕሻሺܮ െ ሻܮ
െܪ෱ܣሺ݇ െ ሻ݁଴ሺ݇ܮ െ ܮ െ 1ሻሻ

 (26)

Initial condition of ݁଴ሺ݇ሻ at ݇ ൌ   ሻܮ଴ሺ݁ :ܮ
Equation for ܬሺ݇ሻ: 

 
ሺ݇ሻܬ ൌ ሾ்ߚሺ݇ሻܪ෱்

െݎሺ݇ െ 1ሻ்ܣሺ݇ െ 1ሻΦ෱்ܪ෱்ሿΛିଵሺ݇ሻ
(27)

 

 
ሺ݇ሻݎ ൌ ሺ݇ݎ െ 1ሻ ൅ ଴ܬሺ݇ሻΛሺ݇ሻܬ

்ሺ݇ሻ
െܬሺ݇ െ ሻΛሺ݇ܮ െ ଴ܬሻܮ

்ሺ݇ െ ሻܮ
 (28)

Equation for ܬ଴ሺ݇ሻ: 
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଴ሺ݇ሻܬ ൌ ሾ்ܤሺ݇ሻܪ෱்

െݎ଴ሺ݇ሻ்ܣሺ݇ െ 1ሻΦ෱்ܪ෱்ሿΛିଵሺ݇ሻ
 (29)

Recursive equation for ݎ଴ሺ݇ሻ: 

 
଴ሺ݇ሻݎ ൌ ଴ሺ݇ݎ െ 1ሻ
൅ܬ଴ሺ݇ሻΛሺ݇ሻܬ଴

்ሺ݇ሻ
െܬ଴ሺ݇ െ ሻΛሺ݇ܮ െ ଴ܬሻܮ

்ሺ݇ െ ሻܮ
 (30)

Initial condition of ݎ଴ሺ݇ሻ at ݇ ൌ   ሻܮ଴ሺݎ :ܮ
Equation for Λሺ݇ሻ: 

 
Λሺ݇ሻ ൌ ,෱ሺ݇ܭ෱ܪ ݇ሻܪ෱் ൅ ܴ
െܪ෱ܣሺ݇ሻݎ଴ሺ݇ െ 1ሻ்ܣሺ݇ሻܪ෱்

 (31)

Initial condition of FIR filtering estimate ݔොሺ݇|݇ െ
ܮ ൅ 1ሻ of ݔሺ݇ሻ at ݇ ൌ   1ሻ|ܮොሺݔ :ܮ

1ሻ|ܮොሺݔ  ൌ ሻ (32)ܮሻ݁ሺܮሺߙ

Recursive equation for ݁ሺܮሻ:  

 
݁ሺܮሻ ൌ ݁ሺܮ െ 1ሻ ൅ ሻܮ෬ሺݕሻሺܮሺܬ
െܪ෱ܣሺܮሻ݁଴ሺܮ െ 1ሻሻ,
݁ሺ0ሻ ൌ 0

 (33)

Equation for ܬሺܮሻ: 

 
ሻܮሺܬ ൌ ሺ்ߚሺܮሻܪ෱்

െݎሺܮ െ 1ሻ்ܣሺܮ െ 1ሻ்ܣሺ1ሻܪ෱்ሻ

ൈ Λ
ିଵ
ሺܮሻ

 (34)

Recursive equation for ݎሺܮሻ:  

ሻܮሺݎ  ൌ ܮሺݎ െ 1ሻ ൅ ଴ܬሻܮሻΛሺܮሺܬ
்
ሺܮሻ,

ሺ0ሻݎ ൌ 0
 (35)

Initial condition of FIR filtering estimate ݔ෬෠ሺ݇|݇ െ
ܮ ൅ 1ሻ of ݔ෬ሺ݇ሻ: at ݇ ൌ  1ሻ|ܮ෬෠ሺݔ :ܮ

1ሻ|ܮ෬෠ሺݔ  ൌ ሻ݁଴ሺ݇ሻ (36)ܮሺܣ

Recursive equation for ݁଴ሺܮሻ:  

 
݁଴ሺܮሻ ൌ ݁଴ሺܮ െ 1ሻ ൅ ሻܮ෬ሺݕሻሺܮ଴ሺܬ

െܪ෱ܣሺܮሻ݁଴ሺܮ െ 1ሻሻ,
݁଴ሺ0ሻ ൌ 0

 (37)

Equation for ܬ଴ሺܮሻ: 

 
ሻܮ଴ሺܬ ൌ ሺ்ܤሺܮሻܪ෱்

െݎ଴ሺܮ െ 1ሻ்ܣሺܮሻܪ෱்ሻΛ
ିଵ
ሺܮሻ

 (38)

Recursive equation for ݎ଴ሺܮሻ:  

 
ሻܮ଴ሺݎ ൌ ܮ଴ሺݎ െ 1ሻ

൅ܬ଴ሺܮሻΛ଴ሺܮሻܬ଴
்
ሺܮሻ,

଴ሺ0ሻݎ ൌ 0

 (39)

Equation for Λሺܮሻ: 

 Λሺܮሻ ൌ ,ܮ෱ሺܭ෱ܪ ෱்ܪሻܮ ൅ ܴ
െܪ෱ܣሺܮሻݎ଴ሺܮ െ 1ሻ்ܣሺܮሻܪ෱்

 (40)

Proof of Theorem 2 is deferred to Appendix A.  
Based on t he robust RLS FIR prediction 

algorithm in Theorem 2, Theorem 3 presents the  
robust RLS Wiener FIR prediction algorithm.  
Theorem 3 Let the state and the  observation 
equations, including the uncertain quantities ΔΦ 
and Δܪ be given by (1). Let  Φ and ܪ represent 
the system and observation m atrices respectively 
for the signal ݖሺ݇ሻ. Let Φ෱  and ܪ෱ represent the 
system and observation matrices respectively for 
the degraded signal ̆ݖሺ݇ሻ, which is fitted to the AR 
model (3). L et the variance ܭ෱ሺ݇, ݇ሻ of the state  
෬ሺ݇ሻݔ  for the degraded signal ̆ݖሺ݇ሻ  and the 
cross-variance ܭ௫௫෬ሺ݇, ݇ሻ of the state ݔሺ݇ሻ for the 
signal ݖሺ݇ሻ with the state ݔ෬ሺ݇ሻ be given. Let the 
variance of t he white obs ervation noise ݒሺ݇ሻ be 
ܴ . Then the  robust RL S Wiener estim ation 
algorithm for the ݈ -step ahead FIR prediction 
estimate ̂ݖሺ݇ ൅ ݈|݇ െ ܮ ൅ 1ሻ of the signal ݖሺ݇ ൅
݈ሻ  consists of (41)-(57)  in linear dis crete-time 
stochastic systems.  
݈-step ahead FIR prediction estimate of the signal 
ሺ݇ݖ ൅ ݈ሻ: ̂ݖሺ݇ ൅ ݈|݇ െ ܮ ൅ 1ሻ  

 
ሺ݇ݖ̂ ൅ ݈|݇ െ ܮ ൅ 1ሻ
ൌ ොሺ݇ݔܪ ൅ ݈|݇ െ ܮ ൅ 1ሻ (41)

݈-step ahead FIR prediction esti mate of the state  
ሺ݇ݔ ൅ ݈ሻ: ݔොሺ݇ ൅ ݈|݇ െ ܮ ൅ 1ሻ 

 
ොሺ݇ݔ ൅ ݈|݇ െ ܮ ൅ 1ሻ
ൌ Φ௟ݔොሺ݇|݇ െ ܮ ൅ 1ሻ

 (42)

FIR filtering estimate of the signal ݖሺ݇ሻ: ̂ݖሺ݇|݇ െ
ܮ ൅ 1ሻ  

݇|ሺ݇ݖ̂  െ ܮ ൅ 1ሻ ൌ ݇|ොሺ݇ݔܪ െ ܮ
൅ 1ሻ (43)

FIR filtering esti mate of the state ݔሺ݇ሻ: ݔොሺ݇|݇ െ
ܮ ൅ 1ሻ 

 

݇|ොሺ݇ݔ െ ܮ ൅ 1ሻ
ൌ Φݔොሺ݇ െ 1|݇ െ 1 െ ܮ ൅ 1ሻ
൅ܩሺ݇ሻሺݕ෬ሺ݇ሻ
െܪ෱Φ෱ݔ෬෠ሺ݇ െ 1|݇ െ 1 െ ܮ ൅ 1ሻሻ
െΦ௅ܩሺ݇ െ ෬ሺ݇ݕሻሺܮ െ ሻܮ െ ෱Φ෱ܪ

ൈ ෬෠ሺ݇ݔ െ ܮ െ 1|݇ െ ܮ െ 1 െ ܮ ൅ 1ሻሻ

(44)

Initial condition of ݔොሺ݇|݇ െ ܮ ൅ 1ሻ  at ݇ ൌ ܮ : 
  1ሻ|ܮොሺݔ
FIR filtering estimate of the state ݔ෬ሺ݇ሻ: ݔ෬෠ሺ݇|݇ െ
ܮ ൅ 1ሻ  
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݇|෬෠ሺ݇ݔ െ ܮ ൅ 1ሻ
ൌ Φ෱ݔ෬෠ሺ݇ െ 1|݇ െ 1 െ ܮ ൅ 1ሻ
൅ܩ଴ሺ݇ሻሺݕ෬ሺ݇ሻ
െܪ෱Φ෱ݔ෬෠ሺ݇ െ 1|݇ െ 1 െ ܮ ൅ 1ሻሻ
െΦ௅ܩ଴ሺ݇ െ ෬ሺ݇ݕሻሺܮ െ ሻܮ െ ෱Φ෱ܪ

ൈ ෬෠ሺ݇ݔ െ ܮ െ 1|݇ െ ܮ െ 1 െ ܮ ൅ 1ሻሻ

(45)

Initial condition of ݔ෬෠ሺ݇|݇ െ ܮ ൅ 1ሻ  at ݇ ൌ ܮ : 
  1ሻ|ܮ෬෠ሺݔ
FIR filter gain for ݔොሺ݇|݇ െ ܮ ൅ 1ሻ: ܩሺ݇ሻ 

 
ሺ݇ሻܩ ൌ ሾܭ௫௫෬ሺ݇, ݇ሻܪ෱்

െΦܵሺ݇ െ 1ሻΦ෱்ܪ෱்ሿΛିଵሺ݇ሻ
 (46)

FIR filter gain for ݔ෬෠ሺ݇|݇ െ ܮ ൅ 1ሻ: ܩ଴ሺ݇ሻ 

 
଴ሺ݇ሻܩ ൌ ሾܭ෱ሺ݇, ݇ሻܪ෱்

െΦ෱ܵ଴ሺ݇ െ 1ሻΦ෱்ܪ෱்ሿΛିଵሺ݇ሻ
 (47)

Equation for Λሺ݇ሻ: 

 
Λሺ݇ሻ ൌ ܴ ൅ ,෱ሺ݇ܭ෱ܪ ݇ሻܪ෱்

െܪ෱Φ෱ܵ଴ሺ݇ െ 1ሻΦ෱்ܪ෱்
 (48)

Recursive equation for ܵሺ݇ሻ:  

 

ܵሺ݇ሻ ൌ Φܵሺ݇ െ 1ሻΦ෱்

൅ܩሺ݇ሻΛሺ݇ሻܩ଴
்ሺ݇ሻ

െΦ௅ܩሺ݇ െ ሻΛሺ݇ܮ െ ଴ܩሻܮ
்ሺ݇ െ ሻܮ

ൈ ሺΦ்ሻ௅

 (49)

Initial condition of ܵሺ݇ሻ at ݇ ൌ   ሻܮሺܵ :ܮ
Recursive equation for ܵ଴ሺ݇ሻ:  

 

ܵ଴ሺ݇ሻ ൌ Φ෱ܵ଴ሺ݇ െ 1ሻΦ෱்

൅ܩ଴ሺ݇ሻΛሺ݇ሻܩ଴
்ሺ݇ሻ

െΦ෱௅ܩ଴ሺ݇ െ ሻΛሺ݇ܮ െ ଴ܩሻܮ
்ሺ݇ െ ሻܮ

ൈ ሺΦ෱்ሻ௅

 (50)

Initial condition of ܵ଴ሺ݇ሻ at ݇ ൌ   ሻܮ଴ሺܵ :ܮ
Recursive equation for ݔොሺ1|ܮሻ: 

 
1ሻ|ܮොሺݔ ൌ Φݔොሺܮ െ 1|1ሻ

൅ܩሺܮሻሺݕ෬ሺܮሻ െ ܮ෬෠ሺݔ෱Φ෱ܪ െ 1|1ሻሻ,
ොሺ0|1ሻݔ ൌ 0

 (51)

Filter gain for ݔොሺ1|ܮሻ in (51): ܩሺܮሻ  

 
ሻܮሺܩ ൌ ሾܭ௫௭෬ሺܮ, ሻܮ

െΦܵሺܮ െ 1ሻΦ෱்ܪ෱்ሿΛ
ିଵ
ሺܮሻ,

,ܮ௫௭෬ሺܭ ሻܮ ൌ ,ܮ௫௫෬ሺܭ ෱்ܪሻܮ
 (52)

Recursive equation for ݔ෬෠ሺ1|ܮሻ: 

 
1ሻ|ܮ෬෠ሺݔ ൌ Φ෱ݔ෬෠ሺܮ െ 1|1ሻ

൅ܩ଴ሺܮሻሺݕ෬ሺܮሻ െ ܮ෬෠ሺݔ෱Φ෱ܪ െ 1|1ሻሻ,
෬෠ሺ0|1ሻݔ ൌ 0

 (53)

Filter gain for ݔොሺ1|ܮሻ in (53): ܩ଴ሺܮሻ 

 
ሻܮ଴ሺܩ ൌ ሾܭ෱ሺܮ, ෱்ܪሻܮ

െΦ෱ܵ଴ሺܮ െ 1ሻΦ෱்ܪ෱்ሿΛ
ିଵ
ሺܮሻ

 (54)

Equation for Λሺܮሻ: 

 
Λሺܮሻ ൌ ܴ ൅ ,ܮ෱ሺܭ෱ܪ ෱்ܪሻܮ

െܪ෱Φ෱ܵ଴ሺܮ െ 1ሻΦ෱்ܪ෱்
 (55)

Recursive equation for ܵሺܮሻ:  

 
ܵሺܮሻ ൌ Φܵሺܮ െ 1ሻΦ෱்

൅ܩሺܮሻΛሺܮሻܩ଴
்
ሺܮሻ,

ܵሺ0ሻ ൌ 0

 (56)

Recursive equation for ܵ଴ሺܮሻ: 

 
ܵ଴ሺܮሻ ൌ Φ෱ܵ଴ሺܮ െ 1ሻΦ෱்

൅ܩ଴ሺܮሻΛሺܮሻܩ଴
்
ሺܮሻ,

ܵ଴ሺ0ሻ ൌ 0

 (57)

Proof of Theorem 3 is deferred to Appendix B.  
Necessary conditions on the stabilit y of the 

robust RLS Wiener FIR prediction and filtering 
algorithms are as follows.  
(1) All the real parts in the eigenvalues of the 
matrix Φ are negative.  
(2) All the real parts in the eigenvalues of the 
matrix Φ෱ െ ෱Φ෱ܪ଴ሺ݇ሻܩ  are negative.  
(3)ܴ ൅ ,෱ሺ݇ܭ෱ሾܪ ݇ሻ െ Φ෱ܵ଴ሺ݇ െ 1ሻΦ෱்ሿܪ෱் ൐ 0  
(4) All the real parts in the eigenvalues of the 
matrix Φ෱ െ ෱Φ෱ܪ଴ሺ݇ሻܩ  are negative.  
(5)ܴ ൅ ,෱ሺ݇ܭ෱ሾܪ ݇ሻ െ Φ෱ܵ଴ሺ݇ െ 1ሻΦ෱்ሿܪ෱் ൐ 0  

Section 4 proposes the re cursive algorithm for 
the prediction error variance function of the robust 
RLS Wiener FIR predictor presented in Theorem 3. 
Also, the existence of the robust  RLS Wiener FIR 
prediction estimate ̂ݖሺ݇ ൅ ݈|݇ െ ܮ ൅ 1ሻ  of the 
signal ݖሺ݇ ൅ ݈ሻ is shown.  
 
 
4 Prediction error variance function 
of signal 
Let the variance function of t he FIR prediction 
error ݖሺ݇ ൅ ݈ሻ െ ሺ݇ݖ̂ ൅ ݈|݇ െ ܮ ൅ 1ሻ	be denoted by 
෨ܲ௭ሺ݇ ൅ ݈ሻ . Let the auto-covariance functi on 
,ሺ݇ܭ  ሺ݇ሻ be expressed byݔ ሻ of the stateݏ

 

,ሺ݇ܭ ሻݏ

ൌ ቊ
ሻ,0ݏ௫்ሺܤ௫ሺ݇ሻܣ ൑ ݏ ൑ ݇,
ሻ,0ݏ௫்ሺܣ௫ሺ݇ሻܤ ൑ ݇ ൑ ,ݏ

௫ሺ݇ሻܣ ൌ ሺ݇ሻߙ ൌ Φ௞,
ሻݏ௫்ሺܤ ൌ Φି௦ܭሺݏ, .ሻݏ

 (58)
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From (16) and (A.10) , the FIR pred iction error 
variance function ෨ܲ௭ሺ݇ሻ is formulated as 

 

෨ܲ௭ሺ݇ ൅ ݈ሻ ൌ ሺ݇ܭሺܪ ൅ ݈, ݇ ൅ ݈ሻ
െܧሾݔොሺ݇ ൅ ݈|݇ െ ܮ ൅ 1ሻ
ൈ ො்ሺ݇ݔ ൅ ݈|݇ െ ܮ ൅ 1ሻሿሻ்ܪ

ൌ ,ሺ݇ܭሺܪ ݇ሻ
െܧሾݔሺ݇ ൅ ݈ሻݔො்ሺ݇ ൅ ݈|݇ െ ܮ ൅ 1ሻሿሻ
ൈ ்ܪ

ൌ ,ሺ݇ܭሺܪ ݇ሻ
െΦ௞ା௟ݎሺ݇ሻሺΦ்ሻ௞ା௟ሻ்ܪ,

ሺ݇ሻݎ ൌ ෍ ܬ

௞

௜ୀ௞ି௅ାଵ

ሺ݅ሻΛሺ݅ሻ்ܬሺ݅ሻ.

 (59)

  ሺ݇ሻ is calculated recursively byݎ

 
ሺ݇ሻݎ ൌ ሺ݇ሻݎ ൅ ሺ݇ሻ்ܬሺ݇ሻΛሺ݇ሻܬ
െܬሺ݇ െ ሻΛሺ݇ܮ െ ሺ்݇ܬሻܮ െ ,ሻܮ
ሺ0ሻݎ ൌ 0.

 (60)

Hence, the RLS Wiener FIR predic tion error 
variance function ෨ܲ௭ሺ݇ ൅ ݈ሻ is calculated by  (27) 
∼ (31), (59) and (60) recursively. Since ෨ܲ௭ሺ݇ ൅ ݈ሻ 
is positive-semidefinite, the RLS Wiener FIR 
prediction variance of  the signal ݖሺ݇ ൅ ݈ሻ , 
ොሺ݇ݔሾܧܪ ൅ ݈|݇ െ ܮ ൅ 1ሻݔො்ሺ݇ ൅ ݈|݇ െ ܮ ൅ 1ሻሿ்ܪ , 
is upper bo unded by ܭܪሺ݇, ݇ሻ்ܪ  and lower 
bounded by the zero matrix as 

 

0 ൑
ොሺ݇ݔሾܧܪ ൅ ݈|݇ െ ܮ ൅ 1ሻ
ൈ ො்ሺ݇ݔ ൅ ݈|݇ െ ܮ ൅ 1ሻሿ்ܪ

൑ ,ሺ݇ܭܪ ݇ሻ்ܪ.

 (61)

This validates the existence of the robust RLS  
Wiener FIR prediction esti mate ̂ݖሺ݇ ൅ ݈|݇ െ ܮ ൅
1ሻ of the signal ݖሺ݇ ൅ ݈ሻ.  
 
 
5 A numerical simulation example 
Let a scalar observation equation fo r the signal 
 ሺ݇ሻ be describedݔ ሺ݇ሻ and the state equation forݖ
by  

 

ሺ݇ሻݕ ൌ ሺ݇ሻݖ ൅ ,ሺ݇ሻݒ
ሺ݇ሻݖ ൌ ,ሺ݇ሻݔܪ
ܪ ൌ ሾ1 0ሿ,

ሺ݇ሻݔ ൌ ൤
ଵሺ݇ሻݔ
ଶሺ݇ሻݔ

൨ ,

ሺ݇ݔ ൅ 1ሻ ൌ Φݔሺ݇ሻ ൅ Γݓሺ݇ሻ,

Φ ൌ ൤
0 1
െܽଶ െܽଵ

൨ ,

ܽଵ ൌ െ0.1, ܽଶ ൌ െ0.8,

Γ ൌ ቂ0
1
ቃ ,

ሻሿݏሺݒሺ݇ሻݒሾܧ ൌ ௄ሺ݇ߜܴ െ ,ሻݏ
ሻሿݏሺݓሺ݇ሻݓሾܧ ൌ ௄ሺ݇ߜܳ െ ,ሻݏ
ܳ ൌ 0. 5ଶ.

 (62)

From (2) it is noted that the signal ݖሺ݇ሻ  is 
generated by the second-orde r AR model. Let us 
consider to calculate the ݈-step ahead prediction 
estimate of the signal ݖሺ݇ ൅ ݈ሻ with the degraded 
observed value ݕ෬ሺ݇ሻ, which i s generated b y the 
state-space model (63) including the uncertain 
quantities Δܪሺ݇ሻ and ΔΦሺ݇ሻ.  

 

෬ሺ݇ሻݕ ൌ ሺ݇ሻݖ̆ ൅ ,ሺ݇ሻݒ
ሺ݇ሻݖ̆ ൌ ሜܪ ሺ݇ሻ̄ݔሺ݇ሻ,

ሺ݇ሻݔ̄ ൌ ൤
ଵሺ݇ሻݔ̄
ଶሺ݇ሻݔ̄

൨ ,

ሜܪ ሺ݇ሻ ൌ ܪ ൅ Δܪሺ݇ሻ
ൌ ሾ1 ൅ Δଷሺ݇ሻ 0ሿ,
Δܪሺ݇ሻ ൌ ሾΔଷሺ݇ሻ 0ሿ,
Δଷሺ݇ሻ ൌ 0.1,
ሺ݇ݔ̄ ൅ 1ሻ ൌ Φሜ ሺ݇ሻ̄ݔሺ݇ሻ ൅ Γݓሺ݇ሻ,
Φሜ ሺ݇ሻ ൌ Φ ൅ ΔΦሺ݇ሻ,

ΔΦሺ݇ሻ ൌ ൤
0 0

Δଶሺ݇ሻ Δଵሺ݇ሻ
൨ ,

Δଵሺ݇ሻ ൌ 0.01, Δଶሺ݇ሻ ൌ െ0.1

 (63)

Without any usages of a priori inf ormation of 
Δܪሺ݇ሻ and ΔΦሺ݇ሻ, the robust RLS Wiener FIR 
predictor calculates the prediction estimate of the  
signal recursively. The degraded signal ̆ݖሺ݇ሻ  is 
fitted to the AR model of the ܰ-th order.  

 

ሺ݇ሻݖ̆ ൌ െ ෬ܽଵ̆ݖሺ݇ െ 1ሻ െ ෬ܽଶ̆ݖሺ݇ െ 2ሻ
െ⋯െ ෬ܽே̆ݖሺ݇ െ ܰሻ ൅ ݁̆ሺ݇ሻ,
ܰ ൌ 10
ሻሿݏሾ݁̆ሺ݇ሻ݁̆ሺܧ ൌ ෰ܳߜ௄ሺ݇ െ .ሻݏ

(64)

From (4) an d (64), ̆ݖሺ݇ሻ is expressed with the 1 
by ܰ observation vector ܪ෱ as 

ሺ݇ሻݖ̆  ൌ ,෬ሺ݇ሻݔ෱ܪ
෱ܪ ൌ ሾ1 0 0 ⋯ 0 0ሿ.

 (65)

In the sim ulation example, the state e quation for 
݉ ෬ሺ݇ሻ in (5) corresponds to the case ofݔ ൌ 1. 
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,෱ሺ݇ܭ ሻݏ ൌ ෱ሺ݇ܭ െ  ሻ represents the auto-covarianceݏ
function of the state ݔ෬ሺ݇ሻ in wide-sense stationary 
stochastic systems. ܭ෱ሺ݇, ሻݏ  is expressed in the 
semi-degenerate kernel form  (6). Φ෱  in (6) 
represents the sy stem matrix for the state ݔ෬ሺ݇ሻ. 
Also, from the auto-covariance functi on ܭ௭෬ሺ݇ െ
ሻݏ ൌ ݏ௭෬ሺܭ െ ݇ሻ ൌ ሻሿݏሺݖሺ݇ሻ̆ݖሾ̆ܧ  of the degraded  
signal ̆ݖሺ݇ሻ, the auto-variance function ܭ෱ሺ݇, ݇ሻ of 
the state ݔ෬ሺ݇ሻ is expressed as 

 

,෱ሺ݇ܭ ݇ሻ ൌ ܧ

ۏ
ێ
ێ
ێ
ێ
ۍ

ۏ
ێ
ێ
ێ
ۍ

ሺ݇ሻݖ̆
ሺ݇ݖ̆ ൅ 1ሻ

⋮
ሺ݇ݖ̆ ൅ ܰ െ 2ሻ
ሺ݇ݖ̆ ൅ ܰ െ 1ሻے

ۑ
ۑ
ۑ
ې

ൈ ሾ̆ݖሺ݇ሻ ሺ݇ݖ̆ ൅ 1ሻ ⋯
ሺ݇ݖ̆ ൅ ܰ െ 2ሻ ሺ݇ݖ̆ ൅ ܰ െ 1ሻሿ൧

ൌ

ۏ
ێ
ێ
ێ
ۍ

௭෬ሺ0ሻܭ ௭෬ሺ1ሻܭ ⋯
௭෬ሺ1ሻܭ ௭෬ሺ0ሻܭ ⋯
⋮ ⋮ ⋱

௭෬ሺܰܭ െ 2ሻ ௭෬ሺܰܭ െ 3ሻ ⋯
௭෬ሺܰܭ െ 1ሻ ௭෬ሺܰܭ െ 2ሻ ⋯

௭෬ሺܰܭ െ 2ሻ ௭෬ሺܰܭ െ 1ሻ
௭෬ሺܰܭ െ 3ሻ ௭෬ሺܰܭ െ 2ሻ

⋮ ⋮
௭෬ሺ0ሻܭ ௭෬ሺ1ሻܭ
௭෬ሺ1ሻܭ ௭෬ሺ0ሻܭ ے

ۑ
ۑ
ۑ
ې

.

 (66)

Let ܭ௭௭෬ሺ݇, ሻݏ ൌ ሻሿݏሺݖሺ݇ሻ̆ݖሾܧ  represent the 
cross-covariance function of the signal ݖሺ݇ሻ with 
the degraded signal ̆ݖሺݏሻ. From (4) and (65), the 
cross-covariance function ܭ௫௫෬ሺ݇, ሻݏ  is expressed 
as  

 

,௫௫෬ሺ݇ܭ ሻݏ ൌ Φ௞ି௦ܭ௫௫෬ሺݏ, ,ሻݏ
0 ൑ ݏ ൑ ݇,
,௫௫෬ሺ݇ܭ ݇ሻ

ൌ ൤
,௭௭෬ሺ݇ܭ ݇ሻ

௭௭෬ሺ݇ܭ ൅ 1, ݇ሻ
,௭௭෬ሺ݇ܭ ݇ ൅ 1ሻ ⋯
௭௭෬ሺ݇ܭ ൅ 1, ݇ሻ ⋯
,௭௭෬ሺ݇ܭ ݇ ൅ ܰ െ 2ሻ

௭௭෬ሺ݇ܭ ൅ 1, ݇ ൅ ܰ െ 2ሻ
,௭௭෬ሺ݇ܭ ݇ ൅ ܰ െ 1ሻ

௭௭෬ሺ݇ܭ ൅ 1, ݇ ൅ ܰ െ 1ሻ൨ .

 (67)

The AR param eters ෬ܽଵ, ෬ܽଶ,⋯ , ෬ܽேିଵ, ෬ܽே  in (64) 
are calculated by the Yule-Walker equation 

 

,෱ሺ݇ܭ ݇ሻ

ۏ
ێ
ێ
ێ
ۍ
෬ܽଵ
෬ܽଶ
⋮

෬ܽேିଵ
෬ܽே ے

ۑ
ۑ
ۑ
ې

ൌ െ

ۏ
ێ
ێ
ێ
ۍ

௭෬ሺ1ሻܭ
௭෬ሺ2ሻܭ
⋮

௭෬ሺܰܭ െ 1ሻ
௭෬ሺܰሻܭ ے

ۑ
ۑ
ۑ
ې

.

 (68)

By substituting ܪ ෱ܪ , , Φ , Φ෱ ,௫௫෬ሺ݇ܭ , ݇ሻ , 
,෱ሺ݇ܭ ݇ሻ ൌ ,ܮ෱ሺܭ ሻܮ  and ܴ  into the robust RLS 
Wiener FIR prediction algorithm of Theorem 3, the 
prediction estimates are calculated recursively. In 
evaluating Φ෱  in (7), ܭ෱ሺ݇, ݇ሻ  in (66) and 
,௫௫෬ሺ݇ܭ ݇ሻ in (67), the 2,000 number of signal an d 
degraded signal data are used.  

 
Fig.1 Signal ( )z k l  and robust RLS Wiener FIR prediction estimate ˆ( | 1)z k l k L   , 

200L  , 3l   vs. k  for white Gaussian observation noise 2(0,0.3 ).N  
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Fig.2 MSVs of one-step ahead prediction errors ˆ( 1) ( 1| 1)z k z k k L      by robust RLS 
Wiener FIR predictor in Theorem 3 vs. finite interval L , 50 500L  , and MSVs of filtering 
errors ˆ( ) ( |1)z k z k , 1 k L  , by robust RLS Wiener FIR filter [8] vs. L , 50 500L  , 

for white Gaussian observation noises N(0,0.1²), N(0,0.3²), N(0,0.5²) and N(0,0.7²). 
 
 
 

 
Fig.3 MSVs of robust RLS Wiener prediction errors ˆ( ) ( | 1)z k l z k l k L      vs. finite 

interval L , in the cases of 3l   and 5l  , for white Gaussian observation noises 
2(0,0.1 )N , 2(0,0.3 )N , 2(0,0.5 )N  and 2(0,0.7 )N . 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2020.19.13 Seiichi Nakamori

E-ISSN: 2224-2678 95 Volume 19, 2020



 
Fig.4 MSVs of prediction errors ˆ( ) ( | 1)z k l z k l k L      by RLS Wiener FIR predictor 

[15] vs. finite interval L , in the cases of 1l   and 3l  , for white Gaussian observation 
noises 2(0,0.1 )N , 2(0,0.3 )N , 2(0,0.5 )N  and 2(0,0.7 )N . 

 
 

Fig.1 illustrates the signal ݖሺ݇ ൅ ݈ሻ and 
the robust RLS Wiener FIR predic tion 
estimate ̂ݖሺ݇ ൅ ݈|݇ െ ܮ ൅ 1ሻ ܮ , ൌ 200 , 
݈ ൌ 3 vs. ݇, 1 ൑ ݇ ൑ 500, for the white 
Gaussian observation noise ܰሺ0,0. 3ଶሻ . 
Fig.2 shows the MSVs of the one-step 
ahead prediction errors ሺ݇ݖ  ൅ 1ሻ െ ሺ݇ݖ̂ ൅
1|݇ െ ܮ ൅ 1ሻ of the sign al by the ro bust 
RLS Wiener FIR predictor in Theorem  3 vs. 
the finite int erval 50 ,ܮ ൑ ܮ ൑ 500, and 
the MSVs of the filtering errors ݖሺ݇ሻ െ
ሺ݇|1ሻݖ̂ , 1 ൑ ݇ ൑ ܮ , by the robust RLS 
Wiener FIR filter [8] vs. 50 ,ܮ ൑ ܮ ൑ 500, 
for the white  Gaussian observation noises  
ܰሺ0,0. 1ଶሻ , ܰሺ0,0. 3ଶሻ , ܰሺ0,0. 5ଶሻ  and 
ܰሺ0,0. 7ଶሻ . As the variance of the  
observation noise becomes large,  the 
estimation accuracies of  the robust RLS 
Wiener FIR predictor and the robust RLS 
Wiener FIR filter beco me degraded 
respectively. For each observation noise 
variance, the estimation accuracy of the 
robust RLS Wiener FIR filter is superi or to 
that of the robust RLS Wiener FIR 

predictor. For 50 ൑ ܮ ൑ 200 , as ܮ 
becomes large, the MSVs of the robust RLS 
Wiener FIR prediction and filtering errors  
become small steeply. At ܮ ൌ 500,  the 
MSVs of the robust R LS Wiener FIR 
prediction and filtering errors attain the 
smallest values for each observation noise. 
Fig.3 shows the MSVs of the prediction 
errors ݖሺ݇ ൅ ݈ሻ െ ሺ݇ݖ̂ ൅ ݈|݇ െ ܮ ൅ 1ሻ  of 
the signal by the robust RLS Wiener FIR 
predictor vs. the finite i nterval ܮ , 50 ൑
ܮ ൑ 500, in the case s of ݈ ൌ 3 and ݈ ൌ 5, 
for the white  Gaussian observation noises  
ܰሺ0,0. 1ଶሻ , ܰሺ0,0. 3ଶሻ , ܰሺ0,0. 5ଶሻ  and 
ܰሺ0,0. 7ଶሻ . The MSV of the pre diction 
errors for ݈ ൌ 3 is smaller than that for  
݈ ൌ 5  for each observation noise. For 
50 ൑ ܮ ൑ 200 , as ܮ  becomes large, the  
MSVs of t he prediction errors be come 
small steeply. Fig.4 shows the MSVs of the 
prediction errors ݖሺ݇ ൅ ݈ሻ െ ሺ݇ݖ̂ ൅ ݈|݇ െ
ܮ ൅ 1ሻ of the signal by  the RLS Wiener 
FIR predictor [15] vs. the finite interval ܮ, 
50 ൑ ܮ ൑ 500, in the case s of ݈ ൌ 1 and 
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݈ ൌ 3, for the white Gaus sian observation 
noises ܰሺ0,0. 1ଶሻ, ܰሺ0,0. 3ଶሻ, ܰሺ0,0. 5ଶሻ 
and ܰሺ0,0. 7ଶሻ . From Fig.2-Fig. 4, the 
MSVs of the estimation errors by the robust 
RLS Wiener FIR predict or, for ݈ ൌ 1 and 
݈ ൌ 3, are smaller than those by the  RLS 
Wiener FIR predictor [15]. Her e, the MSV 
of the FIR prediction errors is evaluated b y 
∑ ሺଵ଴଴଴ା௅
௞ୀ௅ ሺ݇ݖ ൅ ݈ሻ െ ሺ݇ݖ̂ ൅ ݈|݇ െ ܮ ൅

1ሻሻଶ/1001.  
 
 
6 Conclusions 
This paper has newly  proposed the robust  
RLS Wiener FIR prediction algorithm  in 
Theorem 3, based on the innovation theory, 
for the linear discr ete-time stochastic 
systems with the uncertain parameters. As a 
step to Theore m 3, Theorem 2 has 
presented the robust prediction algorithm of 
the signal using the covariance infor mation 
etc. Also, in section 4, the recurs ive 
algorithm for the prediction error variance 
function has been proposed.  

The prediction character istics of th e 
robust RLS Wiener FIR predictor have 
been shown in section 5. The esti mation 
accuracy of the propos ed robust RLS 
Wiener FIR predictor is by  far superior to 
that of the RLS Wiener FIR predictor, but is 
inferior to that of the robust RLS Wiener 
FIR filter.  
 
 
Appendix A: Proof of Theorem 
2 
By introducing an equation 

 

ሻݏሻΛሺݏሺܬ ൌ ෱்ܪሻݏሺ்ߚ

െ ෍ ܬ

௦ିଵ

௜ୀ௦ିଵି௅ାଵ

ሺ݅ሻΛሺ݅ሻ݃଴
்ሺݏ െ 1, ݅ሻ

ൈ Φ෱்ܪ෱்,

 (A.1)

from (13) and (A.1), the optimal impulse 
response function ݃ሺ݇,  ሻ satisfiesݏ
 ݃ሺ݇, ሻݏ ൌ ሺ݇ߙ ൅ ݈ሻܬሺݏሻ. (A.2)

Likewise ݃ሺ݇, ሻ in (18), it is seen thatݏ  
݃଴ሺ݇,  ሻ satisfiesݏ

݃଴ሺ݇, ሻݏሻΛ଴ሺݏ ൌ ሻሿݏ෬ሺ݇ሻ்߭ሺݔሾܧ
ൌ ሻݏ෬ሺݕ෬ሺ݇ሻሺݔሾܧ
െܪ෱Φ෱ݔ෬෠ሺݏ െ ݏ|1 െ 1 െ ܮ ൅ 1ሻሻ்ሿ
ൌ ሻሿݏ෬்ሺݕ෬ሺ݇ሻݔሾܧ

െ ෍ ܧ

௦ିଵ

௜ୀ௦ି௅ାଵ

ሾݔ෬ሺ݇ሻ்߭ሺ݅ሻሿ݃଴
்ሺݏ, ݅ሻΦ෱்ܪ෱்

ൌ ෱்ܪሻݏሺ்ܤሺ݇ሻܣ

െ ෍ ݃଴

௦ିଵ

௜ୀ௦ି௅ାଵ

ሺ݇, ݅ሻΛ଴ሺ݅ሻ݃଴
்ሺݏ െ 1, ݅ሻ

ൈ Φ෱்ܪ෱்.

 (A.3)

By introducing 

 

ሻݏሻΛ଴ሺݏ଴ሺܬ ൌ ෱்ܪሻݏሺ்ܤ

െ ෍ ଴ܬ

௦ିଵ

௜ୀ௦ି௅ାଵ

ሺ݅ሻΛ଴ሺ݅ሻ݃଴
்ሺݏ െ 1, ݅ሻ

ൈ Φ෱்ܪ෱்,

 (A.4)

݃଴ሺ݇,  ሻ satisfiesݏ

 ݃଴ሺ݇, ሻݏ ൌ ሻ. (A.5)ݏ଴ሺܬሺ݇ሻܣ

By substituting (A.5) i nto (A.1), and 
introducing 

 

ሺ݇ሻݎ

ൌ ෍ ܬ

௞

௜ୀ௞ି௅ାଵ

ሺ݅ሻΛሺ݅ሻܬ଴
்ሺ݅ሻ, (A.6)

 

 
ሺ݇ሻΛሺ݇ሻܬ ൌ ෱்ܪሺ݇ሻ்ߚ

െݎሺ݇ െ 1ሻ்ܣሺ݇ െ 1ሻΦ෱்ܪ෱்
 (A.7)

is obtained. Subtracting ݎሺ݇ െ 1ሻ  from 
 ሺ݇ሻ, we getݎ

 
ሺ݇ሻݎ െ ሺ݇ݎ െ 1ሻ ൌ ଴ܬሺ݇ሻΛሺ݇ሻܬ

்ሺ݇ሻ
െܬሺ݇ െ ሻΛሺ݇ܮ െ ଴ܬሻܮ

்ሺ݇ െ ,ሻܮ
ሺ0ሻݎ ൌ 0.

 (A.8)

Substituting (A.2) into (11) and introducing 
݁ሺ݇ሻ, given by 

 ݁ሺ݇ሻ ൌ ෍ ܬ

௞

௜ୀ௞ି௅ାଵ

ሺ݅ሻ߭ሺ݅ሻ, (A.9)

we obtain 

 

ොሺ݇ݔ ൅ ݈|݇ െ ܮ ൅ 1ሻ

ൌ ሺ݇ߙ ൅ ݈ሻ ෍ ܬ

௞

௜ୀ௞ି௅ାଵ

ሺ݅ሻ߭ሺ݅ሻ,

ൌ ሺ݇ߙ ൅ ݈ሻ݁ሺ݇ሻ.

 (A.10)

By subtracting ݁ሺ݇ െ 1ሻ  from ݁ሺ݇ሻ , it 
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follows that 
݁ሺ݇ሻ െ ݁ሺ݇ െ 1ሻ ൌ ෬ሺ݇ሻݕሺ݇ሻሺܬ
െܪ෱Φ෱ݔ෬෠ሺ݇ െ 1|݇ െ 1 െ ܮ ൅ 1ሻሻ
െܬሺ݇ െ ෬ሺ݇ݕሻሺܮ െ ሻܮ
െܪ෱Φ෱
ൈ ෬෠ሺ݇ݔ െ ܮ െ 1|݇ െ ܮ െ 1 െ ܮ ൅ 1ሻሻ.

 (A.11)

Let the FIR filtering esti mate ݔ෬෠ሺ݇|݇ െ ܮ ൅
1ሻ of ݔ෬ሺ݇ሻ be given by 

 

݇|෬෠ሺ݇ݔ െ ܮ ൅ 1ሻ

ൌ ෍ ݃଴

௞

௜ୀ௞ି௅ାଵ

ሺ݇, ݅ሻ߭ሺ݅ሻ,

߭ሺ݅ሻ ൌ ෬ሺ݅ሻݕ
െܪ෱Φ෱ݔ෬෠ሺ݅ െ 1|݅ െ 1 െ ܮ ൅ 1ሻ.

 (A.12)

Also, by introducing 

 

଴ሺ݇ሻݎ

ൌ ෍ ଴ܬ

௞

௜ୀ௞ି௅ାଵ

ሺ݅ሻΛ଴ሺ݅ሻܬ଴
்ሺ݅ሻ, (A.13)

(A.4) is rewritten as 

 
଴ሺ݇ሻΛ଴ሺ݇ሻܬ ൌ ෱்ܪሺ݇ሻ்ܤ

െݎ଴ሺ݇ሻ்ܣሺ݇ െ 1ሻΦ෱்ܪ෱்.
 (A.14)

Subtracting ݎ଴ሺ݇ െ 1ሻ  from ݎ଴ሺ݇ሻ , we 
have 

 
଴ሺ݇ሻݎ െ ଴ሺ݇ݎ െ 1ሻ
ൌ ଴ܬ଴ሺ݇ሻΛ଴ሺ݇ሻܬ

்ሺ݇ሻ
െܬ଴ሺ݇ െ ሻΛ଴ሺ݇ܮ െ ଴ܬሻܮ

்ሺ݇ െ .ሻܮ
 (A.15)

By introducing  

 ݁଴ሺ݇ሻ ൌ ෍ ଴ܬ

௞

௜ୀ௞ି௅ାଵ

ሺ݅ሻ߭ሺ݅ሻ, (A.16)

from (A.5), the FIR f iltering estimate 
݇|෬෠ሺ݇ݔ െ ܮ ൅ 1ሻ of ݔ෬ሺ݇ሻ is given by 

݇|෬෠ሺ݇ݔ  െ ܮ ൅ 1ሻ
ൌ  .ሺ݇ሻ݁଴ሺ݇ሻܣ

(A.17)

By subtracting ݁଴ሺ݇ െ 1ሻ from ݁଴ሺ݇ሻ, it 
follows that 

݁଴ሺ݇ሻ െ ݁଴ሺ݇ െ 1ሻ
ൌ ෬ሺ݇ሻݕ଴ሺ݇ሻሺܬ െ ሺ݇ሻ݁଴ሺ݇ܣ෱ܪ െ 1ሻሻ
െܬ଴ሺ݇ െ ෬ሺ݇ݕሻሺܮ െ ሻܮ
െܪ෱ܣሺ݇ െ ሻ݁଴ሺ݇ܮ െ ܮ െ 1ሻሻ,
ሺ݇ሻ݁଴ሺ݇ܣ െ 1ሻ
ൌ Φ෱ݔ෬෠ሺ݇ െ 1|݇ െ 1 െ ܮ ൅ 1ሻ,
ሺ݇ܣ െ ሻ݁଴ሺ݇ܮ െ ܮ െ 1ሻ
ൌ Φ෱
ൈ ෬෠ሺ݇ݔ െ ܮ െ 1|݇ െ ܮ െ 1 െ ܮ ൅ 1ሻ.

 (A.18)

From (A.13), (A.16) and (A.17),  the 
variance Λሺ݇ሻ  of the innovation process 
߭ሺ݇ሻ is expressed by 

Λሺ݇ሻ ൌ ሾ߭ሺ݇ሻ்߭ሺ݇ሻሿܧ
ൌ ෬ሺ݇ሻݕሾሺܧ
െܪ෱Φ෱ݔ෬෠ሺ݇ െ 1|݇ െ 1 െ ܮ ൅ 1ሻሻ
ൈ ሺݕ෬ሺ݇ሻ
െܪ෱Φ෱ݔ෬෠ሺ݇ െ 1|݇ െ 1 െ ܮ ൅ 1ሻሻ்ሿ
ൌ ,෱ሺ݇ܭ෱ܪ ݇ሻܪ෱் ൅ ܴ
െܪ෱Φ෱ܧሾݔ෬෠ሺ݇ െ 1|݇ െ 1 െ ܮ ൅ 1ሻ
ൈ ෬෠்ሺ݇ݔ െ 1|݇ െ 1 െ ܮ ൅ 1ሻሿΦ෱்ܪ෱்

ൌ ,෱ሺ݇ܭ෱ܪ ݇ሻܪ෱் ൅ ܴ
െܪ෱ܣሺ݇ሻݎ଴ሺ݇ െ 1ሻ்ܣሺ݇ሻܪ෱்.

 (A.19)

Let the initial condition of the FIR filtering 
estimate of ݔሺ݇ሻ at ݇ ൌ  .1ሻ|ܮොሺݔ be ܮ

1ሻ|ܮොሺݔ  ൌ෍݃

௅

௜ୀଵ

ሺܮ, ݅ሻ߭ሺ݅ሻ,

߭ሺ݅ሻ ൌ ෬ሺ݅ሻݕ െ ෬෠ሺ݅ݔ෱Φ෱ܪ െ 1|1ሻ

 (A.20)

Let the variance of the in novation process 
߭ሺܮሻ be Λሺܮሻ. 

 

Λሺܮሻ ൌ ሻሿܮሻ்߭ሺܮሾ߭ሺܧ
ൌ ሻܮ෬ሺݕሾሺܧ െ ܮ෬෠ሺݔ෱Φ෱ܪ െ 1|1ሻሻ
ൈ ሺݕ෬ሺ݇ሻ െ ܮ෬෠ሺݔ෱Φ෱ܪ െ 1|1ሻሻ்ሿ
ൌ ,ܮ෱ሺܭ෱ܪ ෱்ܪሻܮ ൅ ܴ
െܪ෱Φ෱ܧሾݔ෬෠ሺܮ െ 1|1ሻ
ൈ ܮ෬෠்ሺݔ െ 1|1ሻሿΦ෱்ܪ෱்

ൌ ,ܮ෱ሺܭ෱ܪ ෱்ܪሻܮ ൅ ܴ
െܪ෱ܣሺܮሻݎ଴ሺܮ െ 1ሻ்ܣሺܮሻܪ෱்

 (A.21)

Here,  

ሻܮ଴ሺݎ  ൌ෍ܬ଴

௅

௜ୀଵ

ሺ݅ሻΛሺ݅ሻܬ଴
்
ሺ݅ሻ. (A.22)

Let the initial condition of the FIR filtering 
estimate of ݔ෬෠ሺ݇ሻ at ݇ ൌ  .1ሻ|ܮ෬෠ሺݔ be ܮ
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1ሻ|ܮ෬෠ሺݔ  ൌ෍݃଴

௅

௜ୀଵ

ሺܮ, ݅ሻ߭ሺ݅ሻ,

߭ሺ݇ሻ ൌ ෬ሺ݇ሻݕ െ ෬෠ሺ݇ݔ෱Φ෱ܪ െ 1|1ሻ

 (A.23)

Here, ݃଴ሺܮ,  ሻ satisfiesݏ

 

݃଴ሺܮ, ሻݏሻΛሺݏ ൌ ,ܮ෱ሺܭ ෱்ܪሻݏ

െ෍݃଴

௦ିଵ

௜ୀଵ

ሺܮ, ݅ሻΛሺ݅ሻ݃଴
்ሺݏ െ 1, ݅ሻ

ൈ Φ෱்ܪ෱்.

 (A.24)

݃ሺܮ,  ሻ in (A.20) satisfiesݏ

݃ሺܮ, ሻݏሻΛሺݏ ൌ ,ܮ௫௫෬ሺܭ ෱்ܪሻݏ

െ෍݃

௦ିଵ

௜ୀଵ

ሺܮ, ݅ሻΛሺ݅ሻ݃଴
்ሺݏ െ 1, ݅ሻΦ෱்ܪ෱்,

,ܮ௫௫෬ሺܭ ෱்ܪሻݏ ൌ ,ܮ௫௭෬ሺܭ .ሻݏ

 

 
 
(A-25) (A.25)

By introducing 

 
ሻݏሻΛሺݏሺܬ ൌ ෱்ܪሻݏሺ்ߚ

െ෍ܬ

௦ିଵ

௜ୀଵ

ሺ݅ሻΛሺ݅ሻ݃଴
்ሺݏ െ 1, ݅ሻΦ෱்ܪ෱்,

 (A.26)

݃ሺܮ,  ሻ is given byݏ

 ݃ሺܮ, ሻݏ ൌ ሻ. (A.27)ݏሺܬሻܮሺߙ

By introducing 

ሻܮሺݎ  ൌ෍ܬ

௅

௜ୀଵ

ሺ݅ሻΛሺ݅ሻܬ଴
்
ሺ݅ሻ, (A.28)

(A.26) is rewritten as 

 
ሻܮሻΛሺܮሺܬ ൌ ෱்ܪሻܮሺ்ߚ

െݎሺܮ െ 1ሻ்ܣሺܮ െ 1ሻΦ෱்ܪ෱்,
Φ෱் ൌ .ሺ1ሻ்ܣ

 (A.29)

By substituting (A.27) i nto (A.20) and 
introducing 

 ݁ሺܮሻ ൌ෍ܬ

௅

௜ୀଵ

ሺ݅ሻ߭ሺ݅ሻ, (A.30)

 
1ሻ|ܮොሺݔ  ൌ ሻ (A.31)ܮሻ݁ሺܮሺߙ

is obtained, Subtracting ݎሺ݇ െ 1ሻ  from 
 ሺ݇ሻ, we obtainݎ

ሺ݇ሻݎ ൌ ሺ݇ݎ െ 1ሻ ൅ ଴ܬሺ݇ሻΛሺ݇ሻܬ
்
ሺ݇ሻ,

ሺ0ሻݎ ൌ 0.
 (A.32)

By subtracting ݁ሺܮ െ 1ሻ  from ݁ሺܮሻ , it 

follows that 

 
݁ሺܮሻ ൌ ݁ሺܮ െ 1ሻ

൅ܬሺܮሻሺݕ෬ሺܮሻ െ ܮ෬෠ሺݔ෱Φ෱ܪ െ 1|1ሻሻ,
ሺ0ሻݎ ൌ 0.

 (A.33)

By introducing 

ሻݏሻΛሺݏ଴ሺܬ ൌ ෱்ܪሻݏሺ்ܤ

െ෍ܬ଴

௦ିଵ

௜ୀଵ

ሺ݅ሻΛሺ݅ሻ݃଴
்ሺݏ െ 1, ݅ሻΦ෱்ܪ෱்,

 (A.34)

݃଴ሺ݇,  ሻ is given byݏ

 ݃଴ሺܮ, ሻݏ ൌ ሻ. (A.35)ݏ଴ሺܬሻܮሺܣ

From (A.22), 

 
ሻܮሻΛሺܮ଴ሺܬ ൌ ෱்ܪሻܮሺ்ܤ

െݎ଴ሺܮ െ 1ሻ்ܣሺܮሻܪ෱்
 (A.36)

is obtained. Subtracting ܮ଴ሺݎ  െ 1ሻ  from 
 ሻ, we obtainܮ଴ሺݎ

 
ሻܮ଴ሺݎ ൌ ܮ଴ሺݎ െ 1ሻ

൅ܬ଴ሺܮሻΛሺܮሻܬ଴
்
ሺܮሻ,

଴ሺ0ሻݎ ൌ 0.

 (A.37)

By substituting (A.35) i nto (A.23) and 
introducing 

 ݁଴ሺܮሻ ൌ෍ܬ଴

௅

௜ୀଵ

ሺ݅ሻ߭ሺ݅ሻ, (A.38)

 
1ሻ|ܮ෬෠ሺݔ  ൌ ሻ (A.39)ܮሻ݁଴ሺܮሺܣ

is obtained. Subtracting ݁଴ሺܮ െ 1ሻ  from 
݁଴ሺܮሻ, we obtain 

 

݁଴ሺܮሻ ൌ ݁଴ሺܮ െ 1ሻ

൅ܬ଴ሺܮሻሺݕ෬ሺܮሻ

െܪ෱ܣሺܮሻ݁଴ሺܮ െ 1ሻሻ,
ܮሻ݁଴ሺܮሺܣ െ 1ሻ ൌ Φ෱ݔ෬෠ሺܮ െ 1|1ሻ,
݁଴ሺ0ሻ ൌ 0.

 (A.40)

 
(Q.E.D.)   

 
Appendix B: Proof of Theorem 
3 
By substituting (A.11) i nto (A.10) and 
introducing 

ሺ݇ሻܩ  ൌ ሺ݇ሻ, (B.1)ܬሺ݇ሻߙ
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(42) and (44) are clear.  By substituting 
(A.18) into (A.17) and introducing 

଴ሺ݇ሻܩ  ൌ ଴ሺ݇ሻ, (B.2)ܬሺ݇ሻܣ

(45) is obtained. By substituting (A.7) into 
(B.1), using (10) and introducing 

 ܵሺ݇ሻ ൌ ሺ݇ሻ, (B.3)்ߙሺ݇ሻݎሺ݇ሻߙ

(46) is obtained. By substituting (A.14) into 
(B.2), using (6) and introducing 

 ܵ଴ሺ݇ሻ ൌ ሺ݇ሻ, (B.4)்ܣ଴ሺ݇ሻݎሺ݇ሻܣ

(47) is obtained. From (A-19) and (B.4), by 
using ܣሺ݇ሻ ൌ Φ෱௞ , (48) is obtained . By 
substituting (A.8) into (B.3) and using (B.1) 
with ߙሺ݇ሻ ൌ Φ௞ and ܣሺ݇ሻ ൌ Φ෱௞, (49) is  
obtained. By substituting (A.15) into (B.4) 
and using (B.2) with ܣሺ݇ሻ ൌ Φ෱௞, (50) is  
obtained.  

By substituting (A.33) i nto (A.31) an d 
introducing  

ሻܮሺܩ  ൌ ሻ, (B.5)ܮሺܬሻܮሺߙ

(51) is obtained. By substituting (A.29) into 
(B.5) and introducing 

 ܵሺܮሻ ൌ ሻ, (B.6)ܮሺ்ܣሻܮሺݎሻܮሺߙ

(52) is obtained. By substituting (A.40) into 
(A.39) and introducing 

ሻܮ଴ሺܩ  ൌ ሻ, (B.7)ܮ଴ሺܬሻܮሺܣ

(53) is obtained. By substituting (A.36) into 
(B.7) and introducing 

 ܵ଴ሺܮሻ ൌ ሻ, (B.8)ܮሺ்ܣሻܮ଴ሺݎሻܮሺܣ

(54) is obtained. From  (A.21) and (B.8),  
(55) is obtained. By substituting (A.32) into 
(B.6), (56) is obtained. By  substituting 
(A.37) into (B.8), (57) is obtained.  

(Q.E.D.)   
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