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Abstract: - In this article, the application of the identification algorithm of Recursive Least Squares with 
Forgetting Factor in conjunction with the Noise Reduction Disturbance Observer shows that the effects of 
noise, which affects input and output signals of the process, can be reduced so that the identification process 
can be more effective and precise. In order to evaluate the effectiveness of this strategy the results of a case of 
study in which estimation of a first order process using the Noise Reduction Disturbance Observer is compared 
to an estimation without the Disturbance Observer.   
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1 Introduction 
It is well known that one of the most important 
setbacks in the identification of processes is the 
noise problem. In fact, due to existence of noise, 
which are normally assume random variables, led to 
the need to design strategies that minimize their 
effects resulting, in particular, in schemes or 
algorithms based on the least square minimization 
such as the Generalized Least Square or Recursive 
Least Square with Forgetting Factor (LSFF). 
However, these strategies assume that the noise   
is “white”, that is, uncorrelated with   0E    and 

  2TE I  . Furthermore, as it is shown in [1], 

the estimated parameters will have a dispersion of at 
least  . Therefore, the combined effect of noise in 
the measurements of the input and output signals of 
the process produces unacceptable dispersion or 
variations in the estimated parameters. Moreover, in 
a realistic case the noise is normally colored and 
correlated which may induce also a polarization in 
the estimation. Under this condition, two strategies 
are usually applied: to assume a white noise filtered 
by a coloring filter resulting in a correlated white 
noise, and the use of the Instrumental Variable Z 
which is interpreted as a two stage Least Square, 
[2].  
 
Based on the setbacks induced by the noise an 
alternative to reduce its effects is to filter 
input/output signals before been used by any 
estimation technique. This should be done without 

introducing additional modes or dynamics that can 
also alter the parameter estimation.  In this context, 
the Noise Reduction Disturbance Observer (NR-
DOB), [3-7], is an excellent alternative to filter the 
input/output signal of a process such that the effects 
of the noise are reduced. Although, NR-DOB was 
stablished for control purposes, its characteristics in 
estimating and reducing sensor noise and input 
signal perturbations makes it a good alternative to 
signal filtering and hence to be applied in 
conjunction with any on line identification 
technique. 
 
The paper is divided as follows: In Section 2, a brief 
description of the NR-DOB is presented together 
with the well-known LSFF algorithm. In section 3, 
based on digital simulations, a case of study is 
presented, including NR-DOB design satisfying 
stability conditions. Finally, conclusions are 
presented in Section 4. 
 
 

2 NR-DOB and LSFF Summary 
The block diagram of the noise reduction 

disturbance observer (NR-DOB) control system is 
depicted in Fig. 1. Where the shadowed section 
represents the actual NR-DOB.  ( ), ( )R s s and ( )s  

are the reference signal, input perturbation and 

sensor noise, respectively.  ( ), ( ), ( ),C s G s G s  and

( )F s are the feedback controller, process, process 

model and a unity steady state gain low-pass filter, 
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respectively. As it is common in practice, it is also 
assumed that at low frequency ( ) 0j   . Whereas 

at high frequency ( ) 0j   . This is a normal 

condition when ( )s represents sensor noise. Also, it 

is assumed that ( ) 0j    when 
FB  , where 

FB is   filter ( )F s  bandwidth. 

 
Fig. 1. NR-DOB control system 

 
An important aspect of NR-DOB is the structure 

of filter ( )F s  which is given by: 

 
1

( )
1 n

F s
s




                                  (1) 

That is, a stable unity state gain filter, where n is 

chosen such that 1( ) ( )F s G s   is causal and 0  . The 
time constant  of ( )F s  is tuned mainly to determine 

filtering conditions for sensor the noise, ( )s , and 

the exogenous perturbation ( )s . Also, filter ( )F s

satisfies the following conditions: 
 


( ) 1, 0,

( ) 0, ,

F

F

B

B

F j

F j 

  
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The output of the closed-loop configuration of 

Fig. 1 results in: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )RY s T s R s S s s S s s              (3) 
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      (4) 

Assuming denominator 

   ( ) 1 ( ) ( ) ( ) ( ) ( ) ( )s G s C s G s F s G s G s      
     of 

equations (4) is Hurwitz and filter ( )F s  comply 
with the characteristics defined by eq. (2). Then, at 

low frequencies, that is, if 0,  FB   the NR-

DOB control system defined by eqns. (4) satisfies: 
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 Whereas, at high frequencies, i.e.

,
FB      , filters magnitude reduces to 

( ) 0F j  , therefore, eqns. (4) reduces to: 

 

     
   

   

 

,
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

  (6)                         

 
From eqns. (5) and (6) is clear that the effects of 

sensor noise ( )s , which as indicated above is 

assumed negligible at low frequency, can be 
effectively reduced at output ( )Y s . Whereas, input 

perturbation ( )s  is also reduced. It must be noted 

that although ( )s is not reduced at high frequency, 

as shown in (6),  it was assumed  ( ) 0j    when 

FB  . Hence, NR-DOB can reduce the effects of 

sensor noise and input perturbation at the input 
signal ( )U s  and output signal ( )Y s . In this context, 

LSFF will render a better estimation ˆ ( )G z  of the 

discretization ( )G z  of ( )G s  using filtered signals 

( )Y s  and ( )U s  rather than ( )Y s  and ( )U s , as 

described in Figure (2). 

 
Fig. 2. NR-DOB control system with LSFF                                                         
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Least square with forgetting factor (LSFF) 

 
Let a discrete process or system whose output 

( )y k in the instant k is given by: 

( ) ( 1) ( )Ty k k k                          (7) 

 
Where,   represents the parameters vector, 

( 1)k  a vector of measurements of process 

input/output signals ( )u k , ( )y k  and, ( )k a 

perturbation. 
The recursive estimation ˆ( )k  of   that 

minimizes the quadratic error with forgetting factor  

criteria  ˆJ  , equation (8),  

 

    2

1
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 
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    (8) 

is given by: 
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  
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   

  
    

    (9) 

 
Where 0 1  the forgetting factor and  (1) 0F   

a positive definite matrix. 
 
The LSFF converges that is, ˆ( )k  if the 

following conditions are satisfied, [8] 
 The number of poles and zeros of ( )G z

are known. 
 ( )u k is a persistent excitation signal. 

 ( )u k and ( )y k  bounded 

 ( )k a decorrelated white noise 

  

3 Case of Study  
Consider the following first order transfer function 
in the S domain. 
 

 
( ) 36.9677

( )
( ) 13.8629

Y s
G s

U s s
 


              (10) 

 
 

From equations (4) - (6), the design of the NR-
DOB control system for ( )G s , which satisfies 

performance and stability specifications, assuming  
perfect match between process ( )G s  and model 

process ( )G s , requires: 

 
 Control ( )C s stabilizes process model 

( )G s  complying with performance 

specification. 
 Filter ( )F s with sufficient roll-off to 

assure 1( ) ( )F s G s  causal. 

 
A simpler I controller  ( )C s  for model process 

( )G s assuring adequate bandwidth and, gain and 

phase margins is given by: 
 

( )
1.25

s
C s                               (12) 

 

In Figure 3, Bode plots of ( ) ( )C s G s  show a 

bandwidth 3.49 /B rad sec   with appropriate gain 

and phase margins of 75.9pM  and gM dBs , 

respectively. These conditions were set in order to 
obtain sufficient stability margins and a steady state 
response of approximately  4sst sec . Therefore, 

the first requirement for performance and stability is 
complied. 

 

 
Fig. 3. Bode plots of ( ) ( )C s G s  

 

As model process ( )G s is first-degree filter ( )F s  

must have a degree equal or greater than two. Also, 
in order to filter sensor noise at frequencies 

10 /rad sec  , ( )F s  bandwidth is set 

10 / /
FB rad sec   resulting in:  
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 2( )
0.1 1

1
F s

s



                    (13) 

Time responses ( )y t  and ( )u t , Figure 4, resulting 

from substituting ( )G s , ( )G s , ( )C s  and ( )F s in the 

NR-DOB control system of Figure 2, with reference 
signal ( )R s  a sequence of square pulses, input 

perturbation  ( ) 0.5cos(0.1 )t t   and, sensor noise 

( ) 0.5cos(15 )t t  . 

 

 
Fig. 4. Time responses of ( )y t and ( )u t with NR-DOB 

 
On the other hand, Figure 5 shows  the time 

responses ( )u t  and ( )y t of the control system 

without NR-DOB; that is, a control system based 
only on the controller ( )C s  and process ( )G s of 

equations (12) and (13). 
 

 
Fig. 5. Time responses of ( )y t and ( )u t without NR-DOB 

 
Figure 4 shows how the NR-DOB highly reduces 

the perturbations in the input/output signals, 

compared with the responses without NR-DOB of 
Figure 5. Therefore, it is projected that using the 
filtered signals ( )y t  and ( )u t , rather than ( )u t  and 

( )y t , will render a better estimation of process. 

From equation (9), is clear that LSFF identifies 
the parameters of discrete models based on 
difference equations. In this context, discretization 

( )G z of ( )G s including the zero order hold with a 

sampling period 0.1T sec results in: 

The difference equations of ( )G z is given by:  

 

 

( ) 0.25 ( 1) 2 ( 1)

( 1)
( ) 0.25, 2

( 1)

y k y k u k

y k
y k

u k

   

 
   

          (12) 

That is, parameter vector   and regression vector  
( 1)k  are given by: 

 

   
 

1 2, 0.25, 2

( 1) ( 1), ( 1)

T

T
k y k u k

  



 

   
               (13) 

On line samples of ( )y t  and ( )u t , Figure 2, with 

sampling period 0.1T sec , were used in the LSFF 
assuming the following initial conditions:   

 

1
40 0

; (0) 0.1 0.1 and
0 50

=0.95

TF 



 
      

 
 

Figure 6, shows the evolution of the estimated 

parameter vector 1 2
ˆ ˆ( ) ( )ˆ( )

T

k kk    
  ; meanwhile, 

Figure 7 shows the estimation of ˆ( )k without NR-

DOB under the same conditions; that is, with the 
same initial conditions, forgetting factor sampling 
period and, using samples of ( )u t  and ( )y t  

 

    
 

2( )
( )

( ) 0.25

Y z
G z

U z z
 


                (11) 
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Fig. 6. Estimations of 1̂ and 2̂  with NR-DOB 

 
Fig. 7. Estimations of 1̂ and 2̂  without NR-DOB 

 
Comparison between Figures 6 and 7 shows that 

thanks to the reduction of noise and perturbations by 
NR-DOB the estimation of a process via LSFF 
results more effective and precise. 

 
However, input/output signals ( )y t  and ( )u t  were 

obtained based on the unrealistic case of perfect 
match between process ( )G s  and model process 

ˆ ( )G s in the design of the NR-DOB control system. 

 
In order to assess the effects of mismatch between 

( )G s  and model process ˆ ( )G s , process model was 

modified as: 
 

 
40

( )
10

G s
s




                        (14) 

 
That is, with an increment in gain and the pole at 

lower frequency rendering a reduction in the phase 
margin.  

The resulting Bode plots of modified process 

model ( )G s  and controller ( )C s , equation (12), 

depicted in Figure 8, shows that stability is 
preserved. Therefore, and assuming filter ( )F s as 

described in equation (13), the NR-DOB control 
system is stable. 

 
Figure 9 shows NR-DOB control system 

responses ( )y t , ( )u t and ( )r t , using the modified 

model process of equation (14). These responses 
show a small performance degradation due to the 
reduction of phase margin 67.1pM   . These, 

responses are due also because NR-DOB is in fact 
an Internal Model Control (IMC) control system 
were output ( )y t is driven, at frequencies 

0,   FB  , by model process ( )G s as indicated by 

transfer function ( )RT s in equation (5). 

 

 
Fig. 8. Bode plots of ( ) ( )C s G s   with modified ( )G s  

 

 
Fig. 9. NR-DOB ( )y t and ( )u t time responses with 

modified ( )G s  

WSEAS TRANSACTIONS on SYSTEMS Jesus U. Liceaga-Castro, Irma I. Siller-Alcala, Roberto A. Alcantara

E-ISSN: 2224-2678 317 Volume 18, 2019



Setting conditions for the LSFF identical to 
previous experiments, estimated parameters 

1 2
ˆ ˆ( ) ( )ˆ( )

T

k kk    
  , using the modified model 

process ( )G s , are shown in Figure 10. 

 
As expected, Figure 10 shows a deterioration in 

the estimation of parameter vector ˆ( )k due to the 

reduction of NR-DOB filtering capabilities by 
mismatch between process and model process. 

Nevertheless, ˆ( )k  estimation is still more accurate 

than in the case without NR-DOB. 

 
Fig. 10. Estimations of 1̂ and 2̂  with modified ( )G s  

 

4 Conclusions 
Noise or perturbations at processes input/output 

signals introduce problems in the identification of 
processes, especially when the perturbations do not 
comply with been “white noise” and if its variance 
is high. Although several approaches can be used to 
reduce these problems (Maximum Likelihood or 
Instrumental Variable) implementing a filtering 
scheme that reduces noise or disturbances without 
introducing additional modes could improve 
parameter estimation, regardless of the identification 
strategy used. In this article, the proposed filtering 
strategy is the Noise Reduction Disturbance 
Observer (NR-DOB) which has proven to be an 
excellent control strategy capable of reducing the 
effects of noise and disturbances. This characteristic 
is used to filter process input/output signals so that 
the identification is less affected. Through a case 
study, based on the identification of a first order 
system, the used of the NR-DOB and the Least 
Square with Forgetting Factor identification 
algorithm, it is shown that the use of NR-DOB helps 
to generate a more accurate and effective process 
identification. 
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