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Abstract: The management of goods delivery is becoming very important. The on time delivery is a critical
criterion taking into account customers point of view. But the delivery company must also pay attention to the
economic considerations. There are many variations on this issue, but all of them are of great computational
complexity. It means that the exact solutions are unavailable for large size problem. The paper proposes the
Surrogate Method for the Dynamic Vehicle Routing Problem (DVRP). The aim of DVRP is to find a set of routes
to serve multiple customers while the travelling time between point to point may vary during the process. The
aim is to schedule the vehicle routes minimizing the number of the required vehicles and the completion time.
The presented approach uses some common assumptions but different optimization method. Finally, the proposed
heuristic is compared with the genetic algorithm.prepare their manuscripts for WSEAS proceedings or journals by
means of LaTeX. You will find the format you have to choose, fonts, how to type the title of your paper, the titles
of sections, examples of definitions, lemmas, theorems, equations etc.
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1 Introduction

Vehicle routing is obviously significant in the areas of
logistics, transportation and related industries. Thus it
has attracted a large number of researchers and prac-
titioners from various sectors, which is often referred
as VRP (Vehicle Routing Problem). Classical VRP
is a well-known combinatorial optimisation problem
and has been intensively investigated. VRP involves
a set of customers geographically distributed at differ-
ent locations and a fleet of vehicles. The goal is serv-
ing all customers at minimal cost (e.g. travelling dis-
tance, time, fuel etc.) while respecting all constraints.
Due to the nature of real-world vehicle routing prob-
lems, several variants of VRP have been formulated.
Each of these VRP variant accommodates certain con-
straints and factors to reflect one type of real-life sce-
narios. Well-known VRP variants include: (i) CVRP,
the Capacitated Vehicle Routing Problem which has
vehicle capacity as a hard constraint; (ii) VRPTW, the
Vehicle Routing Problem with Time Windows where
each customer can only accept services/deliveries dur-
ing a predefined time window; and (iii) VRPMT, the
Vehicle Routing Problem with Multiple Trips, where
a vehicle can take more than one trip/task. In these ve-
hicle routing scenarios, the travel time from one point
to another is a constant. In VRP, a fleet of vehicles
must service the demands of customers. A vehicle be-

gins and ends its route at the same depot and the sum
of the demands of the customers on a route cannot ex-
ceed a vehicles capacity. A customer must have all of
its demand delivered at one time by a single vehicle.
The objective is to minimize the total distance trav-
eled by the fleet. It is still encountered in our days,
mainly in the domain of logistics and transport. In
the VRP, m vehicles(vi), with identical capacities (Q),
initially located at a central depot (v0), are to deliver
discrete quantities of goods (qi) to n customers, which
are geographically diffused around the central depot.
Concurrently, the aim of the VRP, beyond serving cus-
tomers, is to minimize the travelled distance.

Due to the difficulty the VRP presents and be-
cause of its practical applications, many models have
been created for solving the problem and many vari-
ants of the basic VRP have been compiled, with dif-
ferent parameters, leading to a different structure of
the basic VRP. Firstly, the classical VRP is equivalent
to the Capacitated VRP (CVRP) in which, the capac-
ity of the vehicle must not be exceeded (see (0; 0; ?;
0)). However, there is another possibility that the ve-
hicles do not have the same capacities which leads to
the Heterogeneous Fleet VRP (HVRP).

Another important variant which was created a
decade after the classical VRP was the Multi-Depot
VRP (MDVRP) in which, the company has several
depots from which it can serve its customers, while
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the objective is still to service all customers and min-
imize the number of vehicles and distance travelled
(see (0)). At the same period, the Stochastic VRP
(SVRP) was created, where, the customers, the de-
mand of each customer or service and travel times are
random.

In addition, in the VRP with Pick-up and Deliv-
ering (VRPPD), goods are transported, not only from
the central depot to customers, but in the opposite di-
rection too. Hence, in VRPPD it is necessary to take
into account that the total delivery load and the total
pickup load should both fit into the vehicle (see (0)).
Furthermore, due to the need for specific arrival time
information and for better customer services, an extra
restriction to the VRP was added, time windows. The
VRP with Time Windows (VRPTW) is the same with
the classical VRP, but constrained by a time interval
within which the customers have to be supplied (see
(0)).

Another variant worth mentioning is the Dynamic
VRP (DVRP) in which customer requests, that are
trips from an origin to a destination, appear dynami-
cally (see (0)) or when data and information regarding
to the VRP such as travel time, change dynamically.
Another significant variant which takes into account
time is the Time Dependent VRP (TDVRP) in which
travel times change as time passes. The reason why
this happens is due to traffic congestion. The factors
which affect travel times are: (1) the location, and (2)
the time of the day.

During the last decade, many researchers have
tried, while solving the VRP, to minimize carbon (or
fuel emissions) as carbon dioxide (CO2) emitted by
trucks is the main greenhouse gas. In addition, the
Green VRP has been strengthened due to the technical
developments and the road traffic information which
allows planning vehicle routes and schedules and tak-
ing time-varying speeds into account ((0; ?; ?)). In
the same field belongs the Hybrid VRP where vehicles
can work both electrically and with petroleum-based
fuel.

The Dynamic Vehicle Routing Problem (DVRP)
is a complex variation of classical Vehicle Routing
Problem (VRP). The aim of DVRP is to find a set
of routes to serve multiple customers at minimal to-
tal travelling cost while the travelling time between
point to point may vary during the process because
of factors like traffic congestion. To effectively han-
dle DVRP, a good algorithm should be able to adjust
itself to the changes and continuously search for the
best solution under dynamic environments. Because
of this dynamic nature of DVRP, evolutionary algo-
rithms (EAs) appear highly appropriate for DVRP as
they search in a parallel manner with a population of
solutions. Solutions scattered over the search space

can better capture the dynamic changes. Solutions for
new changes are not built from scratch as they can
inherit problem-specific knowledge from parent solu-
tions. However, the performance of EA is highly de-
pendent on the utilised configuration

Travel-time plays an important role in the distri-
bution of the perishable goods, since its fluctuations
may extend the time that the goods spend on the ve-
hicles. Different representations of the fluctuations
of the travel-times between the customers have been
reported and different extensions of VRP have been
proposed to address the fluctuations in travel-times.
Routing problems with stochastic travel-times are pre-
sented by ((0),(0),(0)). In (0), they presented a TSP in
which they have considered a zone in the city center
with traffic jams in the afternoon and show how sim-
ulated annealing and threshold-accepting algorithms
are able to handle such time-dependent problems. In
(0) Park presented the time-dependent VRP in which
the travel speed between two locations depends on
the route and the time of the day. They proposed a
model for estimating the time varying travel speed.
In (0), they proposed a time-dependent model for the
VRPTW. The model that they developed is based on
time-dependent travel speeds and satisfies the first-
in-first-out (FIFO) property. They extended the tabu
search heuristic to solve the problem and showed that
the time-dependent model provides substantial im-
provements over a model based on fixed travel-times.

Classical VRP and its variants are known as -hard
in terms of the problem complexity. That means find-
ing the optimal solution could be impractical for VRP
instance of reasonable size due to the prohibitive com-
putational resource required. Exact methods, which
guarantee optimal solutions, are only advisable to be
used on small instances. In reality small instances
have little practical values as real world problems of-
ten are large in size. Thus, meta-heuristic algorithms
are better alternatives in these scenarios, as they can
often generate solutions of good quality within an ac-
ceptable amount of time. This kind of method of-
fers no guarantee of optimality but high application
value as the good solutions generated by them are of-
ten not far from the optimal solutions. Typical meta-
heuristic algorithms include tabu search, simulated
annealing, evolutionary algorithms, ant colony and
variable neighbourhood algorithms (see (0; 0; 0; 0;
0).

In reality most of logistics and transportation
problems are dynamic by nature. Only limited infor-
mation is available at the beginning of a trip. New
information arrives over time. For example, a new
order from customer may appear whilst vehicles are
already on road serving customers. Another impor-
tant factor is traffic condition, which may vary dra-
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matically in different time of a same day, or a same
time in different days. It is difficult to foretell the
level of traffic congestion (see (0)). This leads to a
challenging and realistic dynamic variant of the VRP,
which is denoted as DVRP, referring the vehicle rout-
ing problem with traffic congestion. Dynamic order
occurs much less often in comparison. In DVRP the
exact travel time between customers is not known in
advance and subject to the level of the traffic conges-
tion on the path, meaning that after generating a set
routing plans and after the vehicles have left the depot
to serve customers, the travel time between customers
may change. When a change occurs, the optimisation
algorithm should adapt to it and find new solutions
at minimal cost. However, DVRP is relatively unex-
plored despite its theoretical importance and practical
values.

The following section of the paper contain short
problem description and its mathematical formula-
tion, then the solution method is described, results for
a case study are presented and finally some conclu-
sions are discussed.

2 Problem description
In this section, we first formally describe the classi-
cal VRP, then the dynamic VRP variant. In classical
VRP, there is a set of geographically spreaded cus-
tomers with known demands and a fleet of vehicles of
fixed capacity. VRP can be formulated as a mathe-
matical model as follows. Let G(V,E) be a complete
directed graph where V = {v0,v1, ...,vn} is a set of
nodes. Node v0 is the depot which has m vehicles
and nodes v1; ...;vn represent a set of customers. Ve-
hicles have identical capacity, Q = Q1, ...,Qm. E rep-
resents a set of edges connecting customers vi and v j,
Ei, j = {(vi,v j) vi,v j ∈ V, i ≤ j}. Each edge Ei, j has
a non-negative value which is the cost e.g. the travel
time between vi and v j. The cost is defined by a ma-
trix C = (ci, j). An entry ci, j of the matrix C represents
the shortest path between customers vi and v j. Each
customer vi is associated with a value representing qi
goods to be delivered or picked at this customer. Each
delivery has a service time ti. The goal of DVRP op-
timisation is to find a set of vehicle routes to serve all
customers at minimal cost while satisfying the follow-
ing constraints:

• All vehicles must start and end their routes,
R1, ...,Rm, at the depot v0;

• The total demand assigned for each vehicle
should not exceed the vehicle capacity;

• Each customer is visited only once in the delivery
plan;

• The total duration of each route should not ex-
ceed the given global upper bound;

In real-life situations, the travel time between
nodes depends on traffic condition of the current road
network. Traffic could vary significantly depending
on the time of the day. For example, the travel time
during rush hour would be multiple times higher than
the time travelling at midnight, see Fig.1. For this rea-
son, we consider time dependent travel times that vary
respect to the time slice of the day considering the
traffic condition of the network and possible evolution
on the basis of historical data.

Figure 1: Trend of traffic during the day

For each pair (vi,v j) a set Si, j of shortest paths
from vi position to v j is calculated, one for each con-
sidered time slice. Note that, when constructing the
shortest path, the release date of vi and the traffic con-
dition in a specific time slice effect its shortest path to
reach v j.

The objective function takes into account: i) the
duration of delivery process ii) the number of used ve-
hicles iii) the satisfaction of costumers .

Let be the set of routes in a solution, each asso-
ciated to the vehicle v( i ) used for route i. The cost
of route i is given by three quantities: (i) the fixed
cost associated to the usage of vehicle v, (ii) the vari-
able cost c i ( i ) associated to length of route i , and
(iii) the penalty cost Open image in new window for
late deliveries. The objective function of the prob-
lem is therefore: Open image in new window Dura-
tion time of the delivery for a vehicle is defined as
the time required for visiting all the planned nodes on
its route, it is measured from the departure from the
source point to the end of the service of the last node
on the route. This time includes also the nodes ser-
vice time for all planned nodes for each vehicle route.
Only the nodes service time is time independent. This
completion time for delivery (Cr) is compared with the
established time limit (TMAX ), and the following rules
are assumed:

• if Cr is less than the limit TMAX , then the objec-
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tive function is linearly dependent on Cr plus the
constant cost for the truck ;

• if Cr is longer by more than half of the estab-
lished limit, then the cost is bigger and it is
given by the constant cost for the truck plus ten
times the extraordinary cost for CD (unsatisfac-
tory time) ;

• in the other cases the objective function is given
by the constant cost for the truck plus the ordi-
nary cost that is linear dependent on TMAX plus
the extraordinary cost that is linear dependent on
Cr−TMAX .

For this purpose these rules are summarized as:

OF(Cr) =



Cv +CO ∗Cr,Cr ≤ TMAX

Cv +CO ∗TMAX +CE ∗ (Cr−TMAX ),

TMAX ≤Cr ≤ 1.5TMAX

Cv +10∗CE ∗CD,CD ≥ 1.5TMAX

(1)

To calculate the penalty function the following
rules are considered:

• if ta is less than the due date plus a threshold of
the costumer, then the delivery process ends in
advance and the dissatisfaction of the customer
is minimal;

• if ta is longer than the due date plus a threshold of
the costumer, then the delivery process ends late
and the dissatisfaction of the customer is maxi-
mum ;

• in the other cases the costumer is satisfied.

For this purpose these rules are summarized as:

OF(pi) =



CT , tai−ddi ≥ δ

CE ,ddi− tai ≥ δ

0,ddi−δ≤ ta ≤ ddi +δ

(2)

The total objective function is calculated by sum-
ming these two elements, and the problems becomes:

OF(X) = min{
V

∑
j=1

OF(Cr j)+
N

∑
i=1

OF(pi)} (3)

The scheduling of deliveries and the routing of
vehicles in urban areas is affected by traffic condi-
tions which have a significant impact on travel time
and consequently on delivery efficiency and customer
service. A solution is a set of routes one for each ve-
hicle and all costumers are satisfied. Each solution
variant is evaluated, where the assessment takes into
account both the duration of the delivery process and
the satisfaction of costumers. Duration time of the de-
livery for a vehicle is defined as the time required for
visiting all the planned nodes on its route, it is mea-
sured from the departure from the source point to the
end of the service of the last node on the route.The
satisfaction of the customers is considered compari-
son the arrival time of the vehicle node with due date.

The presented problem is similar to the travelling
salesman problem: the shortest path which visits the
given set of the graph nodes should be found. If all the
nodes to be visited are numbered in a range from 1 to
N (where N denotes the total number of customers)
and the starting point is marked as 0, each series of
such numbers is a valid schedule of visiting the nodes:

(0,K1,K2; . . . ,KN) (4)

where ki number of a node, which will be ser-
viced as i-th.

3 Heuristics
In this section the description of the heuristic proce-
dures is provided. A greedy heuristic with a local
search algorithm is presented. It is very fast and eas-
ily addresses the simultaneous minimization of oper-
ational costs and of customers’ discomfort costs. A
basic genetic algorithm has been implemented to test
the procedure embedded in several simulation tools.
Its performance have been compared to the results ob-
tained by a standard genetic algorithm. Both the pro-
cedures are sketched below.

3.1 Greedy heuristic + local search
Before briefly describing the main steps of the heuris-
tic procedure, the definition of set Xc is provided.
Given a customer c the set Xc is formed by all the
customers c′ that are at a distance that respects their
due dates including threshold. The heuristic can be
summed up in the steps in Algorithm 1. It is composed
by two phases, the first implementing the greedy pro-
cedure and the second executing the local search pro-
cedure. The greedy phase tries to assign a set of cus-
tomers in Xc for each vehicle starting from the cos-
tumer c with smallest due date. The customers are
fixed in a route is the capacity constrain is satisfied.
The local search phase tries to improve the solution.
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Algorithm 1 Greedy heuristic and Local search
1: Given the N . Set of customers
2: Given |V | . Total number of vehicles
3: Given Cv . Cv is the capacity of vehicle

K = 1 . Counter K: it counts the number of assigned
vehicle/route . Greedy heuristic phase

4: Order N with respect to the increasing due date
5: for (each c ∈ N) do
6: Generate Xc; . Xc is the set of all the

costumers c′ ∈ N that can be reached by c satisfied the
due date considering also the threshold

7: end for
8: for (each c ∈ N) do
9: if qc ≤Ck then

10: Rk = {c}
. c is added at the Rk, it is the kth route

11: N=N-{c}
12: Ck =Ck−qc
13: k=k+1;
14:
15: for (each c′ ∈ Xc) do
16: if qc′ ≤Ck then

17: Assign to c′ a route rv ;
18: Rk = Rk +{c′}

. c’ is added at the Rk, it is the kth route
19: N=N-c’
20: Ck =Ck−qc′

21: else k=k+1;
22: end if
23: end for
24: while (K >V ) do
25: Remove the vehicle k with bigger Ck
26: Assign the costumers in Rk to others vehicles respecting

the capacity constrain
27: end while

. Local search phase
28: Fix L . L is the maximum number of iterations
29: for (l ≤ L) do
30: Select randomly a customers c;
31: Assign it to a route of a vehicle in Xc;
32: Select the routing with minimum obcetive function
33: end for
34: Return the best routing. =0

3.2 Genetic heuristic
This heuristic is a standard genetic algorithm, whose
main steps are reported in Algorithm 2. After gen-
erating the initial population of cardinality S, by a
random assignment of the vehicles to all costumers,
a cyclic subroutine selects two parents that will gen-
erate the new population, till the stop criteria are met.
The probability of each individual to be selected for
the reproduction is proportional to their Fitness value.
In such way the best individuals have a higher prob-
ability to transmit their genetic inheritance. The two
operators that generate the new population from the
parents are:

• The Crossover operator combines the genetic in-
heritance of the parents to generate new individ-
uals. Each children is composed by two parts,
each one belonging to one of the two parents.
The CR is the rate of crossover. Each crossover
operation generates two children.

• The Mutation operator changes casually one or
more components of a individual. The mutation
operator is applied only with a certain probabil-
ity, called mutation rate MR. The number of chil-
dren that are generated by the mutation operator
depends on the number of individuals generated
by the crossover operator. The new population
will have the same cardinality of the initial one
(S).

This heuristic is a standard genetic algorithm.
The initial solution is generated considering first the
number of vehicles in service is randomly drawn, then
the nodes to be serviced are sequentially assigned to
vehicles. After generating the initial population by a
random assignment, a cycle, composed by the follow-
ing steps, runs till the stop criteria are met.

1. For each solution evaluate the objective function.

2. Select a set of best solutions on the basis of step
2 and save them.

3. Combine them to create a new population.

When the cycle stops the best solution is given in
output.

4 Results analysis
At this point, a serious problem arises for the service
provider, how to deliver the desired goods to a large
number of customers waiting for the delivery at vari-
ous points of the city, at a specified time, with at low
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Algorithm 2 Genetic heuristic
1: Given I . I is the maximum number of iteration

of the algorithm
2: Given RC . CR is the rate of crossover
3: Generate P = {p1, p2, . . . pS} . The initial

population of feasible solutions of cardinality S
4: for (i≤ I) do
5: for (s≤ S) do
6: Compute Fitness(ps) . The Fitness

function is the objective function of the problem
7: Select the two parents pm and p f in P with

the best Fitness function values
8: Update p∗ . p∗ is the individual with the

best Fitness function value
9: CC = Crossover (pm, p f , CR); . CC set of

individuals derived from the Crossover
10: M = Mutation (MR) . M set of

individuals derived from the Mutation
11: P =CC∪M
12: end for
13: i = i+1
14: end for
15: Return p∗ =0

cost as possible. The presented case study makes use
of the data published by (0).

In Fig.2, the graph presents the simplified struc-
ture of the transportation network and the layout of
customers and the location of the supplier company.
There is a driving time assigned to each edge and a
service time assigned to each node. It is represents the
network and the time for a specific time slice. Given
the stochastic nature of the problem, it was assumed
that a solution is the average on 20 runs of optimiza-
tion procedure. TMAX is equal to 40 minutes and V is
equal to 30.

As was mentioned in the introduction section the
considered problem is computationally very complex,
therefore the genetic algorithm (GA) is considered
and compared with the GHLS.

The GA and the SM try to minimize number of re-
quired vehicles and the time needed for service. Some
preliminary results are reported The trends of the two
algorithms for the different runs is reported in Fig. 3.
The variation respected to the run is very limited for
both algorithms.

In table 1, a comparison between heuristics is
reported, other indices are considered. V represents
the number of vehicles used, Dv represents the weight
of the vehicle routing, UC represents how many cos-
tumers are served late.

Figure 2: Test Network for a time slice

Figure 3: Trend of the objective function

The GH finds a solution with minor completion
time and better satisfied the time constrains. This pre-
liminary results seams to demonstrate also for this
type of problem the ability of Genetic algorithm to
find optimal solution for complex problem.

5 Conclusion
Scheduling deliveries in a large catering company
may require the use of quick methods for determin-
ing the routes of vehicles. This study is at begging
phase and a more complete analysis is under study.

HEURISTIC OF V Dv UC
GHLS 5.924 6 145 8,3
GA 5.627 6 125 6,5

Table 1: comparison between GHLS and GA
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