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Abstract: In this article, we propose a new nonlinear observer concept. The basic idea for our observer’s design is
to use mean value theorem (MVT) and lsqnonlin algorithm to determine the estimation error (e = x− x̂) and MVT
parameters βi (between 0 and 1) . The stability study is carried out thanks to the quadratic function of Lyapunov.
Two numerical examples are provided to show the performance of the proposed approach. The first studies a
chaotic system with a linear term (ẋ = f(x, u)) and the second deals with a linear system (ẋ = Ax+ f(x, u)).
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1 Introduction

State observation for non-linear has been an active
area of research. The goal of this work is to design
observers able to reconstruct the non-measurable state
of the nonlinear system. Several types of observers
have been designed to solve this problem, and many
outstanding results have been obtained. Despite
significant progress, the main objective remains
unresolved, who consist to find generalized observer
for all nonlinear systems. We mention just a few:
The Nonlinear Luenberger observer approach [1-3],
sliding mode observers [4-6] and adaptive observers
[7-9].
Several other researchers have worked on observers
for nonlinear Lipschitz systems using different
approaches. However, a major limitation for this
system type is that most of them only work for small
values of Lipschitz constant. The major problem is
that if this constant is greater than an appropriate
value, the design methods cannot be applied. In some
recent works [10-12], The mean value theorem is
used to write the state estimation error as a linear
system with uncertain parameters. The use of this
theorem provides a solution even for a large Lipschitz
constant.
In this paper, we propose a new nonlinear observer
design without unknown inputs. The basic idea is
the determination of the estimation error to intro-
duce it into observer structure, based on an error
feedback mechanism. The design of this process

is done using mean value theorem and lsqnonlin
algorithm. The stability analysis is investigate by
using a quadratic Lyapunov function. Two numerical
examples are provided to show the performance of
the proposed approach. The first studies a chaotic
system without a linear term (ẋ = f(x, u)) and the
second deals with a nonlinear system with a linear
term (ẋ = Ax+ f(x, u)) .

2 Preliminaries

In this section, we present some tools that are impor-
tant for the next section: The mean value theorem and
lsqnonlin algorithm.

2.1 Mean-Value Theorem

Lemma 1: Mean Value Theorem for a Vector Function
[13-14]
Let f : Rn → R is differentiable at each point of
the line segment [a b], then there exists on that line
segment a point c = b+ β(a− b) between [a b] and
β ∈ [0 1] such that

f(a)− f(b) = ∇f(c)(a− b) (1)

Note that β is a variable that changes continuously
with the values of a and b. To use the Mean-Value
Theorem, it is necessary to determine at each iteration
the value of β. In this paper, we have used lsqnonlin
algorithm to solve this problem.

WSEAS TRANSACTIONS on SYSTEMS Ramzi Ben Messaoud, Salah Hajji

E-ISSN: 2224-2678 191 Volume 17, 2018



3 Problem formulation and main re-
sults

The nonlinear system can be described as following:{
ẋ(t) = f(x(t), u(t))
y(t) = Cx(t)

(2)

where u(t) ∈ Rk and y(t) ∈ Rm are the input and
output vectors. f(x(t);u(t)) is supposed to be con-
tinuously differentiable,and C ∈ Rm×n = [Im 0]
are known constant matrices of appropriate dimen-
sions and Im is an identity matrix. We assume that
rank(C) = m.

3.1 Proposition of Nonlinear Observer

In this section, we will first present the structure and
necessary and sufficient condition for existence of the
proposed nonlinear observer. This observer has the
following structure:

˙̂x(t) = fx̂,u +Gx̂,u,ee1(t) (3a)

ė(t) = (Dx(fx̂,u,e)(ci)−Gx̂,u,e)e(t) (3b)

Now we can give a sufficient condition under
which the observer given by (3) is indeed a nonlin-
ear observer.

Theorem 1

If there exist positive constants η ≥ 1 such that:

Dx(fx̂,u,e)(ci)−Gx̂,u,e < 0 (4)

Gx̂,u,e∈Rn×n is matrix which have to be designed
such that x̂ asymptotically converges to x, ci = x̂ +
βie with βi ∈

[
0 1

]
. Gx̂,u,e is a diagonal matrix,

which can be written as follows

Gx̂,u,e = η


α1(x̂, u, e) 0 · · · 0

0 α2(x̂, u, e)
. . .

...
...

. . . . . . 0
0 · · · 0 αn(x̂, u, e)

 (5)

with

αk(x̂, u, e) =
n∑
j=1
|gkj |+

n∑
i=1
|gik| (6)

With k = {1, 2, ..., n} , gij represent the coefficients
of the matrix Dx(fx̂,u,e)(ci), η is positive constant
η ≥ 1, e(t) ∈ Rn is the vector of estimation error

determined by observer, y(t)− ŷ(t) ∈ Rm is the mea-
surable estimation error and e1(t) ∈ Rn is vector that
includes measurable estimation errors and the errors
determined by observer such that e1(t) = [y1(t) −
ŷ1(t), . . . , ym(t)− ŷm(t), em+1(t), . . . , en(t)]

T .

3.2 Proof of condition (3):

In order to investigate the stability and the conver-
gence of the observer the state estimation error dy-
namics is analyzed:

ė(t) = ẋ(t)− ˙̂x(t) = fx,u − (fx̂,u +Gx̂,u,ee1(t)) (7)

We consider that f(x, u) is expressed according to the
known terms, such that e(t) and x̂(t) will be deter-
mined by observer (3), ci using lsqnonlin optimization
algorithm (11-12) and the input system u(t):

fx,u = fe+x̂,u = fx̂,u +Dx(fx̂,u,e)(ci)e (8)

With ci = x̂ + βi(x − x̂) = x̂ + βie such that β ∈
[0 1] and i = {1, 2, ..., n}. Dx is the differential
operator defined by

Dx(fx̂,u,e)(ci) =
∂fx,u,e(ci)

∂x |x=ci (9)

Using the mean value theorem and dynamic error
equation becomes:

ė(t) = (Dx(fx̂,u,e)(ci)−Gx̂,u,e)e(t) (10)

3.2.1 Determination of the parameters βi

For the determination of the βi parameters, we use
lsqnonlin algorithm and Simulink block ”Interpreted
MATLAB Function” (figure 2). based on mean value
theorem (1), we consider the following system of
equations:

X(βi) = fx̂+e,u − fx̂,u −Dx(fx̂,u,e)(x̂+ βie)e = 0
(11)

X(βi) = [X1, X2, . . . , Xn]
T , fx̂+e,u =

[f1x̂+e,u, f2x̂+e,u, . . . ,

fnx̂+e,u]
T , fx̂,u = [f1x̂,u, f2x̂,u, . . . , fnx̂,u]

T ,
Dx(fx̂,u,e)(x̂ + βie) = [∇f1x̂,u,e(x̂ +

βie),∇f2x̂,u,ex̂ + βie), . . . ,∇fnx̂,u,ex̂ + βie]
T

and βi = [β1, β2, . . . , βn]
T .

The parameter estimation βi is transformed into
an optimization problem. A performance objective
function is defined for the minimization; fobj is used
as objective function and is given by:

min
βi∈[0 1]

fobj(βi) = min
βi∈[0 1]

√√√√ n∑
j=1

(Xj(βi))2


(12)
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Figure 1: Determination of βi parameters

3.3 Proof of theorem 1

The aim is to define the matrix Gx̂,u,e so that the error
of estimation converges asymptotically to zero. Let

V (e) = 1
2e
T e (13)

The dynamic Lyapunov function can be writing as fol-
lows:

V̇ (e) = eT (Dx(fx̂,u,e)(ci)−Gx̂,u,e)e (14)

To ensure the asymptotic convergence of e to zero, the
derivative of V must be negative, to satisfy this con-
dition. The term eTDx(fx̂,u,e)(ci)e must be increased
as follows:

eTDx(fx̂,u,e)(ci)e < |eTDx(fx̂,u,e)e|

=
n∑

i,j=1
|Dx(fx̂,u,e)||eiej | (15)

We assume that Gx̂,u,e = Dx(fx̂,u,e) and |eiej | ≤
1
2(e

2
i + e2j ), consequently the inequality (15) becomes

eTGx̂,u,ee ≤
n∑

i,j=1
|gij ||eiej | (16)

with gij represent the coefficients of the matrix
Gx̂,u,e.Therefore, we obtain

eTGx̂,u,ee <
n∑
k=1

(
n∑
j=1
|gkj |+

n∑
i=1
|gik|

)
e2k (17)

Following this latest development, we can conclude
that for all (e, x̂) ∈ Rn, we find:

eTGx̂,u,ee < eTGx̂,u,ee (18)

with Gx̂,u,e is a diagonal matrix, which can be written
as follows:

Gx̂,u,e = η


α1(x̂, u, e) 0 · · · 0

0 α2(x̂, u, e)
. . .

...
...

. . . . . . 0
0 · · · 0 αn(x̂, u, e)

 (19)

where

αk(x̂, u, e) =
n∑
j=1
|gkj |+

n∑
i=1
|gik| (20)

Such that k = {1, 2, ..., n}.
we obtain the following expression:

V̇ (e) = eT (Dx(fx̂,u)(ci)−Gx̂,u,e)e (21)

The previous expression becomes negative if η ≥ 1.

4 Illustrative example

• Example 1 : Nonlinear system without linear
term

The numerical simulation example provided to verify
the effectiveness of the proposed approach is repre-
sented by ordinary differential equations. We consider
the chaotic system without linear term [18]:

ẋ(t) =

 ln(0.1 + exp(x2 − x1))
x1x3

0.2− x1x2


y(t) =

(
1 0 0
0 1 0

)
x(t)

(22)

with u(t) = 0, We consider the initial conditions
given by:
x0 = [−2 −1 −1]T , x̂0 = [−1 −0.5 −1.5]T

and e0 = x0 − x̂0 = [−1 − 0.5 0.5]T .
Two case studies are considered:
In the first, we assume that the proposed observer
has the initial estimation error of (3b) equal at e0 =
x0 − x̂0 = [1 − 0.5 0.5]T and e0 = e01 =
[1 − 0.5 0.2]T for the second case and we choose
η = 1.

4.0.1 Determination of βi parameters

Based on the mean value theorem, lsqnonlin algo-
rithm and equation (12). We note that the functions
X(βi) ' 0 (figure 4) at each moment of the simu-
lation for the βi (figure 3) parameters that evolve be-
tween 0 and 1, such that i = 1, 2, 3.

WSEAS TRANSACTIONS on SYSTEMS Ramzi Ben Messaoud, Salah Hajji

E-ISSN: 2224-2678 193 Volume 17, 2018



Figure 2: Evolution of βi parameters

Figure 3: Evolution of X(βi)

4.0.2 Comparison between observer’s error for
e0, e01 and real error

As shown fig.5, we notice that both observer’s errors
for e0 and real errors are confused, the observer’s error
for e01 converge to real errors. Which validates the
proposed development in the paper.

Figure 4: Evolution of observer’s error and real error

4.0.3 Comparison between two case e0 and e01
for the proposed observer

Figure 6 show satisfactory of proposed observer per-
formance in dealing with a nonlinear system without
linear term.

Figure 5: Evolution of the state x3

• Example 2 Nonlinear system with linear part
In this example, we will compare the proposed
observer with two recent nonlinear observers
design [17] and [16]. Consider a single-link
flexible robotic [19]:

f(x, u) =


0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 1

19.5 0 −19.5 3.33

x(t)+


0

21.6
0
0

u(t) +


0
0
0

−3.33sin(x3)

,

C =

 1 0 0 0
0 1 0 0
0 0 1 0

, u(t) = sin(t). We

consider the initial conditions given by:
x0 = [3 3 3 3]; x̂0 = [−1 − 2 −
0.5 − 1] and e0 = x0 − x̂0.

– Proposed observer

First case
We chosen that η = 1 and e0 = x0 − x̂0 =
[2 1 2.5 2]T .
Second case
We chosen that η = 1 and e0 = e01 =
[2 1 2.5 2.5]T .

– [17] observer

We keep the same condition considered in this
paper, for more details see [17].

– [16] observer

We consider the following matrices:

L =


0.5409 −0.6315 0.2392
−10.3506 21.2355 22.8782
1.8370 3.4444 10.6638
15.5282 8.49.67 62.7550

.

For more details see [16].

WSEAS TRANSACTIONS on SYSTEMS Ramzi Ben Messaoud, Salah Hajji

E-ISSN: 2224-2678 194 Volume 17, 2018



4.0.4 Determination of βi parameters

We note that the functions X(βi) ' 0 (figure
8) at each moment of the simulation for the βi
(figure 7) parameters that evolve between 0 and
1, such that i = 1, 2, 3, 4.

Figure 6: Evolution of βi parameters

Figure 7: Evolution of X(βi)

4.0.5 Comparison between evolution ob-
server’s error and real error

As shown fig.9, we notice that both observer’s
error (for e0 and e01) follows the real errors.

Figure 8: Evolution of observer’s error and real error

4.0.6 Comparison between [16], [17] and
proposed observer

The following figure show satisfactory of pro-
posed observer performance in dealing with a
nonlinear system with linear term.

Figure 9: Evolution of the state x4

5 Conclusion

A full order nonlinear observer was proposed for a
large class of nonlinear systems with unknown inputs.
Mean value theorem and lsqnonlin algorithm are the
tools to use for the design of this observer. Numeri-
cal example is provided to show high performances of
the proposed approach and the large class of nonlinear
dynamical systems that are concerned.
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