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Abstract: New explicit Runge–Kutta method with zero phase-lag, zero first derivative of the phase-lag and zero
amplification error is derived for the effective numerical integration of second-order initial-value problems with
oscillatory solutions in this paper. The new method is based on the sixth-stage fifth-order Runge–Kutta method.
Numerical illustrations show that the new proposed method is much efficient as compared with other Runge–Kutta
methods in the scientific literature, for the numerical integration of oscillatory problems.
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1 Introduction
In this paper, we focus our interest in developing an
optimized Runge-Kutta method, for the numerical in-
tegration of second order initial value problems IVPs
with oscillatory solutions of the form

y′′(x) = f(x, y), y(x0) = y0, y′(x0) = y′0, (1)

This type of problem occurs in a various of applied
fields such as quantum mechanics, electronics physi-
cal chemistry, molecular dynamics, astronomy, chem-
ical physics and control engineering. Which can trans-
form into the form of an equivalent system of first-
order ordinary differential equations as follows

y′(x) = f(x, y), y(x0) = y0, (2)

where f : R × R → R is a sufficiently smooth func-
tion. The problem (2) can be solved using Runge–
Kutta (RK) methods or multistep methods. Often
the solution of (2) shows a pronounced oscillatory
behaviour. Several researchers improved numerical
methods based on the phase fitted and amplification
fitted properties (see for instance [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15]). Phase-lag (dispersion
error) is the angle between the true and the approx-
imated solutions and amplification error (dissipation
error) is the distance of the computed solution from
the standard cyclic solution. Anastassi and Simos
[18] proposed a phase fitted and amplification fitted
Runge–Kutta method for solving orbital problems.
Van de Vyver [19] developed two step hybrid methods

based on phase-fitted and amplification-fitted proper-
ties. hybrid method with zero dissipative for solving
oscillatory problems constructed by Ahmed et. al.
[16]. Jikantoro et. al [17] derived semi-implicit hy-
brid method with minimized phase-lag for solving os-
cillatory problems. Simos and Aguiar [20] proposed
a modified Runge-Kutta-Nystrom method with phase
lag of order infinity for solving the Schrödinger equa-
tion and related problems.
In this paper, we will construct a new explicit Runge–
Kutta methods using the technique of phase-lag and
the first derivative of phase-lag of order infinity,also
the amplification error is of order infinity, based on
the coefficients of Runge–Kutta method of algebraic
order five as presented in Butcher [21]. The paper
is organized as follows: In section 2, we present
the phase lag properties of explicit Runge–Kutta RK
method. In section 3, we introduce the construction
of the new explicit Runge-Kutta methods with zero
phase-lag, phase lag’s derivative and amplification er-
ror. In section 4, we give numerical experiments to
show the effectiveness and competence of the new op-
timized Runge–Kutta method as compared with the
well known Runge–Kutta methods from the scientific
literature. Conclusions is given in section 5.
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2 Phase lag analysis of Runge–Kutta
method

In this section, an s−stage explicit Runge-Kutta
method for solving ODEs (2) can be written as fol-
lows

yn+1 = yn + h
s∑

i=1

biki, (3)

ki = f(xn + cih, yn + h
i−1∑
j=1

aijkj). i = 2, 3, . . . , s.

(4)

where the coefficients aij , ci, bi, i = 1, . . . , s are con-
stants, h is the step size The scheme (3)-(4) can be
expressed in Butcher tableau as follows

c A

bT
=

0
c2 a21
c3 a31 a32
...

...
...

cs as1 as2 . . . ass−1
b1 b2 . . . bs

where the coefficients c2, c3, . . . , cs must satisfy
the following row sum condition

ci =

i−1∑
j=1

aij , i = 2, 3, . . . , s (5)

To derive the new method based on phase lag
analysis, we consider the following test equation

y′ = iwy, w ∈ R (6)

when the method expression (3) is applied to test
equation (6), we obtain the numerical solution as fol-
lows

yn+1 = an∗ yn, a∗ = A(z2) + iz B(z2). (7)

where z = wh and A, B are polynomials in z2

totally determined by the parameters aij , ci and bi of
Runge–Kutta method (3)-(4). when we compare the
exact solution with the numerical solution, it yields to
the following definition of phase lag and amplification
error.

Definition 1. In the explicit s−stage Runge–Kutta
method defined in (3)-(4), the quantities

(i) P (z) = z − arctan
(
zB(z2)
A(z2)

)
,

(ii) D(z) = 1−
√

(A(z2))2 + z2(B(z2))2.

are called the phase lag (or dispersion error) and
the amplification error (or dissipation error) of the
method, respectively.

The method is said to be dispersive of order q and
dissipative of order p if P (z) = O(zq+1) and D(z) =
O(zp+1) .
The method is called phase fitted (zero dispersive) and
amplification fitted (zero dissipative) respectively, if
P (z) = 0 and D(z) = 0 .

3 Construction of the new Runge–
Kutta methods

In this section, an optimized Runge–Kutta method
will be derived by nullifying the phase lag, the first
derivative of phase lag and amplification error which
is based on the five algebraic order Runge–Kutta
method of six stage, which is given in Butcher tableau
(see Table 1).

Table 1: Runge–Kutta method of order five
0

1
3

1
3

2
5

4
25

6
25

1 1
4 −3 15

4

2
3

2
27

10
9 −50

81
8
81

4
5

2
25

12
25

2
15

8
75 0

23
192 0 125

192 0 −27
64

125
192

To achieve this, we set a62, a63 and a64 as free
coefficients while all other coefficients are the same
as in Table 1, firstly we compute the polynomials
A(z2) and B(z2) in terms of Runge–Kutta method
parameters in Table 1. Then from these polynomials
we obtain the quantities P (z) and D(z) , and by
requiring of vanishing the phase lag, amplification
error and phase lag’s derivative.
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Through that we obtain a system of three equat-
ions as follows:

P (z) = tan(z)
(
1 +

(
− 1

32
− 125

192
a62 −

125

192
a63

− 125

192
a64

)
z2 +

(125
384

a64 +
5

96
a63

)
z4
)

− z −
(
− 125

192
a64 +

1

24
− 25

96
a63 −

125

576
a62

)
z3

−
(
− 1

80
+

25

128
a64

)
z5 = 0, (8)

P ′(z) =
(
1 + tan2 (z)

)(
1 +

(
− 1

32
− 125

192
a62

− 125

192
a63 −

125

192
a64

)
z2 +

(125
384

a64

+
5

96
a63

)
z4
)
+ tan (z)

(
2
(
− 1

32
− 125

192
a62

− 125

192
a63 −

125

192
a64

)
z + 4

(125
384

a64 +
5

96
a63

)
z3
)

− 1−
(
− 125

192
a64 +

1

24
− 25

96
a63 −

125

576
a62

)
z2

−
(
− 1

80
+

25

128
a64

)
z4 − z

(
2
(
− 125

192
a64 +

1

24

− 25

96
a63 −

125

576
a62

)
z + 4

(
− 1

80

+
25

128
a64

)
z3
)
= 0. (9)

D(z) =
( 1

6400
− 5

1024
a64 +

625

16384
a264

)
z10

+
(
− 3125

36864
a64a62 −

625

9216
a63a64 +

25

9216
a263

+
25

768
a64 −

21875

147456
a264 +

25

4608
a62 +

5

768
a63

− 1

960

)
z8 +

(
− 67

2880
+

15625

331776
a262 −

125

6912
a62

− 115

4608
a63 +

5825

18432
a64 −

15625

110592
a64a62

+
625

13824
a63a62 −

625

4096
a63a64

)
z6 +

(15625
36864

a264

+
15625

36864
a263 −

3625

9216
a62 −

625

1024
a64 +

15625

36864
a262

+
15625

18432
a63a64 +

259

3072
+

15625

18432
a64a62

− 385

1024
a63 +

15625

18432
a63a62

)
z4 +

(
− 125

96
a64

− 125

96
a62 −

125

96
a63 +

15

16

)
z2 = 0, (10)

Solving simultaneously the system of equations
(8),(10) and (9) we obtain the coefficients a62, a63
and a64 which are completely depend on z , where z
is the product of the step-size h and the frequency of
the method w. The expressions for a62, a63 and a64
are too complicated. As z → 0, they have the Taylor
series expressions as follows:

a62 =
12

25
+

48

875
z2 +

32

1875
z4 +

1157

86625
z6

+
10785259

1182431250
z8 +

8156483

1289925000
z10

+
31676135809

7236479250000
z12 + . . .

a63 =
2

15
− 32

525
z2 − 104

4725
z4 − 12538

779625
z6

− 472273

42567525
z8 − 4906436

638512875
z10

− 4949705143

930404475000
z12 + . . .
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a64 =
8

75
+

16

2625
z2 +

124

23625
z4 +

791

222750
z6

+
2620894

1064188125
z8 +

435406187

255405150000
z10

+
5913223843

5009870250000
z12 + . . .

4 Numerical Results

To evaluate the efficiency of the new optimized
Runge–Kutta methods derived in this paper, we ap-
ply them to five oscillatory problems and then com-
pared the results with some efficient methods, which
are chosen from the scientific literature. We use in the
numerical comparisons the criteria based on comput-
ing the maximum error in the solution ( Max Error =
max (| y(tn)− yn |) ) which is equal to the maximum
between absolute errors of the true solutions and the
computed solutions. Figures 1–5 show the efficiency
curves of Log10(Max Error) against the computational
effort measured by (CPU Time Second) which is re-
quired by each method. The interval of integration for
all problems is [0, 1000]. The following methods are
used in the comparison.

• ORK5: The new optimized six-stage five-order
Runge–Kutta method with phase-lag, the first
derivative of phase-lag and amplification error of
order infinity derived in section 3 in this paper.

• RK5: The six-stage five-order Runge–Kutta
method given in Butcher [21].

• RK5TS: The phase fitted five-order Runge–Kutta
method proposed by Tsitouras and Simos [27].

• RK5AS: The optimized fifth-order Runge–Kutta
method derived by Anastassi and Simos [26].

• RK5V: The higher order method of the phase fit-
ted embedded RK5(4) pair proposed by Van de
Vyver [28].

Problem 1: ( Homogeneous problem studied by
Chakravarti and Worland [22]).

y′′ = −y, y(0) = 0, y′(0) = 1.

The exact solution is y(x) = sin(x), and the fre-
quency is w = 1.

Problem 2: (Inhomogeneous equation studied
by Simos [25] ).

y′′ = −100y + 99 sin(x), y(0) = 1, y′(0) = 11.

The frequency is w = 10, and the exact solution is
y(x) = cos(10x) + sin(10x) + sin(x),

Problem 3: ( Almost periodic orbit problem given in
Stiefel and Bettis [23]).

y′′1 + y1 = 0.001 cos(x), y(0) = 1, y′(0) = 0,

y′′2 + y2 = 0.001 sin(x), y(0) = 0, y′(0) = 0.9995.

The exact solutions are y1(x) = cos(x) +
0.0005x sin(x) and y2(x) = sin(x)−0.0005x cos(x).
The frequency is w = 1.

Problem 4: ( Inhomogeneous linear system studied
by Franco [24]).

y′′ +

 101
2 −99

2

−99
2

101
2

 y =

93
2 cos(2x)− 99

2 sin(2x)

93
2 sin(2x)− 99

2 cos(2x)

 ,

y(0) =

(
0
1

)
, y′(0) =

(
−10
12

)
The frequency is w = 10, and the exact solution is

y(x) =

(
− cos(10x)− sin(10x) + cos(2x)
cos(10x) + sin(10x) + sin(2x)

)

Problem 5: ( The oscillatory system studied by Franco
[29]).

y′′ +

(
13 −12
−12 13

)
y =

(
9 cos(2x)− 12 sin(2x)
−12 cos(2x) + 9 sin(2x)

)
,

y(0) =

(
1
0

)
, y′(0) =

(
−4
8

)
The frequency is w = 5, and the exact solution is

y(x) =

(
sin(x)− sin(5x) + cos(2x)
sin(x) + sin(5x) + sin(2x)

)
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Figure 1: The efficiency curves for Problem 1 with
h = 1, 0.875, 0.625, 0.375, 0.125.

5 10 15 20 25 30

−10

−8

−6

−4

−2

0

CPU Time Second

L
o

g
1

0
 (

 M
a

x
 E

rr
o

r 
)

 

 
ORK5
RK5
RK5TS
RK5AS
RK5V

Figure 2: The efficiency curves for Problem 2 with
h = 1/2i, i = 4, . . . , 8.
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Figure 3: The efficiency curves for Problem 3 with
h = 0.8/2i, i = 0, . . . , 4.
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Figure 4: The efficiency curves for Problem 4 with
h = 1/2i, i = 4, . . . , 8.
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Figure 5: The efficiency curves for Problem 4 with
h = 1/2i, i = 3, . . . , 7.

5 Conclusion
In the present paper, zero phase lag and the first
derivative of phase lag Runge–Kutta method of order
six with amplification error of order infinity is con-
structed for solving second order ordinary differen-
tial equations whose solutions have oscillatory prop-
erties. The numerical tests illustrate that the new
method is much efficient for solving special second
order IVPs with oscillatory solution as compared with
other methods of the same order.
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