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Abstract: - The Preisach theory of hysteresis is regarded by many experts to be the most accurate physical 
description of hysteresis behavior, especially in ferromagnetism. Unfortunately, its practical applications and 
accessibility to students and researchers are limited due to its complex formulation and numerical 
implementation. Instead, simpler and less accurate hysteresis models or anhysteretic single-value nonlinear 
models are often employed. This paper proposes a new and relatively simple object-oriented model 
representation for Preisach theory in MATLAB-Simulink. The developed hysteresis block is highly 
customizable for modeling complex dynamical systems and is also ideal for use in educational courses to allow 
students to simulate and further their understanding of ferromagnetism and hysteresis behavior in nonlinear 
systems. 
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1 Introduction 
Detailed modeling of electromagnetic circuits 
with ferrite cores is essential in the optimal 
design of power supplies, transformers, motors, 
generators and converters. Accurate 
electromagnetic modeling of dynamic 
hysteresis nonlinearities has recently been 
shown to be significant in uncovering 
complicated behavior in transformers (e.g., 
inrush and ferroresonance) [1-4]. In an 
educational setting, object-oriented software 
tools have also proven useful in facilitating the 
learning of many power system engineering 
concepts [5-10]. However, easy-to-use software 
tools are lacking for students who wish to gain a 
physical understanding of ferromagnetism, 
especially with regards to the complicated 
hysteresis behavior exhibited in many electrical 
machine components.  

The hysteresis phenomenon is observed in 
many other fields including economics, medical 
sciences, chemistry and mechanical 
engineering. Unfortunately, the best hysteresis 
models have seen little or no use in these fields 
due to their complexity and inaccessibility to 
students and researchers [11].  Instead, simpler 

and less accurate nonlinear models (e.g., single-
valued saturation functions) are often employed 
which do not reach the full potential for optimal 
electromagnetic circuit analysis and design.  In 
order to address this deficiency, a new object-
oriented methodology based on the Preisach 
model of hysteresis [12] is proposed using the 
widely accessible MATLAB-Simulink software 
package. 

Very few attempts have been made at 
developing readable software models of 
hysteresis for design and analysis applications 
as well as for educational purposes.  Of the 
more successful attempts, Prigozy [13] and Ngo 
[14] have published PSPICE models using the 
Jiles-Atherton hysteresis approach [15]. 
However, these models are not very successful 
at reproducing minor hysteresis loops compared 
to other models of ferromagnetism [16]. More 
accurate models suffer from problems such as; 
(1) lack of generality by tailoring to a particular 
application, (2) numerical implementation is 
obscured through complicated mathematical 
formulation, (3) dynamic effects (e.g., minor 
loop formation) are often oversimplified and 
inaccurately portrayed, and (4) tuning the model 
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to approximate experimental results is often a 
long and tedious trial-and-error process.   

The Preisach theory of hysteresis [12] is 
generally regarded by experts to be the most 
complete and accurate representation of 
hysteresis, particularly in the field of 
ferromagnetism. Unfortunately, this powerful 
model has seen limited applications due to its 
complicated mathematical formulation. The few 
reported studies provide very limited or no 
insight on the methodology of implementation. 
Some of the more successful publications in this 
regard are [17-20].  However, the software 
implementation is not described, putting the 
model largely out of reach of researchers and 
designers.   

The aim of this paper is to increase the 
accessibility of the Preisach model by offering a 
novel object-oriented implementation in the 
MATLAB-Simulink environment [21]. Using 
the S-function block capability of MATLAB-
Simulink, the Preisach model is realized by 
embedding the developed numerical code into 
plug-and-play type Simulink library blocks. The 
user interface is graphical and intuitive making 
it a useful tool in expanding users ability to 
experiment with the model. Furthermore, the 
proposed implementation allows users to 
incorporate this powerful model into larger 
dynamical systems using block-diagrams [10] 
and Simulink block library. In this way, the 
approach offers a practical perspective of 
Preisach-theory and insight into ferromagnetic 
hysteresis behavior. 
 
 
2 Preisach Theory of Hysteresis 
Ferenc Preisach proposed his theory of 
hysteresis in a landmark paper in 1935 [12]. 
The theory drifted into obscurity until the 1970s 
when Russian mathematicians Krasnoselskii 
and Pokrovskii began studying the model for its 
mathematical properties [22]. It was not until 
the 1980s that the theory was first developed 
into a usable hysteresis model [23]. The model 
has now become one of the most successful 
mathematical descriptions of hysteresis to date. 
 
 

 
2.1 Model Basis 
The emphasis of this paper is the practical 
numerical and object-oriented implementation 
of the model. Only critical mathematical 
concepts of Preisach-theory are presented to 
guide the algorithm development. For greater 
mathematical insight, the interested reader 
should refer to [19, 23].  
The elementary building blocks for the Preisach 
model first conceived in [12] is a two-valued, 
binary type, hysteresis relay operator, or, 
“hysteron”.  These hysteron relays (denoted by 
αβγ̂ ) can be viewed to have two switching 

states when operated on an arbitrary input H 
(e.g., magnetizing force). That is ( )( )tHαβγ̂  can 
take values of +1 (“up”) and -1 (“down”).  The 
threshold value α is the level the input must 
exceed to cause an “up” switch transition.  
Conversely, β is the threshold value for the 
input to decrease to cause a “down” switch 
transition. Therefore, hysterons operating on 
inputs H will cause up and down transitions 
when α≥H and β≤H , respectively. These 
hysteron transitions are depicted in Fig. 1a.  
 

1α1β

2β 2α

nβ nα

( )1,1 βαµ

( )22 ,βαµ

( )nn βαµ ,

( )tH ( )tB

Relay 
hysterons

Weight 
functions

∫
Input
(e.g., 

magnetizing 
force)

Output
(e.g., magnetic 

flux density)

αβγ

( )tu

α

β

Hysteresis (relay) operator

 
          (a)                                                   (b) 
Fig. 1.  (a) Two-state relay hysteron operator 
and (b) parallel connection of hysterons 
operating on arbitrary input. 
 
The Preisach model is built up from a set of 
hysterons, each with different (α, β) switching 
transitions threshold values.  These hysterons 
are akin to magnetic dipoles in ferromagnets. It 
was postulated  that  if  a  parallel  set  of  
hysteron   relays operates on an arbitrary input 
H (e.g., magnetizing force), and each hysteron 
is multiplied by its own weighting function 
( )βαµ , , then the sum of the results gives rise 

to an output B (e.g., magnetic flux density) that 
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exhibits hysteretic properties when plotted 
against its time-varying input. This concept is 
illustrated in Fig. 1b. The combined action of 
all weighted hysterons is summed and called the 
Preisach operator Ρ̂ .  The model can thus be 
expressed as follows, 
 

( )( ) ( )( ) ( ) ( ) βαγβαµ αβ
βα

ddˆ,ˆ tHtHPtHB ∫∫
≥

==  (1) 

  From Fig. 1 and (1), it should become 
apparent that this model exhibits the property of 
memory. That is, the state of particular relay 
hysterons may have been set in the up or down 
positions temporarily by prior values of a time-
varying input. In ferromagnetism, this behavior 
closely approximates the magnetization history 
of ferromagnetic material which determines the 
magnetic memory of a sample. When this is 
played out over time, repetitive input 
oscillations (e.g., sinusoidal) can result in 
recognizable hysteresis behavior. 
 
 
2.2 Preisach Memory 
It has been proven in [23] that only certain 
selected values of past inputs are necessarily 
retained to determine the Preisach model output 
at a given time. A special “wipe-out” property 
allows selected new values of input to erase 
Preisach memory. These input values are the 
dominant extrema of the input waveform such 
as those depicted in Fig. 2.   

0t
+
1t

−
1t

+
2t

+
kt

−
2t −

kt

( )tu

t

1M
2M

kM

1m
2m

km

0m

Fig. 2. An example of arbitrary input (e.g., 
magnetizing force H) where only dominant 
local input extrema in sets {𝑀𝑀𝑘𝑘} and {𝑚𝑚𝑘𝑘} are 
accumulated as required by the Preisach model. 
 

The dominant extrema values are constantly 
updated depending on whether new extrema are 
sufficiently large enough to “wipe out” the old 
extrema values. 
  For example, in Fig. 2, when the input is 
raised from an initial minimum −∞=0m  at 

0tt =  to M1 at += 1tt , all input extrema up until 
+= 1tt  are wiped out by maximum M1.  

Continuing from += 1tt to −= 1tt ,  the minimum 
m1 wipes out all input extrema that occurred 
between += 1tt  and −= 1tt .  Likewise, when the 
input arrives at += 2tt  with M2, this maximum 
wipes out all input extrema that occurred 
between −= 1tt  and += 2tt .  So far, the values 
{𝑚𝑚0,𝑀𝑀1,𝑚𝑚1,𝑀𝑀2} are retained because no input 
excursions were sufficient enough to wipe out 
these values.  This process continues and an 
alternating series of maxima {𝑀𝑀𝑘𝑘} and mimima 
{𝑚𝑚𝑘𝑘} are stored. These sets of extrema values 
can be expressed as, 
 

( ) ( ) kk
tt

k MtHtHM
k

== +
−
−

,max
]',[ 1

  (2) 

 
( ) ( ) mtHtHm kttk

k

== −
+

,min
]',[

,   (3) 

 
 resulting in a set of dominant maxima and 
minima extrema, 
 

}{ }{ kk mmmmmmMMMMM ,...,,,,,,...,,, 3210321 ==  
(4) 
 
 
2.3 Preisach Output Computation 
The next step is to simplify (1) by eliminating 
the double integrals and modifying the weight 
function ( )βαµ ,  for more efficient 
computation. Therefore, a new function F(α, β) 
was introduced. For brevity, the full derivation 
is omitted and can be found in [19, 23].  F(α, β) 
relates the weighting function to a desired 
hysteresis characteristic. Therefore, (1) is 
equivalent to 
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A subtlety of this formula explained in [23] is 
that the final values in sets {𝑀𝑀𝑘𝑘} and/or {𝑚𝑚𝑘𝑘} 
could take on the present input value depending 
on whether H is increasing or decreasing. For 
increasing H, Mk = H and (5) becomes,  
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and for decreasing H, mk = H  and (5) is 
evaluated as, 
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      (7) 
Therefore from (5)-(7), it is observed that an 
updating set of input extrema (2)-(4), current 
input value and knowledge of F(α, β) function 
is all that is required to compute the hysteresis 
response. The choice of function F(α, β) is 
discussed in [17-20]. 
 
 
3 Model Implementation in MATLAB 
This section details the software 
implementation of Preisach-theory based on the 
mathematics described in Section II. In order to 
demonstrate its implementation, one of the most 
widely used numerical packages MATLAB is 
used with the object-oriented based simulator 
Simulink [21]. Using the S-function feature in 
Simulink, a custom hysteresis block can be 
developed whose properties and behavior is 
defined by the developed M-file source code. 
The S-function template provided in MATLAB 
help files is modified to encapsulate the 
Preisach algorithm. In the following, it is 
assumed the reader is cognizant with a basic 
understanding of S-functions, which can be 
found in Simulink help.   
 
 
3.1 Initialization Stage 

From Section II, it is apparent that the 
numerical code will have to deal with storing 
prior values of input in order to compute the 
output.  S-function blocks have internal 
memory storage known as Dwork vectors that 
can retain information for subsequent time-
steps.  The main Dwork vectors required will be 
used as stack buffers to store dominant extrema 
{𝑀𝑀𝑘𝑘}, {𝑚𝑚𝑘𝑘}.  Furthermore, some status flags 
and vector indices also need to be stored in 
Dwork vectors for subsequent time steps.   
  S-functions require Dwork vectors to be pre-
allocated to a fixed size.  This restriction 
presents some minor hindrance on the 
allocation of storage vectors for dominant 
extrema.  This is because the number of 
elements n(t) in (6)-(7) with dominant extrema 
is always changing depending on the input 
variations.  Therefore, it was decided to 
preallocate these vectors to a sufficient size 
such that collected dominant extrema values 
would not be expect to exceed the buffer size.  
The Dwork vectors for Mk and mk are initialized 
with a finite size of 500 elements. Another 
Dwork vector (uSeg) of size 10000 is for 
buffering enough input values to scan for 
dominant extrema. The following is a sample of 
S-function code of how variables for memory 
buffers are declared; 
 
function DoPostPropSetup(block) 
… block.Dwork(1).Name = 'uSeg'; 
block.Dwork(1).Dimensions  = 10000; 
block.Dwork(1).DatatypeID  = 0; 
block.Dwork(1).Complexity = 'Real'; 
block.Dwork(1).UsedAsDiscState = true; 
block.Dwork(2).Name = 'MkBuffer'; 
block.Dwork(2).Dimensions = 500; 
block.Dwork(2).DatatypeID = 0; 
block.Dwork(2).Complexity    = 'Real'; 
block.Dwork(2).UsedAsDiscState = true; 
block.Dwork(3).Name = 'mkBuffer'; 
block.Dwork(3).Dimensions = 500; 
block.Dwork(3).DatatypeID  = 0; 
block.Dwork(3).Complexity   = 'Real'; 
block.Dwork(3).UsedAsDiscState = true;  …  
end 
 
   Following the declaration of memory buffer 
sizes and data types, it is necessary to prescribe 
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a sequence of {𝑀𝑀𝑘𝑘} and {𝑚𝑚𝑘𝑘} values into the 
buffers to set an initial magnetization history. In 
ferromagnetism, this defines the residual flux 
density.  For this work, a decaying alternating 
series of maxima and minima is stored into the 
memory buffers which are akin to the action of 
demagnetizing ferromagnetic material with a 
slowly decaying alternating current magnetizing 
field. The following code demonstrates the 
initialization routine performed once for the 
entire simulation run; 
 
function InitConditions(block) 
    % Initialize prior time step (t-1) to negative     
    infinity 
  block.Dwork(1).Data=    
   NaN(1,block.Dwork(1).Dimensions); 
  block.Dwork(1).Data(1) = -inf; 
    % Place NaNs in buffers and then write 
initial  
    decaying maxima series 
  block.Dwork(2).Data=  
  NaN(1,block.Dwork(2).Dimensions); 
  lock.Dwork(2).Data(1:400)=[0.4:0.001:0.001];    
  % Place NaNs in buffers and then write initial 
decaying minima series 
  block.Dwork(3).Data=     
  NaN(1,block.Dwork(3).Dimensions); 
  block.Dwork(3).Data(1) = -inf;   
  block.Dwork(3).Data(2:401)=[-0.4:0.001:-      
  0.001];  … end 
 
   A few subtleties of the presented code should 
be pointed out. Firstly, it is assumed that the 
magnetization history is such that the input is 
first raised from a large negative value (e.g., 
state of negative saturation). Therefore, the first 
value in the decaying sequence of alternating 
maxima-minima values is the minimum 

−∞=0m . Subsequent minima values are 
gradually increasing to zero while maxima 
values decrease toward zero, effectively 
mimicking the demagnetization process. Note 
the number of minima values in the set is one 
more than the number of maxima values in the 
set, as required by the summation terms in (5). 
    Furthermore, MATLAB NaNs (not-a-
number) values are used to fill the buffers with 
nonessential elements. This is necessary 
because of the fixed vector size restriction in S-

function blocks. Otherwise, the vector sizes 
need only to resize themselves according to the 
number of elements contained in {𝑀𝑀𝑘𝑘}, {𝑚𝑚𝑘𝑘} 
(e.g., when new extrema are introduced and old 
ones are wiped out).  On the other hand, the 
fixed buffer sizes allow for more efficient 
processing as resizing memory buffers every 
time step is computationally intensive. 
3.2 Main Preisach Algorithm 
   The full computer code listing of the main 
routine and all required S-function subroutines 
is listed in the Appendix. The flow chart for the 
implemented Preisach algorithm is depicted in 
Fig. 3. The primary tasks of the main routine 
are to detect and store new dominant extrema 
values, perform wiping out of old extrema 
values, and update the output for the current 
time step. Prior to simulation run, the solver 
method, time-steps, run duration and hysteresis 
block input parameters need to be configured. 
The main block parameters are the constants 
and coefficients for F(α, β) which shapes the 
hysteresis loops.   
   Once the simulation is initiated, the current 
input value at the block input port and model 
parameters are passed into the main code 
contained in preisachHysteresis.m. The 
initialization stage as described previously is 
performed which pre-defines the set {𝑀𝑀𝑘𝑘} and 
{𝑚𝑚𝑘𝑘} in Preisach memory for initial 
magnetization history. In subsequent time steps, 
{𝑀𝑀𝑘𝑘} and {𝑚𝑚𝑘𝑘} are calculated from the previous 
iteration. A temporary storage buffer named 
uSeg is used to store values from the last global 
extrema to the present input value. This allows 
the program to detect whether or not local 
maximum/minimum turning points (potentially 
new extrema) have been reached. Therefore, 
vector uSeg will only contain values between 
two successive turning points. Based on this, 
and whether the input is increasing or 
decreasing, the program chooses between two 
codes to begin detection of dominant maxima 
and minima values of input.  
     If the input has passed a local minimum 
turning point and is increasing, the first step is 
to find and keep all values of dominant maxima 
greater than the present input value H.  Values 
of {𝑀𝑀𝑘𝑘} that were not greater than H are wiped 
out from memory. As stipulated in (6), the 
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current input H must be added to the end of 
{𝑀𝑀𝑘𝑘} set.  As some values of {𝑀𝑀𝑘𝑘} were wiped 
out, correspondingly, dominant minima in{𝑚𝑚𝑘𝑘} 
that occurred after the last two extrema are 
wiped out. This is because {𝑀𝑀𝑘𝑘} and {𝑚𝑚𝑘𝑘} 
together must form a sequence of alternating 
maxima and minima. A similar process is 
performed to satisfy (7) for a decreasing input, 
passing a local maximum turning point. In this 
case, the present input H must be added to the 
end of both {𝑀𝑀𝑘𝑘} and {𝑚𝑚𝑘𝑘} sets. 
      Finally, the Dwork vectors for dominant 
extrema {𝑀𝑀𝑘𝑘}, {𝑚𝑚𝑘𝑘} and input segments (uSeg) 
are updated such that they are stored for the 
next iteration and the computed output is sent to 
the Simulink block output port. The entire 
process is repeated for subsequent time steps 
until the simulation run time has elapsed. 

input B-H characteristic parameters, preallocate arrays 
for Preisach memory buffers,define initial sequence 

for dominant maxima and minima {Mk} and {mk}

Compute output B from (5) and send to block output port

Scan input buffer (uSeg) for global 
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Fig. 3.  Main Preisach algorithm for MATLAB-
Simulink S-function 
 
 
3.3 Object-Oriented Block Definition 
In the Simulink environment, the S-function 
block allows one to link the model-based 
simulator to numerical code. The extensive 
Simulink library offers many functions to serve 
as inputs for the hysteresis block as well as 
manipulating and plotting outputs as required 
(Fig. 4a). Therefore, Simulink permits highly 

complex dynamical systems to be analyzed in a 
straightforward and intuitive manner. Hence, 
the developed Preisach hysteresis block can be 
used for analyzing complex physical systems 
(e.g., magnetic circuits). The input dialog box 
for the S-Function block is used to specify the 
Preisach hysteresis M-file and F(α, β) function 
parameters (Fig. 4b).   
 

 
(a) 

 

 
(b) 

Fig. 4.  (a) Simulink block of Preisach model 
and (b) parameter dialog box 
 
 
4 Simulation Results 
This section presents simulation results 
demonstrating the Preisach model simulated in 
MATLAB-Simulink. The XY plotter and scope 
blocks are used to view the hysteresis loops and 
input-output waveforms.  A fixed step discrete-
time solver is used with a step-size  of   ∆t = 0.2 
ms.   For demonstration purposes, the F(α, β) 
function and parameters are obtained from [19] 
for a known B-H characteristic where M1 = 0.8, 
M2 = 0.7, P1 = 20, P2 =2, e= 0.5 and magnetic 
permeability constant is μ0 =4π.10-7. 
Alternatively, the user is free to select other 
F(α, β) functions. 
 
 
4.1 Sinusoidal Input Excitation 
The first simulation case is for a sinusoidal 
input H(t) = 1.0sin(2*π*50*t) as shown in Fig. 
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5. This is representative of typical hysteresis 
behavior in an iron-core inductor or transformer 
connected to an alternating current source. As 
expected, the hysteresis trajectory increases 
from the initial demagnetized state defined by 
the initial {𝑀𝑀𝑘𝑘} and {𝑚𝑚𝑘𝑘} sets and settles into 
its typical cyclical behavior with positive and 
negative saturation states. 

 
(a) 

 

 
(b) 

 
Fig. 5. Simulation of Preisach hysteresis block 
with sinusoidal input; (a) input-output 
waveforms for magnetization force H and flux 
density B, and (b) corresponding B-H hysteresis 
loops. 
 
 
4.2 Nonsinusoidal Input Excitation 
In order to demonstrate the model versatility in 
Simulink and show the dynamic behavior 
through formation of minor hysteresis loops, the 
input is changed by multiplying the sine 
function with a ramp function. The 

corresponding hysteresis loops and waveforms 
for linearly increasing sine function amplitude 
are observed in Fig. 6.  It should be noted that 
unlike most hysteresis models (e.g., Jiles-
Atherton method [13-15]), the Preisach model 
is capable of forming the minor hysteresis loops 
independently from the major hysteresis loop. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 6. Simulation of Preisach hysteresis block 
under ramped sinusoidal input; (a) input-output 
waveforms for magnetization force H and flux 
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density B, (b) B-H hysteresis loops and (c) 
Simulink block diagram. 
 
 
4.3 Sinusoidal Input with White Noise 
For demonstrating the robustness of the model 
algorithm, the developed Preisach block is 
subjected to a simulated noisy input. A white 
noise Gaussian block is added to the sinusoidal 
input resulting in the waveforms and hysteresis 
loops depicted in Fig. 7. Similarly, there are 
many other block sets in Simulink which can be 
utilized with the Preisach model block.  This 
opens up a wide range of applications for 
Presiach theory in Simulink such as modeling 
dynamics of mechanical systems, control 
systems, and electromagnetic circuits in 
electronics and power applications. 
 

 
(a) 

 

 
(b) 

 

 

(c) 
 
Fig. 7. Simulation of Preisach hysteresis block 
with sinusoidal input subjected to additive 
white noise; (a) input-output waveforms for 
magnetization force H and flux density B, (b) 
B-H hysteresis loops and (c) Simulink block 
diagram. 
 
4 Conclusion 
The aim of this paper was to demonstrate a new 
and practical implementation of the Preisach 
model of hysteresis.  The implementation is 
well suited for education, design and analysis 
applications.  This was prompted by the lack of 
clear and general numerical implementations of 
Preisach-theory which has resulted in very 
narrow and highly specialized usage of this 
powerful model. Furthermore, nonlinearities of 
magnetic circuits in power applications are 
often oversimplified to single-value nonlinear 
functions which ignore true dynamic hysteresis 
behavior. Therefore, the developed MATLAB 
code and object-oriented approach for 
implementing Preisach-theory generalizes the 
model to researchers and designers in a wide 
variety of disciplines, especially within the 
power engineering field. For example, the 
presented methodology could be useful in the 
dynamic modeling of ferrite cores in magnetic 
circuits such as transformers, inductors and 
rotating electrical machinery.  Furthermore, the 
ability to use the Simulink engine greatly 
increases model flexibility for serving as a 
powerful design tool for students and engineers 
to experiment with and gain further insight into 
hysteresis and ferromagnetism. 
 
 
5 Appendix 
S-function code listing for Preisach Hysteresis 
Model 
function preisachHysteresis (block) ; 
setup(block);  end   % S-Function 
function setup(block); % Parameter structure is  
       ordered as{ [Mi ; Pi] A μ0 e} 

  block.NumDialogPrms  = 4;      %  
      MATLAB version 7.8.0.347 (R2009a) 

  block.NumInputPorts  = 1;    
      block.NumOutputPorts = 1; 
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  % Setup functional port properties to  
      dynamically inherited. 

  block.SetPreCompInpPortInfoToDynamic; 
  block.SetPreCompOutPortInfoToDynamic; 
  block.InputPort(1).Dimensions  = 1;  
  block.InputPort(1).DirectFeedthrough =  

      true; 
  block.OutputPort(1).Dimensions   = 1; 

  % Set block sample time to inherited 
  block.SampleTimes = [0 0]; 

  % Register methods 
 

block.RegBlockMethod('PostPropagationSetup', 
@DoPostPropSetup); 

  
block.RegBlockMethod('InitializeConditions',     
@InitConditions);   
block.RegBlockMethod('Outputs',                 

@Output);   
   % block.RegBlockMethod('Update',                        
@Update);  end 
function DoPostPropSetup(block) ; % Setup 
Dwork 

  block.NumDworks = 4; 
   % Setting input storage and dominant extrema  
       buffers {mk}, {Mk} 

  block.Dwork(1).Name = 'uSeg';  
      block.Dwork(1).Dimensions      =  

 10000; 
  block.Dwork(9).DatatypeID  = 0;  

      block.Dwork(1).Complexity =  
 'Real'; 
  block.Dwork(1).UsedAsDiscState = true; 
  block.Dwork(2).Name = 'MkBuffer';  

      block.Dwork(2).Dimensions=  
  500; 
  block.Dwork(2).DatatypeID = 0;   

      block.Dwork(2).Complexity   =  
 'Real'; 
  block.Dwork(2).UsedAsDiscState = true;  
  block.Dwork(3).UsedAsDiscState = true; 
  block.Dwork(4).Name = 'slopeFlag';  

      block.Dwork(4).Dimensions   
  = 1; 
  block.Dwork(4).DatatypeID= 0;  

      block.Dwork(4).Complexity      = 'Real'; 
  block.Dwork(3).UsedAsDiscState = true; 

end 

 
function InitConditions(block) ;   % Initialize     
   Dwork 
  % Input storage buffer for min max scans of  
     input segments 

  block.Dwork(1).Data =  
      NaN(1,block.Dwork(1).Dimensions); 

  block.Dwork(1).Data(1) = -inf; 
  % Defining initial magnetic history 

  block.Dwork(2).Data =  
      NaN(1,block.Dwork(2).Dimensions); 

  block.Dwork(2).Data(1:400) = [0.4:- 
      0.001:0.001];     

  block.Dwork(3).Data =  
      NaN(1,block.Dwork(3).Dimensions); 

  block.Dwork(3).Data(1) = -inf;   
  block.Dwork(3).Data(2:401) = [-0.4:0.001:- 

      0.001];    
  % Assumed initial slope direction (+1 =  
      increasing) 

  block.Dwork(4).Data = 1;  end 
function Output(block) ; % Main function for  
     Preisach algorithm 
  % Assemble user input block parameters into a  
     data structure 

  x.Mi = block.DialogPrm(1).Data(:,1); 
  x.Pi = block.DialogPrm(1).Data(:,2);  x.A =  

      block.DialogPrm(2).Data;  
  x.u0 = block.DialogPrm(3).Data;  x.e =     

      block.DialogPrm(4).Data; 
  % Retrieve present input and Preisach memory  
      from storage buffers 

  uSeg   = block.Dwork(1).Data.';   MkBuff =  
      block.Dwork(2).Data.'; 

  mkBuff = block.Dwork(3).Data.'; 
  s = block.Dwork(4).Data;  % Get initial  

      slope flag  
  u = block.InputPort(1).Data;  % Get current  

      input value 
  lenUseg = find(~isnan(uSeg),1,'last'); 
  uSeg(lenUseg+1) = u;  lenUseg = lenUseg  

      +1 ; 
  % Check if input is increasing (s=1) /  

      decreasing (s=0) 
  if u>uSeg(lenUseg-1) ; s = 1;   else  ; s = 0;    

      end  
        [dummy,maxIndx] = nanmax(uSeg); 
        [dummy,minIndx] = nanmin(uSeg);       
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    % if passed a minimum turning point and  
              ascending 

  if  minIndx<lenUseg && s==1  
            len = length(uSeg(minIndx:end)); 
            uSeg(1:len) = uSeg(minIndx:end);   

                uSeg(len+1:end) = NaN; 
   % Find index for all values in Mk set still  

      above current input 
  indx = MkBuff>u;  
    % Get new index of last value in Mk set  

         (just before NaNs)   
            lastMkIndx = sum(indx);                
            MkBuff(1:lastMkIndx) =  

                MkBuff(indx);       
      % Store current input at the end of the  

              Mk buffer set of maxima   
          MkBuff(lastMkIndx+1) = u;   

             lastMkIndx = lastMkIndx + 1; 
     % Assure NaNs are placed after last  

             number to end of buffer  
            MkBuff(lastMkIndx+1:end) = NaN; 
            mkBuff(lastMkIndx+1:end) = NaN;    

% Find index for all values in mk set still  
         below current input 
        indx = mkBuff<u;             

% Get new index of last value in mk set  
          (just before NaNs) 
            lastmkIndx = sum(indx);                

% Keep only values not wiped out by input 
            mkBuff(1:lastmkIndx) =    

              mkBuff(indx); 
% Store current input to the end of mk set  

     of minima 
          mkBuff(lastmkIndx+1) = u;   

              lastmkIndx = lastmkIndx + 1; 
% Assure NaNs are placed after last  

           number to end of buffer  
         mkBuff(lastmkIndx+1:end) = NaN; 

% Wipe out dominant maxima that  
          occurred between the two maxima 
         MkBuff(lastmkIndx:end) = NaN;    

% Since  some Mk values are wiped out,   
          index of the last Mk value 

% must be updated (just before NaNs) for   
         the Mk buffer. 
         lastMkIndx = lastmkIndx-1;   end   
     % Computing output using (5) 
         sumF = 

sum(Fab(MkBuff(1:lastMkIndx),mkBuff(1:last
mkIndx-1),x)   

                        -
Fab(MkBuff(1:lastMkIndx),mkBuff(2:lastmkIn
dx),x),2); 

      B = -Fab(inf,-inf,x) + 2.*sumF ; 
      % Update memory buffers for next  

            iteration 
      block.Dwork(1).Data = uSeg.';       
%  Update input memory segment 
      block.Dwork(2).Data = MkBuff.';  

   % Update dominant maxima vector 
      block.Dwork(3).Data = mkBuff.';  
% Update dominant minima vector 
% Send calculated output to block's output  

        port 
 block.OutputPort(1).Data = B;  end 

function [ y_out ] = Fab( alpha , beta , x ) 
% Function for half the output increments along  
    the 1st-order reversal curves 

A = x.A;  u0 = x.u0; Ms = x.Mi*A/u0; e =  
     x.e; P = x.Pi;  % Ref. [8] 

y_out = 
sum((repmat(Ms,1,length(alpha))/2).*(tanh(P*a
lpha) -tanh(P*beta) –
(e/2).*((sech(P*beta)).^2.*tanh(P*alpha) -
(sech(P*alpha)).^2.*tanh(P*beta))) , 1 );  end 
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