
A New Object-Oriented Simulation Tool for
Modeling Preisach-Based Magnetic Hysteresis Nonlinearities

PAUL MOSES

School of Electrical and Computer Engineering
University of Oklahoma

110 W. Boyd St., Devon Energy Hall, Norman, Oklahoma 73019
UNITED STATES

pmoses@ou.edu

Abstract: - The Preisach theory of hysteresis is regarded by many experts to be the most accurate physical
description of hysteresis behavior, especially in ferromagnetism. Unfortunately, its practical applications and
accessibility to students and researchers are limited due to its complex formulation and numerical
implementation. Instead, simpler and less accurate hysteresis models or anhysteretic single-value nonlinear
models are often employed. This paper proposes a new and relatively simple object-oriented model
representation for Preisach theory in MATLAB-Simulink. The developed hysteresis block is highly
customizable for modeling complex dynamical systems and is also ideal for use in educational courses to allow
students to simulate and further their understanding of ferromagnetism and hysteresis behavior in nonlinear
systems.

Key-Words: - Preisach, magnetics, hysteresis, nonlinear model

1 Introduction
Detailed modeling of electromagnetic circuits
with ferrite cores is essential in the optimal
design of power supplies, transformers, motors,
generators and converters. Accurate
electromagnetic modeling of dynamic
hysteresis nonlinearities has recently been
shown to be significant in uncovering
complicated behavior in transformers (e.g.,
inrush and ferroresonance) [1-4]. In an
educational setting, object-oriented software
tools have also proven useful in facilitating the
learning of many power system engineering
concepts [5-10]. However, easy-to-use software
tools are lacking for students who wish to gain a
physical understanding of ferromagnetism,
especially with regards to the complicated
hysteresis behavior exhibited in many electrical
machine components.

The hysteresis phenomenon is observed in
many other fields including economics, medical
sciences, chemistry and mechanical
engineering. Unfortunately, the best hysteresis
models have seen little or no use in these fields
due to their complexity and inaccessibility to
students and researchers [11]. Instead, simpler

and less accurate nonlinear models (e.g., single-
valued saturation functions) are often employed
which do not reach the full potential for optimal
electromagnetic circuit analysis and design. In
order to address this deficiency, a new object-
oriented methodology based on the Preisach
model of hysteresis [12] is proposed using the
widely accessible MATLAB-Simulink software
package.

Very few attempts have been made at
developing readable software models of
hysteresis for design and analysis applications
as well as for educational purposes. Of the
more successful attempts, Prigozy [13] and Ngo
[14] have published PSPICE models using the
Jiles-Atherton hysteresis approach [15].
However, these models are not very successful
at reproducing minor hysteresis loops compared
to other models of ferromagnetism [16]. More
accurate models suffer from problems such as;
(1) lack of generality by tailoring to a particular
application, (2) numerical implementation is
obscured through complicated mathematical
formulation, (3) dynamic effects (e.g., minor
loop formation) are often oversimplified and
inaccurately portrayed, and (4) tuning the model

WSEAS TRANSACTIONS on SYSTEMS Paul Moses

E-ISSN: 2224-2678 24 Volume 17, 2018

to approximate experimental results is often a
long and tedious trial-and-error process.

The Preisach theory of hysteresis [12] is
generally regarded by experts to be the most
complete and accurate representation of
hysteresis, particularly in the field of
ferromagnetism. Unfortunately, this powerful
model has seen limited applications due to its
complicated mathematical formulation. The few
reported studies provide very limited or no
insight on the methodology of implementation.
Some of the more successful publications in this
regard are [17-20]. However, the software
implementation is not described, putting the
model largely out of reach of researchers and
designers.

The aim of this paper is to increase the
accessibility of the Preisach model by offering a
novel object-oriented implementation in the
MATLAB-Simulink environment [21]. Using
the S-function block capability of MATLAB-
Simulink, the Preisach model is realized by
embedding the developed numerical code into
plug-and-play type Simulink library blocks. The
user interface is graphical and intuitive making
it a useful tool in expanding users ability to
experiment with the model. Furthermore, the
proposed implementation allows users to
incorporate this powerful model into larger
dynamical systems using block-diagrams [10]
and Simulink block library. In this way, the
approach offers a practical perspective of
Preisach-theory and insight into ferromagnetic
hysteresis behavior.

2 Preisach Theory of Hysteresis
Ferenc Preisach proposed his theory of
hysteresis in a landmark paper in 1935 [12].
The theory drifted into obscurity until the 1970s
when Russian mathematicians Krasnoselskii
and Pokrovskii began studying the model for its
mathematical properties [22]. It was not until
the 1980s that the theory was first developed
into a usable hysteresis model [23]. The model
has now become one of the most successful
mathematical descriptions of hysteresis to date.

2.1 Model Basis
The emphasis of this paper is the practical
numerical and object-oriented implementation
of the model. Only critical mathematical
concepts of Preisach-theory are presented to
guide the algorithm development. For greater
mathematical insight, the interested reader
should refer to [19, 23].
The elementary building blocks for the Preisach
model first conceived in [12] is a two-valued,
binary type, hysteresis relay operator, or,
“hysteron”. These hysteron relays (denoted by
αβγ̂) can be viewed to have two switching

states when operated on an arbitrary input H
(e.g., magnetizing force). That is ()()tHαβγ̂ can
take values of +1 (“up”) and -1 (“down”). The
threshold value α is the level the input must
exceed to cause an “up” switch transition.
Conversely, β is the threshold value for the
input to decrease to cause a “down” switch
transition. Therefore, hysterons operating on
inputs H will cause up and down transitions
when α≥H and β≤H , respectively. These
hysteron transitions are depicted in Fig. 1a.

1α1β

2β 2α

nβ nα

()1,1 βαµ

()22 ,βαµ

()nn βαµ ,

()tH ()tB

Relay
hysterons

Weight
functions

∫
Input
(e.g.,

magnetizing
force)

Output
(e.g., magnetic

flux density)

αβγ

()tu

α

β

Hysteresis (relay) operator

 (a) (b)
Fig. 1. (a) Two-state relay hysteron operator
and (b) parallel connection of hysterons
operating on arbitrary input.

The Preisach model is built up from a set of
hysterons, each with different (α, β) switching
transitions threshold values. These hysterons
are akin to magnetic dipoles in ferromagnets. It
was postulated that if a parallel set of
hysteron relays operates on an arbitrary input
H (e.g., magnetizing force), and each hysteron
is multiplied by its own weighting function
()βαµ , , then the sum of the results gives rise

to an output B (e.g., magnetic flux density) that

WSEAS TRANSACTIONS on SYSTEMS Paul Moses

E-ISSN: 2224-2678 25 Volume 17, 2018

exhibits hysteretic properties when plotted
against its time-varying input. This concept is
illustrated in Fig. 1b. The combined action of
all weighted hysterons is summed and called the
Preisach operator Ρ̂ . The model can thus be
expressed as follows,

()() ()() () () βαγβαµ αβ
βα

ddˆ,ˆ tHtHPtHB ∫∫
≥

== (1)

 From Fig. 1 and (1), it should become
apparent that this model exhibits the property of
memory. That is, the state of particular relay
hysterons may have been set in the up or down
positions temporarily by prior values of a time-
varying input. In ferromagnetism, this behavior
closely approximates the magnetization history
of ferromagnetic material which determines the
magnetic memory of a sample. When this is
played out over time, repetitive input
oscillations (e.g., sinusoidal) can result in
recognizable hysteresis behavior.

2.2 Preisach Memory
It has been proven in [23] that only certain
selected values of past inputs are necessarily
retained to determine the Preisach model output
at a given time. A special “wipe-out” property
allows selected new values of input to erase
Preisach memory. These input values are the
dominant extrema of the input waveform such
as those depicted in Fig. 2.

0t
+
1t

−
1t

+
2t

+
kt

−
2t −

kt

()tu

t

1M
2M

kM

1m
2m

km

0m

Fig. 2. An example of arbitrary input (e.g.,
magnetizing force H) where only dominant
local input extrema in sets {𝑀𝑀𝑘𝑘} and {𝑚𝑚𝑘𝑘} are
accumulated as required by the Preisach model.

The dominant extrema values are constantly
updated depending on whether new extrema are
sufficiently large enough to “wipe out” the old
extrema values.
 For example, in Fig. 2, when the input is
raised from an initial minimum −∞=0m at

0tt = to M1 at += 1tt , all input extrema up until
+= 1tt are wiped out by maximum M1.

Continuing from += 1tt to −= 1tt , the minimum
m1 wipes out all input extrema that occurred
between += 1tt and −= 1tt . Likewise, when the
input arrives at += 2tt with M2, this maximum
wipes out all input extrema that occurred
between −= 1tt and += 2tt . So far, the values
{𝑚𝑚0,𝑀𝑀1,𝑚𝑚1,𝑀𝑀2} are retained because no input
excursions were sufficient enough to wipe out
these values. This process continues and an
alternating series of maxima {𝑀𝑀𝑘𝑘} and mimima
{𝑚𝑚𝑘𝑘} are stored. These sets of extrema values
can be expressed as,

() () kk
tt

k MtHtHM
k

== +
−
−

,max
]',[1

 (2)

() () mtHtHm kttk

k

== −
+

,min
]',[

, (3)

 resulting in a set of dominant maxima and
minima extrema,

}{ }{ kk mmmmmmMMMMM ,...,,,,,,...,,, 3210321 ==
(4)

2.3 Preisach Output Computation
The next step is to simplify (1) by eliminating
the double integrals and modifying the weight
function ()βαµ , for more efficient
computation. Therefore, a new function F(α, β)
was introduced. For brevity, the full derivation
is omitted and can be found in [19, 23]. F(α, β)
relates the weighting function to a desired
hysteresis characteristic. Therefore, (1) is
equivalent to

WSEAS TRANSACTIONS on SYSTEMS Paul Moses

E-ISSN: 2224-2678 26 Volume 17, 2018

() () () ()[]








−+−−= ∑

∞

=
−

∞→
1

1 ,,2,lim
k

kkkk mMFmMFFtB αα
α

 (5)

A subtlety of this formula explained in [23] is
that the final values in sets {𝑀𝑀𝑘𝑘} and/or {𝑚𝑚𝑘𝑘}
could take on the present input value depending
on whether H is increasing or decreasing. For
increasing H, Mk = H and (5) becomes,

() () () ()[]
()

() ()()[] ,,,2

,,2,lim

1

1

1
1

tHMFmMF

mMFmMFFtB

nnn

tn

k
kkkk

−+









−+−−=

−

−

=
−∞→ ∑αα

α

 (6)
and for decreasing H, mk = H and (5) is
evaluated as,

() () () ()[]
()

()() .,2

,,2,lim

1

1

1
1

−

−

=
−∞→

+









−+−−= ∑

n

tn

k
kkkk

mtHF

mMFmMFFtB αα
α

 (7)
Therefore from (5)-(7), it is observed that an
updating set of input extrema (2)-(4), current
input value and knowledge of F(α, β) function
is all that is required to compute the hysteresis
response. The choice of function F(α, β) is
discussed in [17-20].

3 Model Implementation in MATLAB
This section details the software
implementation of Preisach-theory based on the
mathematics described in Section II. In order to
demonstrate its implementation, one of the most
widely used numerical packages MATLAB is
used with the object-oriented based simulator
Simulink [21]. Using the S-function feature in
Simulink, a custom hysteresis block can be
developed whose properties and behavior is
defined by the developed M-file source code.
The S-function template provided in MATLAB
help files is modified to encapsulate the
Preisach algorithm. In the following, it is
assumed the reader is cognizant with a basic
understanding of S-functions, which can be
found in Simulink help.

3.1 Initialization Stage

From Section II, it is apparent that the
numerical code will have to deal with storing
prior values of input in order to compute the
output. S-function blocks have internal
memory storage known as Dwork vectors that
can retain information for subsequent time-
steps. The main Dwork vectors required will be
used as stack buffers to store dominant extrema
{𝑀𝑀𝑘𝑘}, {𝑚𝑚𝑘𝑘}. Furthermore, some status flags
and vector indices also need to be stored in
Dwork vectors for subsequent time steps.
 S-functions require Dwork vectors to be pre-
allocated to a fixed size. This restriction
presents some minor hindrance on the
allocation of storage vectors for dominant
extrema. This is because the number of
elements n(t) in (6)-(7) with dominant extrema
is always changing depending on the input
variations. Therefore, it was decided to
preallocate these vectors to a sufficient size
such that collected dominant extrema values
would not be expect to exceed the buffer size.
The Dwork vectors for Mk and mk are initialized
with a finite size of 500 elements. Another
Dwork vector (uSeg) of size 10000 is for
buffering enough input values to scan for
dominant extrema. The following is a sample of
S-function code of how variables for memory
buffers are declared;

function DoPostPropSetup(block)
… block.Dwork(1).Name = 'uSeg';
block.Dwork(1).Dimensions = 10000;
block.Dwork(1).DatatypeID = 0;
block.Dwork(1).Complexity = 'Real';
block.Dwork(1).UsedAsDiscState = true;
block.Dwork(2).Name = 'MkBuffer';
block.Dwork(2).Dimensions = 500;
block.Dwork(2).DatatypeID = 0;
block.Dwork(2).Complexity = 'Real';
block.Dwork(2).UsedAsDiscState = true;
block.Dwork(3).Name = 'mkBuffer';
block.Dwork(3).Dimensions = 500;
block.Dwork(3).DatatypeID = 0;
block.Dwork(3).Complexity = 'Real';
block.Dwork(3).UsedAsDiscState = true; …
end

 Following the declaration of memory buffer
sizes and data types, it is necessary to prescribe

WSEAS TRANSACTIONS on SYSTEMS Paul Moses

E-ISSN: 2224-2678 27 Volume 17, 2018

a sequence of {𝑀𝑀𝑘𝑘} and {𝑚𝑚𝑘𝑘} values into the
buffers to set an initial magnetization history. In
ferromagnetism, this defines the residual flux
density. For this work, a decaying alternating
series of maxima and minima is stored into the
memory buffers which are akin to the action of
demagnetizing ferromagnetic material with a
slowly decaying alternating current magnetizing
field. The following code demonstrates the
initialization routine performed once for the
entire simulation run;

function InitConditions(block)
 % Initialize prior time step (t-1) to negative
 infinity
 block.Dwork(1).Data=
 NaN(1,block.Dwork(1).Dimensions);
 block.Dwork(1).Data(1) = -inf;
 % Place NaNs in buffers and then write
initial
 decaying maxima series
 block.Dwork(2).Data=
 NaN(1,block.Dwork(2).Dimensions);
 lock.Dwork(2).Data(1:400)=[0.4:0.001:0.001];
 % Place NaNs in buffers and then write initial
decaying minima series
 block.Dwork(3).Data=
 NaN(1,block.Dwork(3).Dimensions);
 block.Dwork(3).Data(1) = -inf;
 block.Dwork(3).Data(2:401)=[-0.4:0.001:-
 0.001]; … end

 A few subtleties of the presented code should
be pointed out. Firstly, it is assumed that the
magnetization history is such that the input is
first raised from a large negative value (e.g.,
state of negative saturation). Therefore, the first
value in the decaying sequence of alternating
maxima-minima values is the minimum

−∞=0m . Subsequent minima values are
gradually increasing to zero while maxima
values decrease toward zero, effectively
mimicking the demagnetization process. Note
the number of minima values in the set is one
more than the number of maxima values in the
set, as required by the summation terms in (5).
 Furthermore, MATLAB NaNs (not-a-
number) values are used to fill the buffers with
nonessential elements. This is necessary
because of the fixed vector size restriction in S-

function blocks. Otherwise, the vector sizes
need only to resize themselves according to the
number of elements contained in {𝑀𝑀𝑘𝑘}, {𝑚𝑚𝑘𝑘}
(e.g., when new extrema are introduced and old
ones are wiped out). On the other hand, the
fixed buffer sizes allow for more efficient
processing as resizing memory buffers every
time step is computationally intensive.
3.2 Main Preisach Algorithm
 The full computer code listing of the main
routine and all required S-function subroutines
is listed in the Appendix. The flow chart for the
implemented Preisach algorithm is depicted in
Fig. 3. The primary tasks of the main routine
are to detect and store new dominant extrema
values, perform wiping out of old extrema
values, and update the output for the current
time step. Prior to simulation run, the solver
method, time-steps, run duration and hysteresis
block input parameters need to be configured.
The main block parameters are the constants
and coefficients for F(α, β) which shapes the
hysteresis loops.
 Once the simulation is initiated, the current
input value at the block input port and model
parameters are passed into the main code
contained in preisachHysteresis.m. The
initialization stage as described previously is
performed which pre-defines the set {𝑀𝑀𝑘𝑘} and
{𝑚𝑚𝑘𝑘} in Preisach memory for initial
magnetization history. In subsequent time steps,
{𝑀𝑀𝑘𝑘} and {𝑚𝑚𝑘𝑘} are calculated from the previous
iteration. A temporary storage buffer named
uSeg is used to store values from the last global
extrema to the present input value. This allows
the program to detect whether or not local
maximum/minimum turning points (potentially
new extrema) have been reached. Therefore,
vector uSeg will only contain values between
two successive turning points. Based on this,
and whether the input is increasing or
decreasing, the program chooses between two
codes to begin detection of dominant maxima
and minima values of input.
 If the input has passed a local minimum
turning point and is increasing, the first step is
to find and keep all values of dominant maxima
greater than the present input value H. Values
of {𝑀𝑀𝑘𝑘} that were not greater than H are wiped
out from memory. As stipulated in (6), the

WSEAS TRANSACTIONS on SYSTEMS Paul Moses

E-ISSN: 2224-2678 28 Volume 17, 2018

current input H must be added to the end of
{𝑀𝑀𝑘𝑘} set. As some values of {𝑀𝑀𝑘𝑘} were wiped
out, correspondingly, dominant minima in{𝑚𝑚𝑘𝑘}
that occurred after the last two extrema are
wiped out. This is because {𝑀𝑀𝑘𝑘} and {𝑚𝑚𝑘𝑘}
together must form a sequence of alternating
maxima and minima. A similar process is
performed to satisfy (7) for a decreasing input,
passing a local maximum turning point. In this
case, the present input H must be added to the
end of both {𝑀𝑀𝑘𝑘} and {𝑚𝑚𝑘𝑘} sets.
 Finally, the Dwork vectors for dominant
extrema {𝑀𝑀𝑘𝑘}, {𝑚𝑚𝑘𝑘} and input segments (uSeg)
are updated such that they are stored for the
next iteration and the computed output is sent to
the Simulink block output port. The entire
process is repeated for subsequent time steps
until the simulation run time has elapsed.

input B-H characteristic parameters, preallocate arrays
for Preisach memory buffers,define initial sequence

for dominant maxima and minima {Mk} and {mk}

Compute output B from (5) and send to block output port

Scan input buffer (uSeg) for global
maximum/minimum (Gmax/Gmin) indices

Get current value of Simulink block input (H)

Is Gmax index less
than current time index
and is input increasing?

yes

no

Otherwise Gmin
index is greater

than current time
index with

decreasing input

Find and keep all maxima
in {Mk} set greater than

current input H

Add current input H
to end of {Mk} set

Wipe out all dominant
minima occuring after

last two maxima

Find and keep all minima
in {mk} set greater than

current input H

Add current input H
to end of {mk} set

Wipe out all dominant
minima occuring after

last two maxima

Add current input H
to end of {mk} set

Store updated {Mk}, {mk} sets and input
segment (uSeg) for next time step

more time steps? end

t = t + Δt

no

yes

C
hecking for passing

a turning point














Initialization











W
iping-out process and collection

of new
 dom

inant extrem
a










S
tore block
m

em
ory







Fig. 3. Main Preisach algorithm for MATLAB-
Simulink S-function

3.3 Object-Oriented Block Definition
In the Simulink environment, the S-function
block allows one to link the model-based
simulator to numerical code. The extensive
Simulink library offers many functions to serve
as inputs for the hysteresis block as well as
manipulating and plotting outputs as required
(Fig. 4a). Therefore, Simulink permits highly

complex dynamical systems to be analyzed in a
straightforward and intuitive manner. Hence,
the developed Preisach hysteresis block can be
used for analyzing complex physical systems
(e.g., magnetic circuits). The input dialog box
for the S-Function block is used to specify the
Preisach hysteresis M-file and F(α, β) function
parameters (Fig. 4b).

(a)

(b)

Fig. 4. (a) Simulink block of Preisach model
and (b) parameter dialog box

4 Simulation Results
This section presents simulation results
demonstrating the Preisach model simulated in
MATLAB-Simulink. The XY plotter and scope
blocks are used to view the hysteresis loops and
input-output waveforms. A fixed step discrete-
time solver is used with a step-size of ∆t = 0.2
ms. For demonstration purposes, the F(α, β)
function and parameters are obtained from [19]
for a known B-H characteristic where M1 = 0.8,
M2 = 0.7, P1 = 20, P2 =2, e= 0.5 and magnetic
permeability constant is μ0 =4π.10-7.
Alternatively, the user is free to select other
F(α, β) functions.

4.1 Sinusoidal Input Excitation
The first simulation case is for a sinusoidal
input H(t) = 1.0sin(2*π*50*t) as shown in Fig.

WSEAS TRANSACTIONS on SYSTEMS Paul Moses

E-ISSN: 2224-2678 29 Volume 17, 2018

5. This is representative of typical hysteresis
behavior in an iron-core inductor or transformer
connected to an alternating current source. As
expected, the hysteresis trajectory increases
from the initial demagnetized state defined by
the initial {𝑀𝑀𝑘𝑘} and {𝑚𝑚𝑘𝑘} sets and settles into
its typical cyclical behavior with positive and
negative saturation states.

(a)

(b)

Fig. 5. Simulation of Preisach hysteresis block
with sinusoidal input; (a) input-output
waveforms for magnetization force H and flux
density B, and (b) corresponding B-H hysteresis
loops.

4.2 Nonsinusoidal Input Excitation
In order to demonstrate the model versatility in
Simulink and show the dynamic behavior
through formation of minor hysteresis loops, the
input is changed by multiplying the sine
function with a ramp function. The

corresponding hysteresis loops and waveforms
for linearly increasing sine function amplitude
are observed in Fig. 6. It should be noted that
unlike most hysteresis models (e.g., Jiles-
Atherton method [13-15]), the Preisach model
is capable of forming the minor hysteresis loops
independently from the major hysteresis loop.

(a)

(b)

(c)

Fig. 6. Simulation of Preisach hysteresis block
under ramped sinusoidal input; (a) input-output
waveforms for magnetization force H and flux

WSEAS TRANSACTIONS on SYSTEMS Paul Moses

E-ISSN: 2224-2678 30 Volume 17, 2018

density B, (b) B-H hysteresis loops and (c)
Simulink block diagram.

4.3 Sinusoidal Input with White Noise
For demonstrating the robustness of the model
algorithm, the developed Preisach block is
subjected to a simulated noisy input. A white
noise Gaussian block is added to the sinusoidal
input resulting in the waveforms and hysteresis
loops depicted in Fig. 7. Similarly, there are
many other block sets in Simulink which can be
utilized with the Preisach model block. This
opens up a wide range of applications for
Presiach theory in Simulink such as modeling
dynamics of mechanical systems, control
systems, and electromagnetic circuits in
electronics and power applications.

(a)

(b)

(c)

Fig. 7. Simulation of Preisach hysteresis block
with sinusoidal input subjected to additive
white noise; (a) input-output waveforms for
magnetization force H and flux density B, (b)
B-H hysteresis loops and (c) Simulink block
diagram.

4 Conclusion
The aim of this paper was to demonstrate a new
and practical implementation of the Preisach
model of hysteresis. The implementation is
well suited for education, design and analysis
applications. This was prompted by the lack of
clear and general numerical implementations of
Preisach-theory which has resulted in very
narrow and highly specialized usage of this
powerful model. Furthermore, nonlinearities of
magnetic circuits in power applications are
often oversimplified to single-value nonlinear
functions which ignore true dynamic hysteresis
behavior. Therefore, the developed MATLAB
code and object-oriented approach for
implementing Preisach-theory generalizes the
model to researchers and designers in a wide
variety of disciplines, especially within the
power engineering field. For example, the
presented methodology could be useful in the
dynamic modeling of ferrite cores in magnetic
circuits such as transformers, inductors and
rotating electrical machinery. Furthermore, the
ability to use the Simulink engine greatly
increases model flexibility for serving as a
powerful design tool for students and engineers
to experiment with and gain further insight into
hysteresis and ferromagnetism.

5 Appendix
S-function code listing for Preisach Hysteresis
Model
function preisachHysteresis (block) ;
setup(block); end % S-Function
function setup(block); % Parameter structure is
 ordered as{ [Mi ; Pi] A μ0 e}

 block.NumDialogPrms = 4; %
 MATLAB version 7.8.0.347 (R2009a)

 block.NumInputPorts = 1;
 block.NumOutputPorts = 1;

WSEAS TRANSACTIONS on SYSTEMS Paul Moses

E-ISSN: 2224-2678 31 Volume 17, 2018

 % Setup functional port properties to
 dynamically inherited.

 block.SetPreCompInpPortInfoToDynamic;
 block.SetPreCompOutPortInfoToDynamic;
 block.InputPort(1).Dimensions = 1;
 block.InputPort(1).DirectFeedthrough =

 true;
 block.OutputPort(1).Dimensions = 1;

 % Set block sample time to inherited
 block.SampleTimes = [0 0];

 % Register methods

block.RegBlockMethod('PostPropagationSetup',
@DoPostPropSetup);

block.RegBlockMethod('InitializeConditions',
@InitConditions);
block.RegBlockMethod('Outputs',

@Output);
 % block.RegBlockMethod('Update',
@Update); end
function DoPostPropSetup(block) ; % Setup
Dwork

 block.NumDworks = 4;
 % Setting input storage and dominant extrema
 buffers {mk}, {Mk}

 block.Dwork(1).Name = 'uSeg';
 block.Dwork(1).Dimensions =

 10000;
 block.Dwork(9).DatatypeID = 0;

 block.Dwork(1).Complexity =
 'Real';
 block.Dwork(1).UsedAsDiscState = true;
 block.Dwork(2).Name = 'MkBuffer';

 block.Dwork(2).Dimensions=
 500;
 block.Dwork(2).DatatypeID = 0;

 block.Dwork(2).Complexity =
 'Real';
 block.Dwork(2).UsedAsDiscState = true;
 block.Dwork(3).UsedAsDiscState = true;
 block.Dwork(4).Name = 'slopeFlag';

 block.Dwork(4).Dimensions
 = 1;
 block.Dwork(4).DatatypeID= 0;

 block.Dwork(4).Complexity = 'Real';
 block.Dwork(3).UsedAsDiscState = true;

end

function InitConditions(block) ; % Initialize
 Dwork
 % Input storage buffer for min max scans of
 input segments

 block.Dwork(1).Data =
 NaN(1,block.Dwork(1).Dimensions);

 block.Dwork(1).Data(1) = -inf;
 % Defining initial magnetic history

 block.Dwork(2).Data =
 NaN(1,block.Dwork(2).Dimensions);

 block.Dwork(2).Data(1:400) = [0.4:-
 0.001:0.001];

 block.Dwork(3).Data =
 NaN(1,block.Dwork(3).Dimensions);

 block.Dwork(3).Data(1) = -inf;
 block.Dwork(3).Data(2:401) = [-0.4:0.001:-

 0.001];
 % Assumed initial slope direction (+1 =
 increasing)

 block.Dwork(4).Data = 1; end
function Output(block) ; % Main function for
 Preisach algorithm
 % Assemble user input block parameters into a
 data structure

 x.Mi = block.DialogPrm(1).Data(:,1);
 x.Pi = block.DialogPrm(1).Data(:,2); x.A =

 block.DialogPrm(2).Data;
 x.u0 = block.DialogPrm(3).Data; x.e =

 block.DialogPrm(4).Data;
 % Retrieve present input and Preisach memory
 from storage buffers

 uSeg = block.Dwork(1).Data.'; MkBuff =
 block.Dwork(2).Data.';

 mkBuff = block.Dwork(3).Data.';
 s = block.Dwork(4).Data; % Get initial

 slope flag
 u = block.InputPort(1).Data; % Get current

 input value
 lenUseg = find(~isnan(uSeg),1,'last');
 uSeg(lenUseg+1) = u; lenUseg = lenUseg

 +1 ;
 % Check if input is increasing (s=1) /

 decreasing (s=0)
 if u>uSeg(lenUseg-1) ; s = 1; else ; s = 0;

 end
 [dummy,maxIndx] = nanmax(uSeg);
 [dummy,minIndx] = nanmin(uSeg);

WSEAS TRANSACTIONS on SYSTEMS Paul Moses

E-ISSN: 2224-2678 32 Volume 17, 2018

 % if passed a minimum turning point and
 ascending

 if minIndx<lenUseg && s==1
 len = length(uSeg(minIndx:end));
 uSeg(1:len) = uSeg(minIndx:end);

 uSeg(len+1:end) = NaN;
 % Find index for all values in Mk set still

 above current input
 indx = MkBuff>u;
 % Get new index of last value in Mk set

 (just before NaNs)
 lastMkIndx = sum(indx);
 MkBuff(1:lastMkIndx) =

 MkBuff(indx);
 % Store current input at the end of the

 Mk buffer set of maxima
 MkBuff(lastMkIndx+1) = u;

 lastMkIndx = lastMkIndx + 1;
 % Assure NaNs are placed after last

 number to end of buffer
 MkBuff(lastMkIndx+1:end) = NaN;
 mkBuff(lastMkIndx+1:end) = NaN;

% Find index for all values in mk set still
 below current input
 indx = mkBuff<u;

% Get new index of last value in mk set
 (just before NaNs)
 lastmkIndx = sum(indx);

% Keep only values not wiped out by input
 mkBuff(1:lastmkIndx) =

 mkBuff(indx);
% Store current input to the end of mk set

 of minima
 mkBuff(lastmkIndx+1) = u;

 lastmkIndx = lastmkIndx + 1;
% Assure NaNs are placed after last

 number to end of buffer
 mkBuff(lastmkIndx+1:end) = NaN;

% Wipe out dominant maxima that
 occurred between the two maxima
 MkBuff(lastmkIndx:end) = NaN;

% Since some Mk values are wiped out,
 index of the last Mk value

% must be updated (just before NaNs) for
 the Mk buffer.
 lastMkIndx = lastmkIndx-1; end
 % Computing output using (5)
 sumF =

sum(Fab(MkBuff(1:lastMkIndx),mkBuff(1:last
mkIndx-1),x)

 -
Fab(MkBuff(1:lastMkIndx),mkBuff(2:lastmkIn
dx),x),2);

 B = -Fab(inf,-inf,x) + 2.*sumF ;
 % Update memory buffers for next

 iteration
 block.Dwork(1).Data = uSeg.';
% Update input memory segment
 block.Dwork(2).Data = MkBuff.';

 % Update dominant maxima vector
 block.Dwork(3).Data = mkBuff.';
% Update dominant minima vector
% Send calculated output to block's output

 port
 block.OutputPort(1).Data = B; end

function [y_out] = Fab(alpha , beta , x)
% Function for half the output increments along
 the 1st-order reversal curves

A = x.A; u0 = x.u0; Ms = x.Mi*A/u0; e =
 x.e; P = x.Pi; % Ref. [8]

y_out =
sum((repmat(Ms,1,length(alpha))/2).*(tanh(P*a
lpha) -tanh(P*beta) –
(e/2).*((sech(P*beta)).^2.*tanh(P*alpha) -
(sech(P*alpha)).^2.*tanh(P*beta))) , 1); end

References:

[1] P. S. Moses, M. A. S. Masoum, and H.
A. Toliyat, "Impacts of hysteresis and
magnetic couplings on the stability
domain of ferroresonance in asymmetric
three-phase three-leg transformers,"
IEEE Transactions on Energy
Conversion, vol. 26, pp. 581-592, 2011.

[2] P. S. Moses, M. A. S. Masoum, and H.
A. Toliyat, "Dynamic modeling of
three-phase asymmetric power
transformers with magnetic hysteresis:
no-load and inrush conditions," IEEE
Transactions on Energy Conversion,
vol. 25, pp. 1040-1047, 2010.

[3] P. S. Moses and M. A. S. Masoum,
"Modeling ferroresonance in single-

WSEAS TRANSACTIONS on SYSTEMS Paul Moses

E-ISSN: 2224-2678 33 Volume 17, 2018

phase transformer cores with
hysteresis," in Proc. 8th WSEAS
International Conference on Electric
Power Systems, High Voltages, Electric
Machines, Genova, Italy, 2009.

[4] P. S. Moses and M. A. S. Masoum,
"Modeling subharmonic and chaotic
ferroresonance with transformer core
model including magnetic hysteresis
effects," WSEAS Transaction on Power
Systems, vol. 4, pp. 361-371, 2009.

[5] M. Kezunovic, "User-friendly, open-
system software for teaching protective
relaying application and design
concepts," IEEE Transactions on Power
Systems, vol. 18, pp. 986-992, 2003.

[6] L. Goel, T. T. Lie, A. I. Maswood, and
G. B. Shrestha, "Enhancing power
engineering education through the use of
design modules," IEEE Transactions on
Power Systems, vol. 11, pp. 1131-1138,
1996.

[7] A. Mehrizi-Sani and R. Iravani, "On the
educational aspects of potential
functions for the system analysis and
control," IEEE Transactions on Power
Systems, vol. 26, pp. 878-885, 2011.

[8] N. Mohan, A. K. Jain, P. Jose, and R.
Ayyanar, "Teaching utility applications
of power electronics in a first course on
power systems," IEEE Transactions on
Power Systems, vol. 19, pp. 40-47,
2004.

[9] R. D. Zimmerman, C. E. Murillo-
Sanchez, and R. J. Thomas,
"MATPOWER: steady-state operations,
planning, and analysis tools for power
systems research and education," IEEE
Transactions on Power Systems, vol. 26,
pp. 12-19, 2011.

[10] E. Allen, N. LaWhite, Y. Yoon, J.
Chapman, and M. Ilic, "Interactive
object-oriented simulation of
interconnected power systems using

SIMULINK," IEEE Transactions on
Education, vol. 44, pp. 87-94, 2001.

[11] E. Della Torre, "Problems in physical
modeling of magnetic materials,"
Physica B: Condensed Matter, vol. 343,
pp. 1-9, 2004.

[12] F. Preisach, "Uber die magnetishe
nachwerikung," Zeitschrift fur Physik,
vol. B 94, pp. 277-302, 1935.

[13] S. Prigozy, "PSPICE computer
modeling of hysteresis effects," IEEE
Transactions on Education, vol. 36, pp.
2-5, 1993.

[14] K. D. T. Ngo, "Subcircuit modeling of
magnetic cores with hysteresis in
PSpice," IEEE Transactions on
Aerospace and Electronic Systems, vol.
38, pp. 1425-1434, 2002.

[15] D. Jiles and D. Atherton,
"Ferromagnetic hysteresis," IEEE
Transactions on Magnetics, vol. 19, pp.
2183-2185, 1983.

[16] F. Liorzou, B. Phelps, and D. L.
Atherton, "Macroscopic models of
magnetization," IEEE Transactions on
Magnetics, vol. 36, pp. 418-428, 2000.

[17] S. Y. R. Hui and J. Zhu, "Numerical
modelling and simulation of hysteresis
effects in magnetic cores using
transmission-line modelling and the
Preisach theory," IEE Proceedings
Electric Power Applications, vol. 142,
pp. 57-62, 1995.

[18] H. Lamba and et al., "The effect of
circuit parameters on ferroresonant
solutions in an LCR circuit," Journal of
Physics A: Mathematical and General,
vol. 31, p. 7065, 1998.

[19] H. Lamba, M. Grinfeld, S. McKee, and
R. Simpson, "Subharmonic
ferroresonance in an LCR circuit with
hysteresis," IEEE Transactions on

WSEAS TRANSACTIONS on SYSTEMS Paul Moses

E-ISSN: 2224-2678 34 Volume 17, 2018

Magnetics, vol. 33, pp. 2495-2500,
1997.

[20] S. R. Naidu, "Simulation of the
hysteresis phenomenon using Preisach’s
theory," IEE Proceedings on Physical
Science, Measurement and
Instrumentation, vol. 137, pp. 73-79,
1990.

[21] "MATLAB/Simulink Version 7.8.0.347
(R2009a)," ed. Natick, MA: Math-
Works, Inc.

[22] M. Krasnoselskii and A. Pokrovskii,
Systems with hysteresis: Nauka,
Moscow, 1983.

[23] I. D. Mayergoyz, Mathematical models
of hysteresis and their applications, 1st
ed. Amsterdam ; Boston: Elsevier, 2003.

WSEAS TRANSACTIONS on SYSTEMS Paul Moses

E-ISSN: 2224-2678 35 Volume 17, 2018

