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Abstract: - In this paper, we present a decentralized stability problem for a class of linear interconnected
systems with time-varying delay in the state of each subsystems and in the interconnections. Based on the
Lyapunov method, we characterize decentralized linear matrix inequalities (LMI) based delay-dependent
stability conditions such that every local subsystem of the linear interconnected delay system is asymptotically
stable. The solutions of the LMIs can be obtained easily using efficient convex optimization techniques. A
practice example is given in order to show the efficiency of the obtained result.
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1 Introduction
In this paper, we study the stability analysis of a
class of linear interconnected systems with time
varying delays. The problem of stability analysis of
time varying delay systems is important both in
theory and in practice. Considerable attention has
been devoted to this problem over the past years,
and many research results have been reported in the
literature [1-10]. The approach used to derive the
stability condition of systems starts usually from the
standard Lyapunov-Krasovskii functional [15-18].
This work is concerned with the design problem of
decentralized stability for interconnected systems
with Time Varying Delays. The delay parameter is
assumed to be an unknown time-varying function
for which the upper bound on the magnitude and the
variation are given. The sufficient conditions for the
stability of the interconnected systems is derived in
terms of LMIs using the Lyapunov method.
The seat of this work is arranged as following: in
section 2, an overview of system models have been
provided.  stability analysis of interconnected
system with time varying delays has been
introduced in section 3. In section 4, we present
numerical example to show the usefulness of the
proposed results. Finally, the paper is concluded by
brief conclusion in section 5.

The seat of this work is arranged as
following: in section 2, an overview of system
models have been provided. Stability analysis
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has been introduced in section 3. In section 4,
we present numerical example to show the
usefulness of the proposed results. Finally, the
paper is concluded by brief conclusion in
section 5.

Notation: In this paper, the notation P > 0(<0)

is used for positive (negative) definite matrices.
I denotes the identity matrix with appropriate
dimension. = stands for the symmetric term of

a square symmetric matrix.

2 Problem Formulation

Consider a class of linear large-scale systems with
time-varying delays composed of N interconnected
subsystems, where the ith subsystem is given by:

%0 =Ax O+ Ax(t—7,() + Z ijj (t—ﬂij(t)),

e

() =Cx ) +Cyx (t—7; (1) @)

where 1, ] e{l,..., N}

X'®) =[x ©),..X, 1],

'O =2 ©....2,® ], x(t)eR"and

X;(t) e R" are the states of the ith and the jth
subsystem, Z,(t) € R is the controlled output, the
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system matrices A, Ay, A;, Cjand C,are of
appropriate dimensions. 7, 77; are unknown time

delay factors satisfying the following conditions:

0<r,(t)<p, 7;()<y @
0< un (1< Pij » 77ij (1< Hij
where the bounds p;, oy, 44 and u;are known
constants in order to guarantee smooth growth of the
state trajectories.

The class of systems described by (1) subject to
delay pattern (2) is frequently encountered in
modeling several physical systems and engineering
applications including large space structures, multi-
machine power systems, transportation systems,
water pollution management [19].

Proposition 1 For any X,yeR" and positive
definite matrix PeR™" , we have

2x'y<y'Py+x"P'x (3)

Proposition 2 (Schur complement lemma [11])
Given constant matrices X,Y,Z with appropriate

dimensions satisfying X = XT,Y =Y = 0. Then
X + 27Y 'z < ¢ if and only if

X Z' -Y Z
<0 or T <0 “)

zZ Y Z X
Proposition 3 [10] For any constant matrix
Z=Z7Z">0 and scalarh>0, the following

integrations are well defined
C o)z xs)ds<—([ xss) z ([ xs)d
_.th (S)Z x(s) s_—F(J‘tihx(s) s) (J‘tihx(s) s)
(%)

We end this section with the following technical
well-known propositions, which will be used in the
proof of the main results.
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3 Stability Analysis

In this section, we investigate the decentralized
stability analysis of interconnected systems with
time-varying delays. Before introducing the main
result, the following notations of several matrix

variables are defined for simplicity
N
7y =P A+A'P +(N-DP +Q; + Z Z; -W,

j=1,j#i

i, = _(l_ﬂi)Qi
N
Iy =P A+A'P +(N-DP, +Q, + > Z,
=1 j#i
+(N —l)pizAiTWi A -W,
8, = —(1-1,)Q; +(N _l)pizAJiWi Ay
N N
1913:__2 (1_/uji)zji+2_z pj?A-]!-inAji

j=lj=i i=

j=i

T
AP,
j#i

+ AJ.i

M=

i=1
N
¥Y,=P A+A'P +(N-DP, +Q, + > Z
=1, j=i

+ NpizAiTWi A=W,
Vi =-(1-4)Q; + NpizAJiWi Agi

ji

N
(=2 +2 2 piAW, Ay

T

zN:_ AGPA;

j=1,j=i

piW, Z A+

N
j=1.j=#i

(6)

The following is the main result of the paper, which
gives sufficient conditions for the decentralized
stability of interconnected systems with time-
varying delays. Essentially, the proof is based on the
construction of Lyapunov Krasovskii functions
satisfying the Lyapunov stability theorem for a time
delay system [11].

Theorem 1 Given p; >0, 4 >0 and x;; > 0, the

system (1) is asymptotically stable if there exist
symmetric positive definite matrices

P.Q,Z;andW,, i,j=1...,N,i# ], such that
the following LMI holds:
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T P Ay
AJiPi iz 0
0 0 N
W, 0 0
N
0 0 AUEEDY
i1, j#i
P.z i A piZWi Aui 0
(N —I)hWi A, 0 0
i 0 (N =1)pW, A, 0

Proof
We consider the following Lyapunov-Krasovskii
functional for system (1):

V()= Zvi (t)= Z [V, (1) + Vi () + Vi (1) + Vg (D]
®)
where

V() =X (HP, X (t)

Vu® =] K ©Qx()ds
Vim= > »j:_mj(t) X] (8)Z,;X,(s) ds

Va®=p] [ X (@W, %(a)dads o

Taking the derivative of V in t along the solution of
system (1), we have

V(1) = 2x] ()P, %, (1) = 2x] (OP, [Ax(t)

+AX (t—7 () + Z ' Ainj (t- i (t))}
(10)
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W, 0 pLAW,
0 0 pi AW,
T
N
0 ( 2 AUJ PV 0
j=1, j=i
-W, 0 0

0 -piW, 0

0 0 -piW,
0

0 0 0

(N-1)p’A'W, 0 |
0 (N—l)pfA;Wi
0 0
0 0
<0
0 0
0 0
—(N=1) p2W, 0 (7

0 -(N-1)p’W, |

Vi (1) < X7 (DQ; X, (1)
—(I— 4 )XIT (t—7,())Q; X (t—17;(1))
(11)

N

Vo= > [X](MZ;x; 1)

j=1, =i

~(L= 17 ()X} (t =17 () Zy X, (t =7 (1) |

< Y [X]OZyx )

=1, j#i
= (1= )X} (t= 17, (D Z X, (t =77, (V) |
(12)
Vo =pf [X OW, X0 E+SW % (t+5)]ds

= p2 X7 (OW, X ()= p, jop KT (t+SW, X (t+s)ds

=Pl X OW, X (D=, [ K (W, X (5)ds

< x (O AW, Ax (1)
+X ()T AW, AyX (t—7,(t))

+2XiT (t)pizAiTWi Z Aijxj(t_nij (t))

JoLji

+ XiT (t-7, (t))piz A;iWi A X (1)
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+ XiT (t—r (t))pi2 A(;riWi Aix (t—7;(1))

+2x (A=, ()P AW, D AX;(t—7(1)

j=Lj#i

+ Z X}(t_nij(t))pizAiIWi z Aijxj(t_nij(t))

N
j=1, j=i j=1, j=i

[ X (W, % (s)ds

(13)
Applying Proposition 3 and the Leibniz-Newton
formula

[* x(s)ds =% x(t-h) (14)

we obtain

- [ X (SW, % (9)ds <

_( j:_pi %! (s)ds)T W ( I:_p. xi(s)ds)
== (% (=% t=p)) W, (% O -x t-p))
<= (X OW; x () -2x OW, X (t-p)))

+% (t=p)W, X (t_pi))
(15)

Using Proposition 1 gives
N

2x (DR X, A (t=1, (1)

j=1, j=i

= > 2[R xm] [AXt-n,)]
j=1, j=i

<(N =Dx (P, (1)

+ D0 X[ (t=n (DA P A, (t=77; (1))

j=1, j=i
(16)

=2

2XiT (t)AiTWi _ _'A\jxj(t_ﬂij (t)

j=1, j=i

z T

_ lz 2[W, AX ] [ A=y ]
< (Jl;l ,]—ﬂ1)x3 OATW, A x (1)

+ i X}(t_nij(t))p‘i}wi Aijxj(t_ﬂij(t))
1, j#i (17)

j=
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2 (=7, () AGW, D A (t—77; (1)

j=1, j=i

= Z '2[Wi AgX (t—7, (t))]T |:Aijxj (t—mn; (t))]
<(N=DX (=7, (D) AW, Ayx; (t=7,(1)
£ 2 X (= (AW, A, (t=77, (1)

<(N=DX (t—7, )AL W, A, (t=7,(t))

£ (AXE-n, ) W, D Ax(t-n, (1)
j=Lj#i j=1,j=i
(18)
Now Nothing that

> x}(t)zijxj(t)zzN: zN: X (HZ;x (1) (19)

j#i i=1 j=1,j=i

Z Z _ (1— (t))XI (T = (D) 235X (t =17 (1))
=2 2 (= u @O (t=75(E)Z % (=17, (1))

i=1 j=1,j=i

(20)

Z : piz X} (t- i () AJTWi Aij X; (t- ij ()

M-

i=1 j=

ijXiT (t _ﬂji(t))AJTin AjiXi (t _ﬂji(t))

e2y)

5 J#l

>, D X (= ny O)ATR A (=7, (1)

1, j=i

Z Z XiT(t_Uji(t))AjTin Ajixi(t_ﬂji(t))

i=1l j=1,j=i

(22)

Z{ > (Axt=n,) AW, 3 A,—x,-(t—mja))}:

i=1| j=1,j=i j=Lj=i

_ [X:(t—ﬂji(t))( 2 Aijj ijWj Z Aij Xi(t_nji(t))]
-1 j=Lj#i j=L, )i

(23)

Therefore, we have
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V2 [24 OR AXO+25 OF, Ax(t-7,(1)
+H(N=DX (DR, %()

+ D0 X (t=n ())ALP, A (t—1,;(1)

J=1, j=i

+ X (D)Q % (1) = (1— )X/ (t—7,()Q, X, (t—7,(1))
b X OZ% 0
j=1, j=i

- Z (1 - ﬂji )X|T (t _77ji (t))zjixi (t - 77ji (t))

+X (D AW, Ax (D) +X () AW, Ayx (t—7,(1))
+H(N =D’ X (DATW, A x(t)

+ Z pjzxiT(t_nji(t))A}'in Ajixi(t_ﬂji(t))

+ X (t—7,(1) o AGW; A X (1)

+x7 (=7, (D) o7 AW, Ay, (t=7;(1))

+(N _l)pizxiT (t-7, (t))A;—iWi A% (t—7;(1))
+ z ijXiT(t_Uji(t))AjTin AiX (t=n;(1)

L

Also, inequality (26) is equivalent to
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Ao 3 a] w3 axeno
—(X OW, % () =2 (OW, X (- p))
_XiT (t — b )Wi X; (t - pi):|

= A éeiT(t)Ei égi(t)

(24)
where

EO=[X® Xt-r0 Xt-m0 X-p)]

¥ PA+OAWA, 0 W
— _| AR T AW A L 25 0 0
B 0 0 ¥, 0
W 0 0w
we readily see that V (t) < 0 holds if
E,=<0 (25)

using proposition 2 (Schur complements), inequality
(25) is equivalent to

0 W, 0

0 0 0
N T
8 0 | X A AW, (26)
J=Tj#i <0

0 W, 0

- 2

Z Aijj 0 —-piW;

j=1, j#i ]
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& P A W,
A(;rIPI l9|2 0 0
\ T
0 0 95 0 (Z AJ} W,
j=1,j=i
W, 0 0 -W,
) N 27
0 0 piW; [ 2 Ajj 0 —piW,
i j=L j#i |
_pizAiTWi
pi2At;riWi »
+ 0 (piZWi ) [piZWi A piW, A, 0 0 0}'<0
0
(. 0 =
we obtain
| 4, P Ay 0 W, 0 pizAiTWi |
A;Pi 9 0 0 pi2AJiWi
N T
0 0 9 0 [Z A,—] PiW, 0
j=1, j=#i (28)
=<0
W, 0 0 -W, 0 0
N
0 0 PiW, ( Aijj 0 —-piW, 0
j=L j#i
_pizwi A pIW, A, 0 0 -piW, i

it can readily verified that the condition of (28)
is equivalent to the LMI (7), this establishes the
internal asymptotic stability.

Remark 1. Theorem 1 presents a new stability
criterion for system (1) with time-varying delay.
It is worth noting that condition (7) is an LMI,
which can be readily checked by using the
standard numerical software.

To illustrate the application of the proposed
method, we present the following example.

4 Numerical Example

Consider a large-scale system, which is
composed of three subsystems, each is of the
type (1) with:
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By applying Theorem 1 and solving the
corresponding optimization problem (7), we
obtain

P =3, H =1.5; Pai =2; Hyy =0.8;

Py =2 3y, =08p,=325; u,=1.3;
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P =155 1, =09 py, =1.5; uy, =0.9;
py=3; uy=11 p,=18; u,=0.75;
Py =1.85 p,, =0.75;

5 _[22511 0.0020]  [0.1386 -0.0152]
Lo« 00362 | o+ 00724 ]
5 [1.8296 0.1004'_Q [1.39501  0.0576 |
Lo+ 05422 |+ 200181

[5.9043 033267 o, [ 213065 250367
Lo« 54613 | o+ 28.6509]

Since P,Q,,-0,i=12,3

Then the conditions required by Theorem 1 are
satisfied.

5 Conclusion

In this paper, the problem of the decentralized
stability for large-scale time varying delay
systems has been studied. The time delay is
assumed to be a function belonging to a given
interval. By effectively combining an
appropriate Lyapunov functional with the
Newton-Leibniz formula, this paper has derived
new delay-dependent conditions for the stability
in terms of linear matrix inequalities (LMIs).
Numerical examples are given to show the
effectiveness of the obtained result.
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