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Abstract: In this paper, a recharge-discharge oscillator model for the &b ldhnd southern oscillation with different

delays is investigated. The conditions which ensure the local stability and the existence of Hopf bifurcation at the
zero equilibrium of the model are obtained. It shows that the two different time delays have different effect on the
dynamical behavior of the model. An example together with its numerical simulations shows the feasibility of the

main results. Finally, main conclusions are included.
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1 Introduction

El Nin-southern Oscillation (ENSO) is an inter an-
nual phenomenon involved in the tropical Pacific

delayed model on Equator Pacific Ocean:

{ % =ar — by (t —n) — T3,
o _

dl' — R, 11, (1)

dt

whereT is is theNino—3 anomaly,r; Nino—4 zonal
wind stress anomaly,is a time delay for waves to

ocean atmosphere interactions. It is one of strongest travel to the western boundary and return to the east-

signals in inter-annual change in the present whole
world climate system. Its occurrence will leads to se-
rious dry waterlogging disasters which bring for the

global general areas and has seriously effect on cli-
mate and ecology changes all over the world. Thus
the investigation on the law and prevention of ENSO
has received great attention from domestic and foreign
academic circles [1-10]. Recently, numerous excel-

lent results on the ENSO models have been reported.

For example, Mo et al. [11] discussed a class of ho-
motopic solving method for ENSO model, Fedorov
and Philander [10] investigated the stability of tropical
ocean-atmosphere interactions for ERNj Mo and

Lin [11] analyzed the perturbed solution of a ENSO
nonlinear model. Zhu et al. [12] focused on the per-
turbed solution of a class of ENSO delayed sea-air
oscillator, Mo et al. [13] consider a delayed sea-air
oscillator coupling model for the ENSO. Feng et al.
[14] made a theoretical analysis on the dynamical be-
havior and instability evolution of air-sea oscillator,
Zhao et al. [15] studied the recharge-discharge oscil-
lator model for El Nino-Southern Oscillation (ENSO).
In 2001, Neelin et al. [16] investigated the nonlinear
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ern Pacificais a coefficient representing the positive
feedback betweeff, b; is a coefficient representing
the negative feedback due to waves reflection at the
western boundaryy is a positive coefficient that re-
lates theNinio — 3 anomalies to théVino — 4 zonal
wind stress anomalie$;,, is a damping coefficient,
is a cubic damping coefficient, whetds a small pos-
itive constanta, b1, d, R, are all positive constants.
In real natural world, Considering that the coef-
ficients of model often change with time, Wang [1]
investigated the periodic solution of the following uni-
fied oscillator model for the El Nio-Southern oscil-
lation

% =a(t)r — b1 ()11 (t — ) — T3, @)
9 = d(t)T — Ry, (t)m,
wherea(t), b1 (t),d(t) and R,, are all continuousv-
periodic functions. By means of the coincidence de-
gree theory, Wang [1] obtained the sufficient condi-
tion which ensures the existence of periodic solution
of system (2). In order to reveal what the time delay
has effect on the dynamical behavior, Cao et al. [17]
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investigated the stability and Hopf bifurcation nature
of system (1) by regarding the time delayifurcation
parameter.

In 2013, Li et al [20] considered the Hopf bifur-
cation and periodic solutions of the following delayed
sea-air oscillator coupling model for the ENSO

dT _ ad bid
‘d&t = R bTe_ lel T(t— 77)3

+ Eh(t — 8) — T, (3)
dh cd

By assuming thay = A = 0 and regarding time de-
lay ¢ as bifurcation parameter,Li et al [20] obtained
the sufficient condition which ensures the existence
of Hopf bifurcation of model (3). In addition, by
the coincidence degree theory, the sufficient condi-
tion which ensures the existence of periodic solution
of system (3) is established. Here we would like to
point out that although Li et al [20] discussed the ef-
fect of time delay on the dynamical behavior of model
(3), the different time delays have different effect on
the dynamical behavior of system, Li et al [20] did not
consider this aspect. Thus we think that it is neces-
sary to investigate this topic, i.e, what effect different
time delays have on the dynamical behavior on sys-
tem? For simplification, we assume that )\, then
model (3) becomes

dl’ __ ad bid
S A
b
+ BER(t - 5) — T, (4)
dh d
@ = ~m, L(t=n) = Rph,
Leta; = a—i,ag = gl—j,ag = %_;,Cl = }g—fl,then

system (4) can be written as

ar

ar = a1T — axT(t —n)

+ agh(t — 5) - €T3,
% = —ClT(t - 77) - th.

()

In this paper, choosing time delaysndJ as bifurca-
tion parameters,respectively, we will make a detailed
analysis on the Hopf bifurcation of system (5). The
sufficient conditions which ensure the stability of the
equilibrium and the existence of Hopf bifurcation for
system (5) are obtained. This reveals that the time de-
lays have important effect on the dynamical behavior
of system (5).

2 Stability of Equilibrium and Exis-
tence of Hopf Bifurcation

IIf the condition

(Hl) : (a1 — CLQ)Rh < ascy
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holds, then system (5)has a unique equilibrium

E(0,0). The linearized equation of system (5) near
E(0,0) is given by

4L = a\T — ayT(t — n) + agh(t — 6),

dh _ _ R (6)

7 = —aT(t—mn) — Rph.

Then characteristic equation of (6) takes the form
det [ A

Namely

N g

A+ Ry,

— a1 + ase

=0.
cre=>

M 4 (Rp — a1)\ — a1 Ry, + (ag) + asRy,)
xe M age e MO+ = 0, (7)

In the following, we consider six cases.
Case 1 Whenn = § = 0, then (7) becomes

>\2—|—(Rh—a1 —|—a2)>\—|—(a2—a1)Rh+a361 =0. (8)
If the following condition
(H2) . Rp—ai+as >0, (a2 — al)Rh +azcy >0

is satisfied, then all the roots of Eq. (8)have negative
real part. Thus the equilibriun'(0, 0) of system (5)

is local asymptotically stable if the conditions (H1)
and (H2) hold.

Case 2 Whenn = 0,6 > 0, then Eq. (7) becomes

A2+ (R — a1+ a2) A+ (az — a1) Ry +agere™° = 0.
Let A = iw be aroot of (9), then ®
—w?+(Rp—a1+ag)iw+(ag—ar) Ry+agere™™° = 0.

Separating the real and imaginary part, we get

{

Then

agey coswd = w? — (ay — ay) Ry,

agcy sinwd = (Ry — a1 + ag)w. (10)

w4 rw? 41y = 0,

(11)

where
ry = (Rh —aq + (12)2 — 2(&2 — al)Rh,

ro = (a2 — a1)Rp)? — (aze1)?.

Define Ay = r? —4ry. In view of Theorem 2.1in [21]
and [22], we have the following result.

Lemmal Under the conditions (H1) and (H2), (i) if
r1 < 0,A; =0, then whers = §;, Eq. (9) has a pair
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of pure imaginary roots-iw, ; (i) if », < 0,A; > 0,
then whens = §F, Eq. (9) has two pairs of pure
imaginary rootstiw, and+iw_, where

1 ? —(aa—a)R 2
6F = — arccos [wi (a2 — a1) h] + mT,
w4+ azCq w4+
(12)
wheren = 0,1, 2,...,w4 satisfies
— VA —r1 — VA
W= THEVSL 2 L T oVEL ()

(i) if 1 > 0 or A; > 0, then for anys > 0, all the
roots of Eg. (9) have negative real part.

Proof. Itis easy to see that (11) has positive root
1
-r1 + \/A1‘| 2
Wy = — |

Thus (i) holds. Ifr; < 0,41 > 0, then it follows
from (11) that

_T1+\/A_1w2 __Tl_\/A_l
2 e 2 '

2
Wy

Then (i) holds. Ifr; > 0 or A; > 0, Then we know

that (11) has no solution, thus all the roots of Eq. (9)

have negative real part. So (iii) holds true.

In view of Lemma 1, we have the following theorem.

Theorem 1 Let 5 be defined by (12) andy =
min{d;" }(n =0,1,2,---). Under the conditions (H1)
and (H2), (i) ifr; < 0,A; =0, thenwhenj € [0, ),
the equilibrium E£(0,0) of system (5) is asymptoti-
cally stable, wherv > ¢y, the equilibrium E(0,0)
of system (5) is unstable. Whén= 4y, Hopf bifurca-
tion occurs; (i) ifr; < 0,A; > 0, whend = §; and
0 = 0,,, Hopf bifurcation occurs.

Proof. It follows from (H1) and (H2) that all the
roots of Eq. (9) have a negative real part. r{f <
0,A; = 0, then whery = ¢, Eq. (9) has a pair of
pure imaginary rootstiw, then whens € |0, ),
the equilibrium E£(0,0) of system (5) is asymptoti-

cally stable. Then the front section of (1) holds. Let

A(0) = a(d) +iw(0), a(d) = 0,w(d) = do. It follows
from (9) that

[d)\]_l - (2)\+Rh—a1+a2)e)‘5 )

% agbl A '
Then
dA -1 —4((12 — al)Rh 4(1361
Re|— = > 0.
{dﬁ} 5=50 (azby)? (a3by)?
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Thus the second part of (i) holds. #f < 0,A; > 0,
in view of (10), we have

-1
Re[@} _ Re| EVEL|
dd | 5—s+ (asby)?
Then
. d\ ) +/N\
Re| -2 = R )
S|gn{ e[dé}(;:gg} S|gn{ el(asbﬁz]}
Hence
. d\
Re|— =1
S|gn{ e[dé](;:g;} ,
) d\
Re|— = —1.
S|gn{ e{déhz% }
Thus
d\ d\
Re[%](;:gg >0, Re[%](;:gn < 0.
So(ii) holds.

Case 3Whenn > 0,6 = 0, Eq. (7) becomes
A4+ (Ry — a1)X — a1 Ry, + (ag)

+ao Ry, + CLgCl)e_M7 =0.
Let A = iy be the root of Eq. (14), then

—® + (R, — a1)i) — a1 Ry,

(14)

+(CL21¢ + ag Ry, + CLgCl)e_isz =0.
Separating the real and imaginary part, we derive

(a2 Rp + ascy) cos Ym + axh sinyn

ag cos Yn — (as Ry + asey) sinym
= —(Rh — a1)¢.
Then
nt + s1m® + 52 =0, (16)
where

S1 = R;Zl + CL% — CL%, Sg = (ath)2 — (ath + CL301)2.

Define Ay = s1 — 4s5. According to Theorem 2.1 in
[21] and [22], we have the following results.
Lemma 2 Under the conditions (H1) and (H2), (i)
if s1 < 0,A2 = 0, then whernp = n, Eq. (14)
has a pair of pure imaginary rootsiy . ; (ii) if s; <
0, Ay > 0, then wher = ", Eq. (14) has two pairs
of pure imaginary roots-it, +i_, where

1
n,f = — arccos
+
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(Y2 + a1 Ry)(az Ry, + azcr) — (Ry — a1)v3 as
(agRp, 4 ascr)? + (agy?)?

2 = 0,1,2,..) (17)
(/8
14 satisfies
—s1+ VA —s1 — VA
P = %ﬂﬁ = %; (18)

(iii) if s > 0or Ay > 0, then for anyn > 0, all the
roots of Eqg. (14) have a negative real part.

From Lemma 2, we have the following theorem.

Theorem 2 Letn: be defined by (17). Under the
conditions (H1) and (H2), (i) ifs; < 0, Ay = 0, then
whenn € [0,79). Whenn > np, the equilibrium
E(0,0) of system (5) is unstable. When= 7, Hopf
bifurcation occurs; (i) Ifs; > 0 or A, < 0, when
n = nt andn =, , Hopf bifurcation occurs.

Case4 Whenn > 0,6 > 0 andd is in its stable inter-
val. By regarding; as bifurcation parameter. Without

loss of generality, we consider system (4) under the

assumptions (H1l)and (H2). Lat= iy*(¢* > 0) be
aroot of (7), then

—1/1*2 + (Rh — al)il/J* — a1 Ry, + (CLQiT/J*
+agRp)e™™ M + agere WO — 0, (19).
Separating the real and imaginary part, we have

(a2 Ry, + ascq cos *d) cos *n
+(agy)* — ageq sin*d) sin*n
= TIZ)*2 - alwa

(agy)™ — agcy siny*d) cos Y*n (20)
—(ag Ry, + ascq cos *d) sin*n
= —(Rh — al)lb*.
Eliminatingn from (20)
Y k™ 4 kgt 4+ kg = 0, (21)
where
k1 (R, — a1)* — 2a1 Ry, — a3,
ko = 2asage;siny*o,
k3 (a1Rn)* — (a2Rp)? — (agey cosp*6)?
—2agaszcy cos P*o — (azeq sin 1/)*5)2.
Denote

h(y*) = ™ + k™% + kop* + k3 = 0. (22)

Assume that
(H3) 1 k3 < 0.
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If (H3) holds, then h(0) < 0, Since
limy«— 400 R(¥*) = +4o00. Thus (21) has fi-
nite positive roots 7, Y5, ..., Y. for every
i = 1,2,...,k, there exists a sequence

{n/lj =1,2,...,} such that (21) holds. Let

mo=min{nl|i=1,2,... kj=12..} (23
Then whem =g, ¢ € [0,dp), (7) has a pair of pure
imaginary rootstin. Next, we assume that

d(Re/\)L 40
— i

dn
According to the general Hopf bifurcation theorem for
FDES in Hale [23], we have the following result on
the stability and Hopf bifurcation in system (5).

Theorem 3  For system (5), Assume that (H1)-
(H4)hold ands € [0, d¢), then when € [0,79), Sys-
tem (5) is asymptotically stable; When= 1y, Hopf
bifurcation of system (5) occurs around the equilib-
rium E(0,0).

Case 5 Whenn > 0,6 > 0 andn is in its stable
interval. By choosing as bifurcation parameter. With
loss of generality, we consider system (4) under the
assumptions (H1)and (H2). Lat= iw*(w* > 0) be

the root of (7), then

() |

—w*? + (R, — ay)iw* — a1 Ry, + (agiw*

+agRp)e™™ M + age e 0T = 0, (24).
Separating the real and imaginary part, we have

ascy cos w¥n cosw*d 4 agey sinw™n sinw*d
= w*? + a1 Ry, — as Ry, cosw*n — agw™ sinw*n,
ascy cos w*nsinw*d — ageg sinw*n cos w*d
= (Rp — a1)w* + agw™ cosw*n — ag Ry, sin w*n.
(25)
Eliminating § from (25)

W+ miw™ + maw*® 4+ maw* +my = 0, (26)

where
my —2as sinw™n,
ma (azsinw*n)? + (Rp, — a1)?
+a3 + 2a3(Ry, — ap) cosw*n
+2(a1 Ry — ag Ry, cosw™n),
m3 = 2a3Rjcosw*nsinwn
—2asRp (R, — aq) sinw™n
—2asg (a1 Ry, — ag Ry, cosw™n) sinw™n,
my = (a1Ry, — asRy, cosw*n)?

+(ag Ry sinw*n)? — (ascr)?.
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Denote

f(w*) :w*4+m1w*3+m2w*2

+mgw* +my = 0. (27)
Assume that
(H5):m4<0.
If (H5) holds, then f(0) < 0, Since
limg* 400 f(Ww*) = +oo0. Thus (26) has fi-
nite positive roots wi,ws,...,w;. For every
wii = 1,2,...,k there exists a sequence

{6715 =1,2,...,} such that (26) holds. Let

So=min{d?[i =1,2,...,k;j=1,2,...}. (28)

Then whens = 4y, for n € [0,m0), (7) has a pair
of pure imaginary rootstid. In the following, we
assume that

(H6) - {%ins 70

According to the general Hopf bifurcation theorem for
FDES in Hale [23], we have the following result on
the stability and Hopf bifurcation in system (5).

Theorem 4  For system (5), assume that (H1),
(H2),(H5) and (H6) hold and € [0,7,), then when
d € 10,9p), system (5) is asymptotically stable; When
0 = &p, Hopf bifurcation of system (5) occurs around
the equilibriumE(0, 0).
Case 6 Whenn = 6, Eq. (7) becomes
22 + (Rh — al))\ — a1 Ry, + (CLQ)\ + CLQRh)€_)\77
tagcre” M = 0. (29)

Multiplying e~*" on both sides of (29), it is easy to
obtain

[)\2 + (Rp —ap)\ — ath]e)‘" + ag A + as Ry,

+ascre M = 0.

Whenn = 0, (30) becomes

(30)

)\2+(Rh—al—i-ag))\—ath+a2Rh+a3c1 =0. (31)

Obviously, if the condition (H2) is satisfied, then all

the roots of (31) have a negative real part. Thus if the

conditions (H1) and (H2) are satisfied, then the equi-
librium E(0,0) of system (5) is local asymptotically
stable.

Let A = i6(0 > 0) be the root of (30), then

[—0% + (R, — a1)if — ay Ry]e"
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+asif + as Ry, + agcre 0 = 0. (32)
Separating the real and imaginary part, we obtain

(a1 Ry — 6% + ascy) cos On
+(Rp — a1)0sinn = —ag Ry,

(Rp — ay1)f cosbn (33)
+(a1 Ry, — 6% — azcy) sinfn = —ash.
thensin 0n =
CLQRh(Rh — a1)0 — age(ath — 6%+ agcl) (33)
(ath — 92)2 — (a301)2 — (Rh — CL1)292 ’
cosfn =
a20*(Ry — a1) — agRp(a1 Ry, — 0% — azey) (34)
(ath — 92)2 — (a301)2 — (Rh — CL1)292 ’
In view ofsin? 6n + cos? O = 1, we get
0% + u36® + uab* + u10% + uy = 0, (35)
where
uy = [(a1Ry)? — (azb1)*?
—[ag Ry (a1 Ry, — azer))?,
ur = 2[2a1Ry — (R — a1)?]
x[(a1Rp)* — (azcr)’]
_(CLQR%L — 2a1a2Rh - a2a301)2
+2a2Rh(a2Rh — alag)(ath — agcl),
Uy = [(Rh — CL1)2 — 2a1Rh]2
+2[(CL1Rh)2 — (CL301)2]
—QGQ(GQR%L — 2a1a2Rh — a2a361)
—(2a2Ry, — araz)?,
us = 2[2&1Rh — (Rh — CL1)2 — CL%]

Let z = 62, then (35) becomes

2+ ugz® +uez? + urz + ug = 0, (36)
Denote
h(z) = 2* + uz2® + ug2® + urz + . (37)
then
W (2) = 42° + 3us2? + 2ugz + . (38)
Suppose that
423 + 3u3z? + 2uoz + up = 0. (39)
Lety = z + 5. Then (39) can be written as
v +py+a =0, (40)
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where
pp=t2_ 3. W uuy uw
=% "1™ T3 g 4
Define
D o (2>2+(&>3 S LTV
2 3) 2
v = {’/—%+\/5+3—%—\/5,
o — %%ﬂ%w-%_@aa
ys = {/—%Jr\/l_)ahrf’—%—\/ﬁa,
% = p-ohi=123

In view of [24-25], we have the following results.

Lemma3 If uy < 0, then Eq. (39) has at least one
positive root.

Lemma 4 Suppose that, > 0, then the following
conclusions are true. (i) ID > 0, then Eq. (39) has
positive root if and only ifz; > 0 andh’(z;) < 0;

(i) If D < 0, then Eq. (39) has positive root if and
only if there exists at least on& € {z1, 23, 23} such
thatz* > 0 andh' (z*) < 0.

Without loss of generality, we assume that (39) has
four positive roots, denoted by, 2o, 23, 24, respec-
tively, then (38) has four positive roots

91:\/57 92:\/57 93:\/57 94:\/5
By (29), if we denote

; 1
77]2] ) = H_k{ arccos

(a1 Ry — 07)* — (azc1)? — (Rp, — a1)%6;

+2j77},

wherek = 1,2,3,4;5 = 0,1,---, then whenn =
17,9), +i6;, are a pair of pure imaginary roots of Eq.
(30). Define

[aQH,%(Rh — al) — ath(ath - 9]% - agcl)

(41)

0) _

o = 7y, (42)

: (0) _
re il 4}{nk by 10 = Nk -

Based on the analysis above, we have the following
results.
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Lemma5 Forn = §. If (H1) and(H2) hold, then
whenn € [0,7), all the roots of (5) have a nega-
tive real part. Whem = 77,9) (k = 1,2,3,4;5
0,1,2,---), (5) has a pair of pure imaginary roots
+i0).

Let A(n) = a(n) + i0(n) be the root of (30) with
n = n,gj), Wherea(ng)) = 0,9(17,9)) = 0. Accord-
ing to the theory of functional differential equations,
for everyn'’) k = 1,2,3,4;j = 0,1,2,--- ., there
exists ans > 0 such that\(n) is continuously dif-

ferential inn for |n — n,9>| < . Substituting(n)
into the left-hand side of (30) and taking the deriva-
tive with respect ta;, we have

{@]_1 (2 + Ry —a1)eM + ap o (43)
dn]  Mazcre= 1 — en) A
Then
Vmwwyl
dr n=ny))

Aazcre=An — eAn) )

_ Re{ 2\ + Ry, — a1)eM + az}
n

L
_Ra + et | _ ms e
V3 + V4l V3 + 3
where
v = (Rp—ay)cos Hknlij)
_29k sin Hknlgj) + a9,
v = (Rp—ay)sin Hknlij) — 20, cos 0;977,9),
v3 = O(ager — 1)sin b,
vy = Or(asbcy — 1) cos Gkn,gj).

We assume that

(H7) : v1y3 + 7274 # 0.

Based on the analysis above, we have the following
results.

Theorem 5 Forn = § = 0, if (H1) and (H2) hold,
then forn € [0,7), the equilibriumE(0,0) of sys-
tem (5) is asymptotically stable. Under the conditions
(H1) and (H2), suppose thatH7) holds, then when

n =k =1,2,3,45 = 0,1,2,---), Hopf bi-
furcation of system (5) occurs near the equilibrium
E(0,0).
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3 Computer Simulations

In this section, we will carry out some numerical sim-
ulations to verify the theoretical findings obtained in
the previous sections. Consider the following system

AL = 0.6T — 0.AT(t — ) + 0.4h(t — 0)
—0.673,
= —0.6T(t —n) — 0.3h.

(44)

Obviously, system (44) has a unique equilibrium
E(0,0). Itis east to check thatH1)- (H7) are sat-
isfied. Whenn = 0, By Matlab 7.0, we getvy ~
0.4637,0p ~ 0.37. Whend < § =~ 0.37, then the
equilibrium E(0,0) is asymptotically stable. When
d > 6o ~ 0.37, the equilibrium E£(0,0) is unsta-
ble(see Fig. 1). Whe = §, ~ 0.37, Hopf bi-
furcation of system (44) occurs near the equilibrium
E(0,0)(see Fig. 2).

Whené = 0, by Matlab 7.0, we get)y ~
0.25,n9 ~ 0.25. Whenn < nng ~ 0.25, then the
equilibrium E(0,0) of system (44) is asymptotically
stable. Whem > ny ~ 0.25, then the equilibrium
E(0,0) of system (44) is unstable(see Fig. 3). When
n = no ~ 0.25, Hopf bifurcation occurs near the equi-
librium E(0,0). Namely, wheny = 0 andn is close
tony = 0.9122, a small amplitude periodic solution
occurs arounds(0,0) (see Fig. 4).

Letd = 0.2 € (0,0.37) and choose) as parame-
ter. we have), ~ 0.15. then whem € [0,0.15), then
the equilibrium£(0, 0) of system (44) is asymptoti-
cally stable. Hopf bifurcation valugy ~ 0.15 (see
Figs. 5-6).

Letn = 0.13 € (0,0.25) and choose as bi-
furcation parameter, we gét =~ 0.35. WhenJd ¢
[0,0.35) , then the equilibrium® (0, 0) of system (44)
is asymptotically stable. Hopf bifurcation value of
system (44)), ~ 0.35(see Figs. 7-8).

When o = n, by Matlab 7.0, we get), =~
0.7428,m9 ~ 0.15. Whenn < n9 = 0.15, then
the equilibriumE£(0, 0) of system (44) is asymptoti-
cally stable, whem > ny &~ 0.15, then the equilib-
rium E(0,0) of system (44) is unstable(see Fig. 9).
Whenn = n9 ~ 0.15, a Hopf bifurcation occurs
near the equilibrium&(0, 0), i.e., wheny is close to
no = 0.15, then a small amplitude periodic solution
occurs arounds (0, 0) (see Fig. 10).
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Fig.1. Trajectory portrait and phase portrait of system
(44) withn = 0,6 = 0.2 < §y ~ 0.37. The equi-
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[2] J.Q. Mo, and W.T. Lin, Homotopy perturbation

[3]

SRR i
i

i

[5]

Fig.10. Trajectory portrait and phase portrait of sys-  [6]
tem (44) withd = n = 0.2 > ny = 0.15. Hopf
bifurcation occurs from the equilibriury’(0,0). The

initial value is (0.1, 0.1).

[7]
4 Conclusions

[8]

In this paper, an oscillator model for EI b and
southern oscillation with two different delays are in-
vestigated. By regarding the delaysndé as bifur- 9
cation parameters, we obtain the critical values of two [©]
time delays which system undergo Hopf bifurcation.

It is shown that when the time delay crosses a cer-

tain critical value, the system loses it stability and a [10]
family of periodic orbits bifurcate from the equilib-

rium. Finally, by MATLAB software, some numetri-

cal simulations are carried out to illustrate the theoret-

ical results. ENSO is a complex natural phenomenon. [11]
Its occurrence will has seriously effect on the climate

and ecology all over the world. By investigating what

the effect of different time delays have on Hopf bifur- [12]
cation of this model, we will know the change situa-
tion of corresponding physical quantity, then we can
makes the forecast on the corresponding situation of
the system. Moreover, we can effectively prevent the
humanitys disaster from ENSO event.
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