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Abstract: In order to make full use of measurement information provided by sensors on the aerial carriers and 
efficiently make maneuvering target tracking under complicated conditions, this paper studies tracking methods 
of joint maneuvering target by airborne radar and Electronic Support Measure (ESM). Based on Interacted 
Multiple Model-Blue Linear Unbiased Estimation (IMM-BLUE) algorithm, this paper well tracks maneuvering 

target by airborne radar-ESM data fusion and has designed target tracking algorithm for airborne radar in 

Doppler blind zone (DBZ) as well as proposes two tracking methods separately for measured value of data 

fitting amount in DBZ and single ESM. Simulation results show IMM-BLUE algorithm well advantages over 

Extended Kalman Filter (EKF) by far avoiding the defect of divergement from the latter. Compared with 

simulation results of single radar, the data fusion tracking of airborne radar and ESM further improves tracking 
accuracy. Performances of either curve-fitting method in DBZ or single ESM tracking prove validity of the two 

methods in this paper. Radar-ESM joint tracking technology discussed in this paper has solved the problems 
caused by sensor unicity and Doppler blind zone. 
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1 Introduction 
With an increasing maneuverability of various new 
weapons, data from a single sensor can never meet 
the tactical demands. Only by fully making use of 
info from the observation platform can effectively 

track targets under complicated circumstances. 
Airborne radar and ESM are two important sensors 
on aerial carriers. Single airborne radar is unable to 
meet target tracking demand and DBZ limits 
intelligence effectiveness of airborne radar while 
airborne radar-ESM joint tracking technology can 
solve above problems. 

Nowadays, multi-sensor data fusion as one of 
the key tracking technologies has been applied in 
airborne tracking systems and airborne radar and 

ESM are two important sensors of aerial carriers. 
Scholars have made a great deal of research of data 
fusion of airborne radar and ESM. Reference [1] 
make comparative analysis of associated filtering 
algorithms between radar and ESM; Reference [2] 
discuss data compression in radar-ESM 
collaborative tracking; Reference [3] present radar-
ESM intermittent algorithm, a polynomial time 
tracking based on measurement time inconsistency 

of radar and ESM. Some scholars make study of 
how to track effectively of targets in DBZ. 
Reference [4] propose BDPF (blind Doppler particle 

filtering) algorithm, which predicts target state by 

applying particle filtering algorithm into DBZ and 
shape associated tracking window with bounded 
particles, well tracking of constant speed target.  
Reference [5] propose particle filtering tracking 
algorithm jointly constrained by DBZ and ESM 
azimuth info, which realize target tracking in DBZ 
and present smaller error than that of DBZ info only.  
Reference [6] propose a temporary elimination 
method of route optimization based on Doppler 
target prediction by combing extended Kalman 

filter-treated target dot prediction with route 
optimization  criteria of traditional adaptive-
prediction. 

This paper studies maneuvering target tracking 
algorithm based on aerial carriers while IMM-
BLUE method fulfils data fusion of airborne 
radar and ESM, improving the tracking accuracy 
compared with the single radar tracking. This paper 
further studies the joint tracking technology of radar 

and ESM in DBZ, putting forward with two tracking 
methods separately for DBZ data and single ESM 
tracking which are both proved to be effective by 
simulation results. 
 
 

2 IMM-BLUE principle 
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2.1 Target tracking model 
IMM covers several filters, one model probability 
estimator, one interactive effector and one estimator 
commingler. Algorithm recursion each time 

concludes the following four steps[7, 8].  
1)  Interaction of state estimation 

Suppose there are r  models， then transition 

probability from model i  to model j  is 
ijP . Let 

ˆ ( | )iX k k  as state estimation of filter i  at time k , 

( | )iP k k  as the corresponding covariance matrix and 

( )i k  as probability of model i  at time k , while 

, 1,2,...,i j r , then inputs of r filters at 1k  by 

interactive computing are as follows: 
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2)  Model conditional filtering 

Filter output is carried out as ˆ ( 1| 1)iX k k  and 

( 1| 1)iP k k  when taking ˆ ( | )oiX k k  and
 

( | )oiP k k as 

input in i model of ( 1)k  . 

3)  Updating model probability 
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Where 
ˆ( 1) ( 1) ( 1) ( 1| )i i ik Z k H k X k k                          (8) 

( 1) ( 1) ( 1| ) ( 1) ( 1)T

i i i i iS k H k P k k H k R k            (9) 

( 1)Z k  is the system measurement vector; 

( 1)iH k   is measure matrix, ( 1)i k   is 

measurement noise vector, ( 1)iR k   is the 

covariance of measurement noise. 
4)  Filter interacted output 
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This paper selects CV model and Singer 
acceleration model interact [9,10]. State equation of 
the system is 

X( 1)= ( )X( )+ ( )W ( )i i ik k k k k                               (12) 

Measurement equation is 

( ) ( ) ( )Z k HX k V k                                                (13) 

Where, 

X( ) [ ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )]Tk x k y k z k x k y k z k x k y k z k       

serves as state vector of the system, including 
target’s position, velocity and acceleration in X, Y 
and Z direction, respectively. 

1(k) is system state 

transition matrix of CV, 
1(k)  is noise gain matrix 

of CV, 
1(k)W  is system process noise matrix of CV, 

2 (k) is system state transition matrix of Singer, 

2 (k)  is noise gain matrix of Singer, 
2 (k)W  is 

system process noise matrix of Singer, ( )Z k  is the 

system measurement vector; H  is measure matrix, 
( )V k  is measurement noise vector. 
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Where 
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x y z      ,

x y z       describes 

the first-order forming filter parameter of the 
attacking target’s acceleration in the Cartesian 
coordinate. T  is system measurement period. 
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2.2 BLUE principle 
If the BLUE estimate of given target at time 1k   is 

1| 1
ˆ

k kx  
 and the responding error covariance matrix 

is
1| 1k kP  

, then the motion state of the target at time 

k can be optimally estimated by the 

following recursive BLUE filters [11]: 
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Therefore in formula (20), next measurement of 

kZ  is： 
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While 
| 1( , ), 1,2,3k kP j j    represent column 

vectors composed by column j  of 
| 1k kP 

. 

Innovative covariance matrix of kS  is: 
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In actual application, as follows approximation: 
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IMM-BLUE filtering algorithm for 
maneuvering target tracking can be deduced by 
replacing model filter in IMM algorithm with BLUE 
filtering.  
 

 

3 Data fusion 
Through angle info fusion of radar and ESM sensors 
and radial distance measured from radar,   pseudo-

observation information can be over-all combined 
and therefore able to accurately estimate target 
state[12]. Fig.1 shows the implementation of radar-
ESM data fusion. 
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Fig.1. Flow chart of Radar- ESM data fusion  
 

 

3.1 Time registration 
General solution of time alignment is to collect all 
data to a sensor data with long scanning period[13, 
14]. Usually, ESM data rate is higher that that of 
radar. This paper shows interpolation process of 
radar measured data. Suppose there are m  

measured values within one radar measurement 

period  1,k kt t 
,  that is, 

 ( ) ( ), ( )
T

E E EZ k j k j k j     ， 1, , 1j m  ，

while
jt is time difference between ( )EZ k j   and 

radar value  ( ) ( ), ( ), ( )
T

R R R RZ k r k k k   at time k . 

According to interpolation and extrapolation, time 
alignment equation for radar and ESM is: 

2 1

1 1

2 1

( ) ( )
( ) ( ) ( )R R

R e R e

Z t Z t
Z t Z t t t

t t


  


                    (25) 
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The responding variance is: 
2

2 2
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1 2
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Therein, 
et  is observation time of ESM, 

1t  and 

2t are adjacent observation times of radar, 

while
1 2et t t  ,

1j et t t   , 2 2 2 2
T

R Rr R R        .

( ) ( ) ( ) ( )
T

R e R e R e R eZ t r t t t    
   is pseudo 

measurement value at time 
et after radar time 

alignment, 2 2 2 2

R RR
R r 

    
      is the pseudo 

variance value after radar time alignment. 
 
 

3.2 Track fusion 
Upon temporal registration of radar and ESM 
measurement, it is ready for angle fusion. This paper 
makes data fusion through weighted variance. Take 

azimuth for example, correlative radar trace point 

R
  and ESM trace point 

E , target azimuth after 

data fusion is:  

2

2 2
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Azimuth variance of fusion target is: 
2 2
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Similarly, the same fusion process can be applied 
for pitching angle from radar to ESM, then 
combined with distance info Rr  

observed by radar at 

the corresponding time and target observation info 
is ( , , )F F Fr    after fusion. Accurate target 

positioning and tracking can be realized by filtering 
algorithm.

 
 

 

4 Target tracking in DBZ 
The Doppler shift expression of the target radiation 
source is[15]: 
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     
(29) 

Where, rv is radial velocity of target against 

sensor and stays positive when it points to target. 0f  

is emission frequency of target radiation source,  c  

is the propagation velocity of target emitter signal. 
x , y , z  are relatively components of target 

velocity vector in X-velocity, Y-velocity and Z-

velocity while 
px , 

py , 
pz  are components of aerial 

carrier velocity vector in X, Y and Z. 
Radar is unable to detect targets when they drop 

in DBZ and begin to lose target track provided that 

DBZ is equivalent to 
dtf f   and equivalent speed 

threshold is 0 0,L L . 

 

 

4.1 Data fitting in DBZ 
Target when dropping into DBZ will be tracked by 

data fusion method combing IMM-BLUE based 
airborne radar and ESM. Target in an assumed DBZ 
which is not wide enough will continue former 
movement until it flies out of DBZ. During the 
period that target stays in DBZ, target distance 
information can be simulated by target estimate 
state from radar-ESM data fusion. This data fitting 
estimate can be approximately regarded as measured 
value of complete information. Generally, a time 
polynomial is able to fit target movement track. 

Suppose target moving track in X, Y and Z 
directions can be fitted as: 
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                                   (30) 

From the above, , ,i i ia b z ( 0,1,2,i m  ) are 

undetermined coefficients, while m is the 

polynomial order. This paper applies three-order 
polynomial to build motion model based on the 
target location by curve-fitting estimation.  

Fig.2 presents the structure diagram of tracking 
algorithm combing radar and ESM in DBZ. Take 

data fitting value as the measured value kz of IMM-

BLUE and update the state estimation. 
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Fig.2. Structure diagram of tracking algorithm 
combing radar and ESM in DBZ 
 
 

4.2 Only ESM tracking in DBZ 
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ESM is a passive sensor with azimuth angle and 
pitch angle as measurement data only, unable for 
target tracking normally, but with a known initial 
position, target tracking can be done through EKF 
filtering method with angles info only[16, 17, 18, 
19]. Design structure diagram for the whole tracking 

algorithm is shown in Fig.3. When target drops into 
an assumed narrow DBZ, radar is unable to detect 
the target but only ESM measured data. Taking the 
predicted value

|
ˆ

k kx  of radar-ESM fusion tracking 

estimated value at time k  of last step, as the initial 

value of single ESM tracking at time 1k  , tracking 

can be done by IMM-EKF filtering method. 
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Fig.3. Structure diagram of only ESM tracking in 

DBZ 
 
 

5 Simulation results and analysis 
5.1 Target tracking algorithm 
The parameters of target are given as follows. The 
sampling rate of radar and ESM is t=0.1s. The initial 
conditions of the target is (100000m, 50000m, 
10000m) for position and (-230m/s, -230m/s, -40m/s) 
for velocity. The segments are defined as follows. 
1st segment, t= (0-10)s, constant velocity flight with 
acceleration 0. 2nd segment, t= (10-85) s, S‘ ’ type 

acceleration maneuver, 3rd segment, t= (85-100) s, 
constant velocity flight with acceleration 0. The 

initial conditions of the aircraft is (40000m, 20000m, 
5000m) for position and (300m/s, 250m/s, 0m/s) for 
velocity. The segments are defined as follows. 1st 
segment, t= (0-20) s at angular speed of 

2  moving to the left. 2nd segment, t= (20-40) s 

moving at angular speed of 3  to the left. 3rd 

segment, t= (40-60) s moving at angular speed 
1  to the right. 4th segment, t= (60-80) s moving 

at angular speed 2  to the right. 5th segment, t= 

(80-100) s moving at angular speed 3  to the right. 

Measurement noise covariance of radar radial 

distance, azimuth angle and pitch angle are 250R  , 

2( 360)R  , 2( 360)R  .Measurement noise 

covariance of ESM azimuth angle and pitch angle 

are 2( 300)E  , 2( 300)E  [20].  The model 

transition probability and original model probability 

are:  
0.99 0.01

 ,  0.5 0.5
0.01 0.99

P 
 

  
 

. Performance 

evaluation of maneuvering target is made separately 
by IMM-EKF and IMM-BLUE.  Position error in 
directions of X, Y and Z are shown in Fig 4, 5 and 6. 
Table 1 is RMSE comparison of state estimation 

through IMM-EKF and IMM-BLUE filters. Seen 
from simulation results, IMM-EKF algorithm 
discards easily with worse tracking accuracy which 
is mainly caused by EKF algorithm error to 
linearization of non-linear measuring equations 
while IMM-BLUE shows better stability and 
tracking accuracy comparatively. 
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Fig.4. Position error comparisons in X direction 
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Fig.5. Position error comparisons in Y direction 
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Fig.6. Position error comparisons in Z direction 
 
Table 1 Comparison of state estimation RMSE 

 X/m Y/m Z/m 

IMM-EKF 130.11 165.69 152.77 

IMM-

BLUE 
69.87 89.43 100.05 

 
 

5.2 Radar and ESM fusion tracking 
This paper applies IMM-BLUE tracking algorithm 
and makes simulated analysis on both radar 
measured value and fusion data. The detailed 
simulation results are shown in the following figures, 
among which Fig.7, Fig.8 and Fig.9 respectively 
stands for position error in X, Y and Z direction. 

Table 2 is mean square error comparison between 
single radar tracking and fusion tracking of radar 
and ESM.  Seen from simulation results, target 
tracking accuracy of radar-ESM data fusion is 
higher than that of single radar tracking. Data fusion 
tracking algorithm for airborne radar based on 
IMM-BLUE and ESM contributes a lot to improve 
positioning and tracking accuracy. 
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Fig.7. Position error comparisons in X direction 
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Fig.8. Position error comparisons in Y direction 
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Fig.9. Position error comparisons in Z direction 
 

Table 2 Comparison of state estimation RMSE 

 
 

X/m Y/m Z/m 

Radar 
tracking 

130.11 165.69 152.77 

Fusion 
tracking 

69.87 89.43 100.05 

 
 

5.3 Target tracking in BDZ 
Suppose the emission frequency of target radiation 

source is 0 1.2f   GHZ，and speed limit of DBZ 

target is 0 50L   m/s. Learn by formula (29), DBZ 

target section is [ 200  200]  HZ. Fig.10 shows the 

changing status of Doppler frequency and while two 
sections of target motion trail are within DBZ. 
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Fig.10. Doppler frequency 

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

t/s

X
 p

o
s
it
io

n
 e

rr
o
r/

m

Data fitting in BDZ

ESM tracking in BDZ

 
Fig.11. Position error comparisons in X direction 
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Fig.12. Position error comparisons in Y direction 
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Fig.13. Position error comparisons in Z direction 
 

Fig.11, Fig.12 and Fig.13 separately shows 
position error curve of X direction, Y direction 
and Z direction in DBZ, seen from which curve  
fitting method and single ESM tracking can 
both perform well, proving the validity of the 

two maneuvering target tracking methods for DBZ  
in this paper. 
 
 

6 Conclusion 
This paper presents maneuvering target tracking 
algorithm for airborne radar and based on which, 
it completes maneuvering target tracking by 
aerial radar-EMS data fusion through IMM-
BLUE algorithm and designs the tracking 
method for targets in DBZ, proposing target 
tracking methods respectively for data fitting 
value in DBZ and single ESM tracking. 

Simulation results show IMM-BLUE algorithm 
not only overcomes the defect of EKF algorithm 
easy to diverge but enjoys a better tracking 
effect. Application of radar-ESM data fusion 
has further improved target tracking accuracy.  
Curve fitting and single ESM tracking can both 
achieve good target tracking effects in DBZ. 
Radar-ESM joint tracking technology in this 
paper has solved the problems caused by sensor 

unicity and Doppler blind zone. 
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