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Abstract: - Kalman Filter (KF) is widely used in process industries as state estimator to diagnose the faults 
either in the sensor, actuator or in the plant because of its recursive nature. But, due to increase in non-linearity 
and exogenous perturbations in the monitored plant, it is often difficult to use a simple KF as state estimator for 
nonlinear process monitoring purposes. Thus, the first objective of this paper is to design an Adaptive Linear 
H∞ Filter (ALH∞F) using gain scheduling algorithm to estimate nonlinear process states in the presence of 
unknown noise statistics and unmodeled dynamics. Next the designed ALH∞F is used to detect sensor and 
actuator faults which may occur either sequentially or simultaneously using Multi Model ALH∞F 
(MMALH∞F). The proposed estimator is demonstrated on Continuously Stirred Tank Reactor (CSTR) process 
to show the efficacy. And the performance of MMALH∞F is compared with MMALKF. The proposed 
MMALH∞F is detecting and isolating the faults exactly in the presence of unknown noise statistics and 
unmodeled dynamics.      
 
Key-Words: - CSTR, Process Monitoring, Kalman Filter, Multi Model Adaptive Linear H∞ Filter, Residual 
generation, State Estimation. 
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1 Introduction 

Due to increase in complexity, non-linearity and 
exogenous perturbations, it is often difficult to use a 
simple Kalman filter as state estimator for process 
monitoring purposes. To use linear estimator or 
controller for the non-linear applications multiple 
local linear model approach is used to represent the 
non-linear model. Each local linear model is valid 
around particular operating point. To get the global 
linear model all the local linear models are fused 
using gain scheduling algorithm at current operating 
point [1]. 

Process monitoring has become an essential task 
because of process automation with minimal manual 
intervention. To ensure the quality of the product, 
optimal utilization of the plant safety and to control 
the pollution level it becomes mandatory.   Kalman 
filter is widely used in process industries as state 
estimator to diagnose the faults either in the sensor, 
actuator or in the plant because of its recursive 
nature. Kalman filter is based on the assumption that 
the state and the measurement noises are 
uncorrelated and zero mean Gaussian noise with 
known covariance, and it is suitable for linear 
applications only [2]. The Kalman filter fails if 

either the noise statistics are unknown, if there is a 
plant model-mismatch or the process is non-linear 
and in the presence of unmodeled dymanics.  For 
non-linear systems the widely used estimator is 
Extended Kalman Filter (EKF). EKF linearizes all 
nonlinear transformations and substitutes Jacobian 
matrices in the KF equations [3]. But the nonlinear 
estimation methods are computationally complex. 
Most of the existing algorithms are designed for 
sequential faults and not for simultaneous faults.    

To overcome all these difficulties, first the 
Adaptive Linear H∞ Filter (ALH∞F) is designed 
using gain scheduling algorithm to use the H∞ filter 
for non-linear state estimation in the presence of 
unknown noise statistics and unmodeled dynamics. 
Next, multiple ALH∞Fs are designed with different 
hypothesis to isolate sensor and actuator faults 
which may occur either sequentially or 
simultaneously [4]. And the performance of 
MMALH∞F is compared with MMALKF in the 
presence of unknown noise statistics and unmodeled 
dynamics. The following section deals with the 
design of H∞ Filter and section 3 and 4 deals with 
the design of ALH∞F and MMALH∞F respectively. 
The process used for simulation studies is presented 
in section 5. Simulation results are presented in 

WSEAS TRANSACTIONS on SYSTEMS M. Manimozhi, R. Saravanakumar

E-ISSN: 2224-2678 660 Volume 13, 2014



section 6 and conclusion reached is given in section 
7.  

 
2. H∞ Filter 

The H∞ filter design is based on linear quadratic 
game theory approach. The filter is designed to 
estimate the process states in the presence of 
unknown noise statistics and unmodeled dynamics. 
Consider the following linear stochastic time 
invariant discrete-time system. 

kwkuukxxkx +Φ+Φ=+1                                  (1) 
kvkxyky +Φ=                                                   (2) 

Where nRkx ∈ represents state vector, mRkw ∈  

represents the process noise vector, pRky ∈  

represents measurement vector and pRkv ∈

represents measurement noise vector. ux ΦΦ ,  and 
yΦ are system matrices of appropriate dimension. 

The linear combination of state kx is given by,  
kxkLkZ =        (3) 

Where kL is a user defined matrix. State variables 
are estimated based on measurement history till (N-
1) sampling instant. Basically the H∞ filter is a one 
step ahead predictor, it tries to estimate the states 
with small estimation error .ˆkZkZke −=  Using 
game theory approach the H∞ filter will try to satisfy 
the following performance criterion. 
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Where 0x̂ is an apriori estimate of 0x . RQP ,,0

and S are symmetric, positive definite weighting 
matrices chosen by designer based on process 
dynamics. The estimate kZ should satisfy,  

θ
1

<J                                              (5) 

Where 0>θ  represents the desired level of noise 
attenuation. The H∞ filter can be interpreted as 
minmax problem. The performance criterion given 
in (4) becomes  
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(6)  

The performance criterion can be made less than 
θ
1  

with the following estimation strategy [5,6] 
SLTLS =                                                          (7) 

111 −Φ−Φ−Φ+−= RT
yPyRT

yPSIPK ][ θ             (8) 

)ˆ(ˆˆ kxykyKxkxT
xkx Φ−Φ+Φ=+1                        (9) 

QT
xPyRT

yPSIPxP +Φ−Φ−Φ+−Φ= 11 ][ θ     (10) 
If designer is interested in second element of kZ
then the corresponding ),( 22S should be chosen 
large relative to other element.  
 
3. Adaptive Linear H∞ Filter 

Let us consider a nonlinear stochastic system 
represented by the following state and output 
equations: 

),,( kwkukxfkx =+1                                            (11) 
),,( kvkukxhky =               (12) 

The nonlinear system is linearized around different 
operating points using Taylor series expansion. The 
linear system around operating points ),( iuix is 
given as follows, 

kwiukuuiixkxxiikx +−Φ+−Φ=+ )()()( 1           (13)                             
kvkixyikiy +Φ=                       (14) 

The nonlinear system is represented by a fused 
linear model using gain scheduling technique at a 
given operating point. For a given input vector ku  
the fused linear model is represented as follows: 

])()([ ixiukuui
N

i
ixkxxiigkx +−Φ+∑

=
−Φ=+

1
1 (15) 

kxyiky Φ=                                         (16) 
To cover the entire operating horizon, five 

operating points has been selected (i=1 to 5). Let cq
, is the actual value of the measured process variable 
at current sampling instant and ig  is the weighting 
factor . 
If )( 5cqcq ≥ , then 

1504321 ===== gandgggg
     

            (17) 

If )( 54 cqcqcq ≤< , then 

415
45
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cqcq
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−
−

==== ,

 
(18) 

If )( 43 cqcqcq ≤< , then 
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(19)  

If )( 32 cqcqcq ≤< , then 
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213
23

220541 ggand
cqcq
cqcq

gggg −=
−
−

==== , (20)                           

If )( 21 cqcqcq ≤< , then 

0543112
12

11 ===−=
−
−

= gggandgg
cqcq
cqcq

g , (21)
                                                             

If )( 1cqcq ≤ , then 

0543211 ===== ggggandg            (22) 

The weighting factors are in the range of [0 1]. 
This approach consists of five local linear 

estimators and a scheduler. The local linear observer 
is designed using H∞ Filter. At a particular operating 
point, the local estimator is given below. 

111 −Φ−Φ−Φ+−= RT
yiiPyiRT

yiPSIiPiK ][ θ   (23) 
)ˆ(ˆ)(ˆ kxyikyiKxikxT

xikix Φ−Φ+Φ=+1           (24) 

QT
xiiPyiRT

yiiPSIiPxiiP +Φ−Φ−Φ+−Φ= 11 ][ θ   
                                                           (25) 
At each sampling instant the scheduler will assign 
weights (gain scheduling) for each local linear 
estimator and the weighted sum of the output will be 
the estimate of the current state. The scheduler 
assigns weight based on scheduling variable. The 
scheduling variable may be input variable or state 
variable or some auxiliary variable, the scheduling 
variable considered here is coolant flow rate cq of 
the process. The ALH∞F (global estimator) 
dynamics will be weighted sum of individual LH∞F 
and it is given below.  

[ ]{ }∑
=

+Φ−−+Φ=+
N

i
ixkixyiiykyiKikxT

xiigkx
1

1 ˆ)(ˆˆ
                                             

                                                                       
(26) 

4. Multi Model Adaptive Linear H∞ 

Filter 
MMALH∞F approach uses multiple ALH∞F. Each 

ALH∞F is designed based on specific hypothesis to 
detect a specific fault. The fault considered here is 
soft fault of fixed bias. The same approach can be 
used to detect dritf like faults. This approach is 
capable of detecting multiple sequential as well as 
multiple simultaneous faults  which  may occur 
either in sensors or in actuators [7]. 

The estimator 1 designed to estimator sensor bias 
and it is hypothesized with a sensor bias of 
magnitude sB  , then the measurement equation is 
given by, 

sBkvkxyiky ++Φ=                                      (27) 
Estimator 2 is designed to detect actuator bias and 

it is hypothesized with a actuator bias of magnitude 
aB , then the state equation is given by, 

kwaBkuukxkx ++Φ+Φ=+ )(1               (28) 

 All the ALH∞F except the one using correct 
hypothesis will produce large estimation error. By 
monitoring the residuals of each ALH∞F, the faulty 
element can be detected and isolated. The proposed 
MMALH∞F scheme is shown in Fig. 1. Each 
ALH∞F consists of five LH∞Fs developed at 
different operating  points. The weights are 
calculated by using coolant flow rate of the process 
as scheduling variable. The LH∞F outputs are 
weighted and added to get the global output 
estimate( y ). The process output is compared with 
the ALH∞F output to generate  residuals. Under 
fault free condition the magnitude of the residuals 
are maximum. If fault occurs in any of the sensor or 
actuator, the estimators except the one using the 
correct hypothesis will produce large estimation 
error. If the ALH∞F is designed for -5% bias and the 
bias occurred is less than or above 0.5%, then the 
residual generated will be different from the one 
during the normal operating condition. By closely 
observing the innovations, the faults which occurs 
either sequentially or simultaneously can be isolated 
and the time of occurance can also be detected. 

 
5. Continuously stirred Tank Reactor 
(CSTR)  
A simulated CSTR process was considered to test 
the efficacy of the proposed method. The schematic 
of the system is shown in Fig 2. An irreversible 
exothermic reaction A → B occurs in a constant-
volume reactor that is cooled by a single coolant 
stream The two state variables of the process are 
concentration and temperature. The first principle 
model of the system is given by the following 
equations.   
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The steady state operating point data used in the 
simulation studies is given in Table 1[8,9]. The 
continuous linear state space model is obtained by 
linearizing the differential equations (29) and (30) 
around nominal operating point AC  andT . The 
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state vector is ];[)( TACtx = and the input vector is
][)( cqtu = . 
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Fig. 1: Structure of the proposed MMALH∞F 

 

Fig. 2: Schematic of CSTR 

6. Simulation Results 

The CSTR process is simulated using first 
principles model as given in (29) and (30) and the 
true state variables are computed by solving the 
nonlinear differential equations using Matlab 7.1. 
The dynamic behavior of the CSTR process is not 
same at different operating points and the process is 
nonlinear.  
6.1 Fused Linear Model: To validate the 
performance of ALKF (local estimators designed 
using linear kalman filter are fused using gain 
scheduling algorithm) and ALH∞F, the process 

states are estimated using these estimators and 
compared with the rigorous non-linear model. The 
process and measurement noise covariance are 
assumed to be 0.25% of coolant flow rate and 0.5% 
of state variables respectively. Fig.3 shows the 
variation in coolant flow rate introduced. Fig.4 and 
Fig.5 shows the estimation of system states when 
the noise sequences are uncorrelated using ALKF 
and ALH∞F. It has been observed that both ALKF 
and ALH∞F exactly estimates the system states 
without dynamic and steady state error in the 
presence of uncorrelated noise. Fig.6 and Fig.7 
shows the estimation of system states when the 
measurement noise sequences are correlated.  It has 
been observed that the performance ALH∞F is better 
than the ALKF when the noise sequences are 
correlated. The ALKF tracks the changes with 
dynamic and steady state error. Fig.8 and Fig.9 
shows the residual generated when the noise 
sequences are correlated. Table 2 shows the 
performance comparison of ALKF and ALH∞F 
when the noise sequences are uncorrelated, 
correlated and after introducing distrubances in the 
feed temperature. It has been observed that the 
ALH∞F outperforms the ALKF when the noise 
sequences are correlated and in the presence of 
unmodeled dynamics.   
 

Table 1: Nominal operating condition for CSTR 
Process variable Normal Value 
Tank volume (V) 100 L 
Feed flow rate (q) 100.0 L/ min 

Feed concentration (CAf) 1 mol/ L 
Feed temperature (Tf) 350.0 K 
Coolant flow rate (qc) 103 L/ min 

Inlet coolant temperature (Tcf) 350.0 K 
Liquid density (ρ, ρc) 1 * 103 g/L 

Specific heats(Cp, Cpc) 1 cal/(g k) 
Reaction rate constant(k0) 7.2 * 1010 min−1 

Activation energy term (E/R) 1 * 104 K 
Heat of reaction (-ΔH ) -2 * 105 cal/ mol 
Heat transfer term (hA) 7 * 105 cal/(min k) 

product concentration (CA) 0.0989 mol/ L 
Reactor temperature (T) 438.7763 K 

 

 
Fig. 3: Coolant flow rate (L/min) 
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Fig. 4: Estimation of product concentration (mol/L) 

when the noise sequences are uncorrelated  
 

0 100 200 300 400 500 600 700 800 900 1000

434

436

438

440

442

Sampling instants

T
em

pe
ra

tu
re

 (
K

)

 

 

Process
ALKF
ALH∞F

 
Fig. 5: Estimation of reactor temperature (K) when 

the noise sequences are uncorrelated  
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Fig. 6: Estimation of product concentration (mol/L) 
when the noise sequences are correlated 
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 Fig.7. Estimation of reactor temperature (K) when 

the noise sequences correlated 
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Fig. 8: Product concentration error when the noise 

sequences are correlated (mol/L)  
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Fig. 9: Reactor temperature error when the noise 
sequences  are correlated 

6.2 Sensor and actuator bias detection: 
Estimator1 is designed to detect bias in CA sensor 
and T sensor and hypothesized with -5% sensor 
bias. Estimator2 is designed to detect bias in the 
actuator and hypothesized with 0% bias which 
manipulates cq . The designed MMALH∞F has been 
used to detect the biases which may occur either in 
the sensors or in the actuator.  

The magnitude of fault occurred is estimated 
from the magnitude of residual generated and the 
time of occurance of fault is the time at which the 
residual changes its trend, and the fault is confirmed 
by comparing the mean of the residual over a period 
of time with the threshold value. While analysing 
the efficacy of MMALH∞F the coolant flow rate is 
fixed at 100 L/min, the corresponding steady state 
values are [0.0885; 441.1475]. And the Estimator1 
is hypothesized with -5% bias so, in the absence of 
bias in the sensors, the residual generated by the 
estimator1 is [0.0044; 22.057]. Estimator2 is 
hypothesized with 0% actuator bias so, in the 
absence of both sensor and actuator bias the residual 
generated by estimator2 should be [0; 0]. Fig. 10, 
Fig.11 and Fig.12 shows the residuals generated by 
estimator1 and estimator2 after introducing -2% of 
bias in both sensors at 50th sampling instant. 
Actuator bias will be reflected in both state 
variables, and any one state variable is sufficient to 
estimate the actuator bias. So, here temperature 
residual is considered.  From Fig.13 and 14 it is 
clear that the H∞ Filter converges quickly compared 
to KF. And the kalman gain smaller than H∞ filter 
gain, so we can conclude that the KF rely more on 
process model and less on measurement and H∞ rely 
more on measurement and less on process model.   

 
7. Conclusion 

In this paper MMALH∞F is proposed which uses 
local linear H∞ filters. Local H∞ filters are fused 
using gain scheduling algorithm to estimate 
nonlinear process states in the presence of 
unmodeled dynamics and disturbances. To isolate 
faults which ocurrs sequentially or simultaneously 
multiple model estimators are used. The efficiency 
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of the proposed MMALH∞F is denonstrated on 
CSTR process to detect sequential and simultaneous 
faults. The MMALH∞F is detecting and isolating the 
faults in the presence of unmodeled dynamics as 
well as in the presence of unknown noise statistics 
and it outperforms the MMALKF. The H∞ Filter 
estimate depends more on measurement and less on 
process model, so it is not suitable for magnitude 
estimation of actuator faults. Magnitude of actuator 
fault can be estimated by setting threshold  using 
MMALH∞F. 

 

 
Fig. 10: Estimator1 concentration residual when  

-2% of bias is present in both sensors  

 
Fig. 11: Estimator1 temperature residual when -2% 

of bias is present in both sensors  
 

Fig. 12: Estimator2 temperature residual when -2% 
of bias is present in both sensors  

 

 
Fig. 13:  H∞ Filter gains 

 

 
Fig. 14:  Kalman Filter gains 

 
 
 

Table 2: Performance comparison of ALKF and ALH∞F 
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State1
State2

Noise Information 

RMSE 

State 1  -  CA State 2  -  T 
MMALK

F 
MMALH∞

F MMALKF MMALH∞

F 

Uncorrelated Noise 0.0032 8.1724*10-4 1.2536 0.0823 

Correlated Noise 0.0044 0.0014 1.7904 0.0880 

Uncorrelated Noise with 
Disturbance in Tf (350 K 

to 352 K) 
0.0062 0.0011 2.2590 0.2208 
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Table 3: Estimated residual in the presence of sensors and actuator faults 

% of bias Estimated residual by 
estimator1 

Estimated temperature  
residual by estimator2 

No bias 
-1% bias in actuator 
-2% bias in actuator 
-3% bias in actuator 

[0.004425; 22.057] 
[0.004425; 22.057] 
[0.004425; 22.057] 
[0.004425; 22.057] 

0.0000 
0.8525 
1.6525 
2.3091 

-1% bias in both sensors 
-2% bias in both sensors 
-3% bias in both sensors 

 [0.00354 ; 17.646] 
[0.00265 ; 13.234] 
[0.00177 ; 8.823] 

-4.4114 
-8.8228 
-13.2342 

-1% bias in both sensors & 
actuator 

-2% bias in both sensors & 
actuator 

-3% bias in both sensors & 
actuator 

-3% bias in both sensors & 
actuator 

[0.00354 ; 17.646] 
 

[0.00265 ; 13.234] 
 

[0.00177 ; 8.823] 
 

[0.000; 0.000] 

-3.5589 
 

-7.1703 
 

-10.9251 
 

-18.2048 

 
Table 4: Sequential and simultaneous bias detection using MMALKF and MMALH∞F 

% of bias introduced Mean value of the residual generated 

Sensor1 
(CA in 
mol/l) 

Sensor2 
(T in K) 

Actuator 
(qc in 
l/min) 

Estimator 1 for sensor bias detection (hypothesized 
with --5% bias) 

Estimator 2 for actuator bias 
detection (hypothesised 

with 0% bias) 

State 1  -  CA State 2  -  T State 2  -  T 
MMALKF MMALH∞F MMALKF MMALH∞F MMALKF MMALH∞F 

0% 0% 0% 0.0040 0.0045 22.2214 22.0935 0.1640 0.0362 
0% 0% -1% 0.0011 0.0045 22.9369 22.2087 0.8795 0.1514 
0% 0% -2% -0.0015 0.0046 23.6430 22.3047 1.5857 0.2474 
0% 0% -3% -0.0041 0.0047 24.3496 22.3766 2.2923 0.3193 
-1% -1% 0% 0.0031 0.0036 17.8064 17.6780 -4.2509 -4.3793 
-2% -2% 0% 0.0022 0.0028 13.4075 13.2675 -8.6498 -8.7899 
-3% -3% 0% 0.0013 0.0019 8.9836 8.8512 -13.0737 -13.2062 
-1% -1% -1% 2.735*10-4 0.0037 18.5214 17.7884     -3.5360 -4.2689 
-2% -2% -2% -0.0032 0.0029 14.7917 13.4505     -7.2657 -8.6070 
-3% -3% -3% -0.0065 0.0023 11.0452 9.0709 -11.0122 -12.8865 
-5% -5% -5% -0.013 0.0015 3.5649 0.2248 -18.492 -21.5326 
 
References: 
 
[1] D. Danielle and D. Cooper, “A Practical 
Multiple Model Adaptive Strategy for Multivariable 
Model Predictive Control,” Control Engineering 
Practice, vol 11, pp.649-664, 2003. 
[2] V. Venkatasubramanian, R. Rengaswamy, K. 
Yin, and S. N. Kavuri, “A review of process fault 
detection and diagnosis, Part I: Quantitative model-

based methods”, Elsevier. Computers & Chemical 
Engineering, vol. 27, pp. 293-311, 2003. 
[3] Y.C. Shi, K. Sun, L.P. Huang, and Y.D. Li, 
“Online identification of permanent magnet flux 
based on extended Kalman filter for IPMSM drive 
with position sensorless control”, IEEE 
Transactions on Industrial Electronics, 
59(11):4169–4178, 2012. 
[4] Takahisa Kobayashi, Donald L. Simon, 
“Application of A Bank of Kalman Filter for 

WSEAS TRANSACTIONS on SYSTEMS M. Manimozhi, R. Saravanakumar

E-ISSN: 2224-2678 666 Volume 13, 2014



Aircraft Engine Fault Diagnostics”, NASA/TM – 
2003 – 212526 
[5] Xuemin Shen and Li Deng, “Game Theory 
Approach to Discrete H∞ Filter Design,” IEEE 
Trans. on signal processing, vol. 45, no. 4, April 
1997 
[6] Dan Simon, “Optimal state estimation,” John 
Wiley & sons, New Jersey, 2006 
[7] J. Prakash, S.C.Patwardhan, S.Narasimhan, “A 
supervisory approach to fault tolerant control of 
linear multivariable systems,” Industrial 
Engineering Chemistry Research. Vol.41, pp. 2270-
2281, 2002. 
[8] M. pottmann, D. E. Seborg, “Identification of 
Non-linear process Using Reciprocal Multi 
quadratic Functions,” Journal of Process Control, 
vol.2, pp. 189 – 203, 1992. 
[9] Manimozhi, M., Snigdha, G., Nagalakshmi, S., 
Saravanakumar, R., “State Estimation and Sensor 
Bias Detection using Adaptive Linear Kalamn 
Filter”, International Review on Modelling and 
Simulation, 6(3); 1005-1010, 2013. 
[10] W. L. Luyben, Process Modeling Simulation 
and Control for Chemical Engineers. McGraw-Hill, 
2nd edition, 1989. 
[11] Doroshin, A. V., Neri, F., ”Open research 
issues on Nonlinear Dynamics, Dynamical Systems 
and Processes”. WSEAS Transactions on Systems, 
13, in press, 2014.   
[12] Ciufudean, C., Neri, F., “ Open research issues 
on Multi-Models for Complex Technological 
Systems”. WSEAS Transactions on Systems, 13, in 
press, 2014. 
[13] Neri, F., “Open research issues on 
Computational Techniques for Financial 
Applications”. WSEAS Transactions on Systems, 13, 
in press, 2014. 
[14]  Karthikeyan, P., Neri, F. “Open research issues 
on Deregulated Electricity Market: Investigation 
and Solution Methodologies”. WSEAS Transactions 
on Systems, 13, in press, 2014. 
[15] Panoiu, M., Neri, F., “ Open research issues on 
Modeling, Simulation and Optimization in Electrical 
Systems”. WSEAS Transactions on Systems, 13, in 
press, 2014. 
[16] Neri, F., “Open research issues on Advanced 
Control Methods: Theory and Application”. WSEAS 
Transactions on Systems, 13, in press, 2014. 
[17] Hájek, P., Neri, F., “An introduction to the 
special issue on computational techniques for 
trading systems, time series forecasting,  stock 
market modeling, financial assets modeling”, 
WSEAS Transactions on Business and Economics, 
10 (4), pp. 201-292, 2013. 

[18] Azzouzi, M., Neri, F., “An introduction to the 
special issue on advanced control of energy 
systems”, WSEAS Transactions on Power Systems, 
8 (3), p. 103, 2013. 
[19] Bojkovic, Z., Neri, F., “ An introduction to the 
special issue on advances on interactive multimedia 
systems”, WSEAS Transactions on Systems, 12 (7), 
pp. 337-338, 2013.  
[20] Pekař, L., Neri, F., “An introduction to the 
special issue on advanced control methods: Theory 
and application”, WSEAS Transactions on Systems, 
12 (6), pp. 301-303, 2013. 
[21] Guarnaccia, C., Neri, F. , “An introduction to 
the special issue on recent methods on physical 
polluting agents and environment modeling and 
simulation”, WSEAS Transactions on Systems, 12 
(2), pp. 53-54, 2013.  
[22]  Neri, F., “An introduction to the special issue 
on computational techniques for trading systems, 
time series forecasting, stock market modeling, and 
financial assets modeling”, WSEAS Transactions on 
Systems, 11 (12), pp. 659-660, 2012. 
[23] Muntean, M., Neri, F.,” Foreword to the special 
issue on collaborative systems”,WSEAS 
Transactions on Systems, 11 (11), p. 617, 2012. 
[24] Pekař, L., Neri, F., “An introduction to the 
special issue on time delay systems: Modelling, 
identification, stability, control and  
applications”,  WSEAS Transactions on Systems, 11 
(10), pp. 539-540, 2012.  
[25]  Volos, C., Neri, F., “An introduction to the 
special issue: Recent advances in defense systems: 
Applications, methodology, technology”, WSEAS 
Transactions on Systems, 11 (9), pp. 477-478, 
2012.  
[26] Doroshin, A.V., “Exact solutions in attitude 
dynamics of a magnetic dual-spin spacecraft and a 
generalization of the lagrange top”, 
WSEAS Transactions on Systems, 12(10), pp. 471-
482, 2013. 
[27] Doroshin, A.V., “ Synthesis of attitude motion 
of variable mass coaxial bodies”, WSEAS 
Transactions on Systems and Control, 3 (1), pp. 50-
61, 2008. 
 
 
 
 

WSEAS TRANSACTIONS on SYSTEMS M. Manimozhi, R. Saravanakumar

E-ISSN: 2224-2678 667 Volume 13, 2014




