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Abstract: -This paper proposes a new method for online identification of a nonlinear system using RKHS models.  
The RKHS model is a linear combination of kernel functions applied to the used training set observations. For 
large datasets, this kernel based to severs computational problems and makes identification techniques unsuitable 
to the online case.  For instance, in the KPCA scheme the Gram matrix order grows with the number of training 
observations and its eigen decomposition. The proposed method is based on Reduced Kernel Principal Component 
Analysis technique (RKPCA), to extract the principal component will be time consuming. 
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1    Introduction 
The last few years have registered the birth of a new 
modelling method of nonlinear systems using 
Reproducing Kernel Hilbert Space (RKHS) [1], [7], 
[15], [16], [17], [21], [22] called kernel methods. 
These methods have been applied to a large class of 
problems, such as face recognition [12], [24], time 
series prediction [4], identification of nonlinear 
system [11], [14], [23], …. The proposed method 
proceeds in two steps, first in an off line phase we 
select a set of kernels functions using the RKPCA 
technique,   then in the online phase a RKHS model is 
constructed and successively updated. 
An eigen decomposition of Gram matrix can simply 
become too time-consuming to extract the principal 
components and therefore the system parameter 
identification becomes a tough task. To overcome this 
burden recently a theoretical foundation for online 
learning algorithm with kernel method in reproducing 
kernel Hilbert spaces was proposed [8], [10]. When 
the system to be identified is time varying, the online 
kernel algorithm is more useful, because these 
algorithms can automatically track changes of system  

Behaviour with time-varying and time lagging 
characteristic.  
In this paper we propose a new method for online 
identification of a non linear system parameters 
modeled on Reproducing Kernel Hilbert Space 
(RKHS). This method uses the Reduced Kernel 
Principal Component Analysis (RKPCA) that selects 
the observations data to approach the Principal 
Components Analysis [11]. The selected observations 
are used to build an RKHS model with a reduced 
parameter number. The numbers of reduced 
observations are fixed and we actualise the 
parameters on minimizing a criterion. The proposed 
technique may be very helpful to design an adaptive 
control strategy of non linear systems.  
The paper is organized as follows. In section 2, we 
remind the Reproducing Kernel Hilbert Space 
(RKHS). In section 3, we remind the Reduced Kernel 
Principal Component Analysis RKPCA method. In 
section 4, we propose the new online RKPCA-RN 
method. The proposed algorithm has been tested to 
identify the nonlinear system and a Tennessee 
Eastman process. 
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2    Reproducing Kernel Hilbert Space  
Let dX ⊂ ℝ  an input space and ( )2 XL  the Hilbert 
space of square integrable functions defined on X . 
Let  2:k X → ℝ  be a continuous positive definite 
kernel. It is proved [18]  that it exists a sequence of an 
orthonormal eigen functions ( )1 2, , ..., lψ ψ ψ  in ( )2 XL   
and a sequence of corresponding real positive 
eigenvalues ( )1 2, , ..., lσ σ σ (where l  can be infinite) 
so that:  

( ) ( ) ( )
1

,     ;   ,  
l

j j j
j

k x t x t x t Xσ ψ ψ
=

= ∈∑                      (1)   

                                                   
Let ( )2 XH L⊂  be a Hilbert space associated to the 
kernel k  and defined by: 

( )
2

2

1 1

 /   
l l

j
i i

i j j

w
H f L X f w andϕ

σ= =

  = ∈ = < + ∞ 
  

∑ ∑            (2) 

Where i i iϕ σ ψ=  1, ...,i l= . The scalar product in the 

space H is given by: 

1 1 1

,   ,    
l l l

H i i j j H i i
i j i

f g w z w zϕ ϕ
= = =

< > = < > =∑ ∑ ∑                   (3)

   
                                                            
K is a Reproduisant Kernel for the space H  if 

 
*  x X∀ ∈ , the function  xk  such as 
 

:
( ) ( , )

x

x

k X

t k t k x t

→
=

ℝ

֏
                                            (4) 

                                                                      
is a function of the space H. 
 

* x X∀ ∈ ; f H∀ ∈  , ( )x H
f k f x=                     (5)  

                                                               
H is a Reproducing Kernel Hilbert Space (RKHS) for 
the kernel k . 
The relation  (5)  describes the property of 
reproducibility of the function for the space H  [1]. In 
other words the scalar product between each function 

Hf ∈ and the function xk  enables to determine ( )f x . 
  

Let’s define the application  Φ : 

 

( )
1

:
( )

( )

l

l

X IR

x

x x

x

ϕ

ϕ

Φ →

 
 Φ =  
 
 

֏ ⋮
                                         (6)                                                         

 
Where iϕ  are given in (2). 
 
The kernel trick [1] is so that: 
 

( )' ' ', ( ), ( ) ,k x x x x x x X= Φ Φ ∈                                    (7)     
 
Vapnik [18] proposes to adopt the (Structural Risk 
Minimisation: SRM) 
 

( ) ( )( )
1

21
,

N

i
i

i H
D f V y f f

N
x λ

=

= +∑                       (8) 

 
Based on the representer theorem [19] the optimal 
function optf  which minimizes ( )D f can be 
written as: 

( ) ( )
1

N

opt i i
i

f x = a k x ,x
=
∑                                                (9)                                                                        

Where ,  1,...,ia i N=  are the model parameters.  
 
                                                                     
3    RKPCA method  
Let a nonlinear system with an input u∈ℝ  and an output y∈ℝ  
from which we extract a set of observations { } 1, ..., N,i i iu y = . Let 
H an RKHS space with kernel k .  To build the input vector 

ix  of the RKHS model we use the NARX (Nonlinear auto 
regressive with eXogeneous input) structure as: 

{ }1,..., , ,..., ; ,
u y

T

i i i m i i m u yx u u y y m m− − −= ∈ℕ                (10)                    

The set of observations becomes { } 1, ...,,i i i N
D x y ==  

where  1u ym m

ix + +∈ℝ  and iy ∈ℝ . 
and the RKHS model of this system  based on (9) can 
be written as: 

( )
1

,
N

j i i j
i

y a k x x
=

=∑ɶ                                                  (11) 
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Let the application Φ  : 

( )

( )

( )

1

:

.

.        
.

l

l

X

x

x x

x

ϕ

ϕ

Φ →

 
 
 
 Φ =
 
 
  
 

ℝ

֏
                                    (12) 

Where iϕ  are given in (13). 
The Gram matrix  K  associated to the kernel k  is an 
N - dimensional square matrix, so that: 
 

( ), ,    for  ,  1,  ...,  i j i jk k x x i j N= =                            (13) 

The kernel trick [1] is so that: 
 

( ) ( ) ( )' ' ' ,     ,   ,  x x k x x x x X< Φ Φ > = ∈                 (14) 

We assume that the transformed data ( ){ } 1,  ...,  N
l

i i
x

=
Φ ∈ℝ  

are centered [11]. The empirical covariance matrix of 
the transformed data is symmetrical and l - 
dimensional. It is written as following: 

 

( ) ( )
1

1 ,    
M

T l l
i i

i

C x x C
Mφ φ

×

=

= Φ Φ ∈∑ ℝ                          (15) 

Let 'l  the number of the eigenvectors { } '1, ..., j j l
V

=
of the  

Cφ  matrix  that  corresponding  to  the non  zeros  
positive eigenvalues { } '1, ..., j j l

λ
=

. It is proved in [11] 

that the number 'l is less or equal to N .   
 

Due to the large size l  of Cφ ,   the calculus of    

{ }
1, ...,   j j l

V
= '

can be difficult. The KPCA method shows 

that these { }
1, ...,   j j l

V
= '

 are related to the eigenvectors 

{ }
1, ...,  j j l

β
= '

of the gram matrix K  according to [11]:  

( ) '
,

1
  ,   1,  ...,  

N

j j i i
i

V x j lβ
=

= Φ =∑                               (16) 

Where  ( ), 1, ... ,  Pj i j
β

=
 are the components of  { }

1,...,j j l
β

= '
 

associated to their nonzero eigenvalues 1 ...
l

µ µ> > '  

The principle of the KPCA method consists in 
organizing the eigenvectors  { }

1, ...,  j j l
β

= '
 in the 

decreasing order of their corresponding eigenvalues 
{ }

1, ...,  j j l
µ

= '
. The principal components are the P  first 

vectors { }
1, ..., Pj j

V
=

associated to the highest 

eigenvalues and are often sufficient to describe the 
structure of the data [11]. The number P  satisfies the 
Inertia Percentage criterion IPC given by: 
 

( )* arg 99P IPC= ≥                                                     (17) 

Where                         
 

 1

1

*100

P

i
i
M

i
i

IPC
µ

µ

=

=

=
∑

∑

                                                    (18) 

 
 The RKHS model provided by the KPCA method is 
[1]. 

( ),
1 1

,
P N

new q q i i new
q i

y w k x xβ
= =

=∑ ∑ɶ                            (19) 

Since the principal components are a linear 
combination of the transformed input data ( ){ } 1, ...,i i N

x
=

Φ  

[12], the Reduced KPCA approaches each vector 
{ }

1,...,j j P
V

=
 by a transformed input data 

( ) ( ){ } 1, ...,
b
j i i N

x x
=

Φ ∈ Φ  having a high projection value in 

the direction of  jV  [5]. 
 
The projection of the ( )ixΦ  on the jV   called 

( )i j
xΦ ∈ɶ ℝ  and can be written as: 

 

( ) ( ), ; 1, ...,i j ij
x V x j PΦ = Φ =ɶ                                    (20) 

According to (18) and (16), the relation (22) is 
written: 

( ) ( ),
1

, ; 1, ...,
N

i j m m ij
m

x k x x j Pβ
=

Φ = =∑ɶ                     (21) 
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To select the vectors ( ){ }b
ixΦ , we project all the 

( ){ } 1, ...,i i N
x

=
Φ vectors on each principal component 

{ }
1,...,j j P

V
=

 and we retained { } 1, ...,
b
j i i N

x x
=

∈  that 

satisfies 
 

    
( ) ( )

( )

1, ...,
       

          

b
j i jj i N

b
j i j

x Max x

and

x ζ

=

≠

 Φ = Φ



 Φ <

ɶ

                               (22) 

Where  ζ is a given threshold. 

Once the { }
1, ...,

b
j j P

x
=

 corresponding to the P  principal 

component { } 1,...,j j P
V

=
 are determined, we transform 

the vector ( ) lxΦ ∈ℝ  to the ( )ˆ PxΦ ∈ℝ  vector that 

belongs to the space generated by ( ){ }
1,...,

b
j

j P
x

=
Φ  and 

the proposed reduced model is:   
 

( )
1

ˆˆ
P

new j new j
j

y a x
=

= Φ∑ɶ                                               (23)    

Where :  

( ) ( ) ( )ˆ , ; 1, ...,b
new j newj

x x x j PΦ = Φ Φ =                (24)                    

And according to the kernel trick (7), the model (23) 
is: 

( )
1

ˆ
new

P

j j new
j

y a k x
=

=∑ɶ                                               (25)      

Where:  

( ) ( ),       1,  ...,  b
j jk x k x x for j P= =                            (26) 

The model (23) is less complicate than that provided 
by the KPCA. The identification problem can be 
formulated as a minimization of the regularized least 
square written as:                    

( ) ( )
2

2

1 1

1ˆ ˆ ˆ
2 2

N P

r i j j i
i j

J a y a k x a
ρ

= =

 
= − + 

 
∑ ∑                    (27)      

Where: ρ  is a regularization parameter and 

( )1ˆ ˆ ˆ,  ... ,  T

Pa a a=  is the parameter estimate vector 
The solution of the problem (27) is: 
  

( ) 1*ˆ Pa F I Gρ −= +                                               (28) 

With : 
 

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1

1

1 1 1
1 1

1
1 1

  

and

N

i i
i

P

N

b i i
i

N N

i i i b i
i i

P P

N N

b i i b i b i
i i

k x y

G

k x y

k x k x k x k x

F

k x k x k x k x

=

=

= =
×

= =

 
 
 
 = ∈
 
 
 
 

 
 
 
 = ∈
 
 
 
 

∑

∑

∑ ∑

∑ ∑

⋮ ℝ

⋯

⋮ ℝ

⋯

  

And  P P
PI ×∈ℝ  is the P  identity matrix  

The RKPCA algorithm is summarised by the five 
following steps: 
 

1. Determine the nonzero eigenvalues { }
1,...,j j l

µ
= '

  

and the eigenvectors  { }
1,...,j j l

β
= '

 of Gram 

matrix K . 
 
2. Order the { }

1,...,j j l
β

= '
 on the decreasing way 

with respect to the corresponding eigenvalues. 
 
3. For the P  retained principal components, 

choose the ( ){ }
1, ...,

b
j

j P
x

=
 that satisfy (22). 

 
4. Solving (29) to determine *ˆ Pa ∈ℝ  
 
5. The reduced RKHS model is given by (2) 
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4    Online RKPCA-RN  method  

Prior to the online identification, we start with offline 

identification  on a set of observations 
{ }1 1( , ), , ( , )n nD x y x y= … .  

In this offline phase we  apply the  RKPCA technique 

to reduce the number of the parameters of the RKHS 

model. The model provided by  the  RKPCA is given 

by: 

( ) ( )
1

,
P

b
j j

j

y x a k x x
=

=∑ɶ                                                 (29)                                                                               

The on line identification phase begins from the 

instant 1n+ .  At  this instant a new couple of 
observations is available { }1 1,n nx y+ + .  

From the equation (29), we calculate the output 

RKHS model given by: 
 

( )1 1
1

,
P

b
n j j n

j

y a k x x+ +
=

=∑ɶ                                        (30)                                                                                                                    

 
The error between the estimated output and the 
measured on actual one is: 

( )1 1 1n n ne y y+ + += −ɶ                                                  (31) 

If  
 1 1ne ε+ <                                                                 (32)                                                                       

 where 1ε  is a given threshold, we can say the model 

approaches sufficiently the system behavior.  If  not,  
we update the parameters { }ja  by minimizing the 

criterion , 1r nJ +  

( ) ( )

( )

2

, 1 1
1 1

2
2

1 1
1

1 ,
2

1 ,
2 2

P P
b b

r n n i j j n
i j

P
b

n j j n n
j

J A y a k x x

y a k x x A
ρ

+ +
= =

+ +
=

 
= − + 

 

 
− + 

 

∑ ∑

∑

                 (33)          

Where   

1

1
P

n

P

a

A IR

a
+

 
 = ∈ 
 
 

⋮  

We can write  

( ) ( )2 2
, 1 1 ( 1) 1 1 1

1
2r n n n P n n nJ A K A Y Aρ+ + + + + += − +  

Where 

 
( ) ( )

( ) ( )
( ) ( )

1 1 1

( 1)
( 1)

1

1 1 1

, . . . ,

. . . . .

. . . . .

, . . . ,

, . . . ,

b b
P

P P
n P

b b
P P P

b b
n P n

k x x k x x

K IR

k x x k x x

k x x k x x

+ ×
+

+ +

 
 
 
 

= ∈ 
 
 
 
 

    and   

1

1
1

1

b

P
n b

P

n

y

Y IR
y

y

+
+

+

 
 
 = ∈ 
 
 
 

⋮                                            (34)      

The criterion (33) can be written  as the following : 
( )

( )
( ) ( )

1

1

1

, 1 1

2 2
( 1) 1 1 1

( 1) 1 1 ( 1) 1 1 1 1

min

1min
2

1min
2 2

P
n

P
n

P
n

r n n
A IR

n P n n n
A IR

T T
n P n n n P n n n n

A IR

J A

K A Y A

K A Y K A Y A A

ρ

ρ

+

+

+

+ +
∈

+ + + +
∈

+ + + + + + + +
∈

=

− +

 = − − + 
 

                             

                                                                                (35)                     
The minimum of , 1r nJ +  is reached for : 

, 1

1

0r n

n

J

A
+

+

∂
=

∂
  

( )( )

, 1

1

1 ( 1) 1 ( 1) 1 1 1 1

1 ( 1) ( 1) 1 1 ( 1) 1
1

1 ( 1) 1 1 1 1 1

1 .
2 2

1 . . .
2

. .

r n

n

T T T T
n n P n n P n n n n

T T T T
n n P n P n n n P n

n

T T T
n n P n n n n n

J

A

A K Y K A Y A A
A

A K K A A K Y
A

Y K A Y Y A A

ρ

ρ

+

+

+ + + + + + + +

+ + + + + + +
+

+ + + + + + +

∂
=

∂

∂  − − + ∂  

∂
= −∂

− − + 

(36)                                                                         

As  1 ( 1) 1 1 ( 1) 1.  et . .T T
n n P n n n P nA K Y Y K A+ + + + + +  are scalar and 

transposed, then 
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, 1

1 ( 1) ( 1) 1
1 1

1 ( 1) 1 1 1 1 1

.

2. . .

r n T T
n n P n P n

n n

T T T
n n P n n n n n

J
A K K A

A A

Y K A Y Y A Aρ

+
+ + + +

+ +

+ + + + + + +

∂ ∂
= ∂ ∂

− − + 

              (37)                                                                                              

Therefore 

( )

, 1
( 1) ( 1) 1 ( 1) 1 1

1

( 1) ( 1) 1 ( 1) 1       

r n T T
n P n P n n P n n

n

T T
n P n P P n n P n

J
K K A K Y A

A

K K I A K Y

ρ

ρ

+
+ + + + + +

+

+ + + + +

∂
= − +

∂

= + −
 

Then 
( )-1

1 ( 1) ( 1) ( 1) 1    T T
n n P n P P n P nA K K I K Yρ+ + + + += +                 (38) 

                                                               
To every new observation, we apdate the parameters 
of the model (30) using the relation (38).    
 
Online  RKPCA- NR  algorithm 
Offline phase: 
According to (17) and (18) we determine the P  
retained principal components resulting from the 
processing of an N  measurement set.  
1-  Then we determine the { }

1, ...,

b
j j P

I x
=

=  set according 

to (22), used during the online phase. 

2-  Write RKHS  model obtained by RKPCA 
 

( )
1

,
P

b
n j j n

j

y a k x x
=

=∑ɶ  

 
Online phase: 

For a new couple of observation { }1 1,n nx y+ +  

1 -   Calculate the output of the model RKHS  

( )1 1
1

,
P

b
n j j n

j

y a k x x+ +
=

=∑ɶ  

2- Calculate the value of  1ne + . 
3- If the condition (32) is satisfied⇒  we comes back 
to   1 for a new observation { }2 2,n nx y+ +  

Otherwise: 
- Estimate the parameters  { } 1, ...,ja j P=  using 

the relation (38). 
 
 

5    Simulations 
The proposed method has been tested for modelling a 
nonlinear system and a Tennessee Eastman process. 

 
            5. 1 System nonlinear 

We consider the nonlinear system  
 

( )2( ) log ( 1) ( 2) 0.6 ( 2) 0.4 ( 1) 1 ( )y i u i u i y i y i e i= − − − + − + − + +

                   
(39)                                                                                                            

Where  ( )e i  is a gaussian noise.  The input vector of 
RKHS model has the structure 
 

[ ]( ) ( 1), ( 2), ( 1) Tx i u i u i y i= − − −

  
( )u i  is the process input chosen as gaussian signal.  

To build the RKHS model we use the ERBF Kernel 
(Exponential Radial Basis Function) 

              

'

'

( , ) exp
x x

k x x
µ

 
− 

 = −
 
 
 

                                      (40)                                                        

With  5µ =  and  is the euclidean norm. The term 

of regularisation 610  −λ =  
The chosen threshold  is: 1 0.04ε =  
We performed the online identification using the 
online RKPCA-RN algorithm developed in section 4.  

The number of observations in identification offline 

phase is 150 and the number of principal component 

analysis obtained by RKPCA method is equal to 5. 

The number of observations in online identification 

phase is 300. 

The minimal normalized mean square error between 

real output and estimated one (NMSE) is defined. 

( )

( )

2

1

2

1

N

i i
i

N

i
i

y y
NMSE

y

=

=

−
=
∑

∑

ɶ

                            (41)                                                                                         

Where  iyɶ  and  iy   design the model RKHS output 

and the system output respectively. 
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Figure 1: System and model outputs during the online 

 Identification 
 
In Figure 1, we represent the online RKPCA-RN 
output as well as the system output. We remark that 
the model output is in concordance with the system 
output, indeed the Normalized mean Square Error is 
equal to 0,002 . This shows the good performances of 
the proposed online identification method. 

To evaluate the performance of the proposed method 

we plot in Figure 2, the evolution of the NMSE. 
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          Figure 2: Evolution of NMSE 

 
 

            5. 2 Tennessee Process 
To illustrate the efficiency of the proposed model we 
proceed to its validation on Tennessee Eastman 
process.     
         

 
            5. 2. 1 Process description 

The Tennessee Eastman (TE) process [9] is a highly 
non linear, non-minimum phase, and open-loop 
unstable chemical process consisting of a 
reactor/separator/recycle arrangement. This process 
produces two products G and H from four reactants 
A, C, D and E. Also a byproduct F is present in the 
process. The simultaneous, irreversible and 
exothermic gas-liquid reactions are: 
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The process has 12 valves available for manipulation 
and 41 measurements available for monitoring or 
control. The detailed description of these variables, 
process disturbances and base case operating 
conditions, is given in [3]. The process flowsheet is 
presented in Figure 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Tennessee Process 
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The modelling and the identification of the Tennessee 
Eastman process represent a challenge for the control 
community. It has been the subject of several studies 
[2] but most of them have tackled the process control 
without giving importance to modeling step. [13] 
have used input/ output process data to identify an 
autoregressive (AR) model parameters. 

In our paper we intend to identify the parameters of 
the corresponding   RKPCA- RN  method of this 
process using the same technique of [20] for 
generating the data. 
 
 
 5. 2. 2 Data extraction 
The input/output data used to built the model were 
generated from the model of Tennessee implemented 
for the program Matlab © in the toolbox Simulink [9]. 
The process has 12 inputs and 41 outputs. According 
to the work of the process was divided into two fields. 
The first with a PID controller to maintain the process 
stability. The second field is devoted to the 
identification where only four inputs (reactor 
pressure, reactor level, D feed flow and E feed flow) 
are tuned and the others are maintained as suggested 
by mode 3 of Simulink model. Assuming the reactor 
outputs, we select the separator temperature product. 
 
  
 5. 2. 3 Knowledge model of  Tennessee Process 
In this section, we consider for the knowledge model 
of the Tennessee process that suggested by  [9]  as 
shown by Figure 4. 
 
 
 
 
 

 
 
 
 
 
 
     Figure 4: Sheme input / output of Tennessee process 
 
* Output equations: 
The first output, separator temperature is given by: 
 

( ), , , ,S CW S out CW S inT T T= −                                           (42) 
 
Where: 

, ,CW S outT  Cooling water outlet temperature in the 
separator 

, ,inCW ST Cooling water inlet temperature in the 
separator 
 
The temperature ST is linked to the energy 

SQ removed for the separator by the differential 
equation: 
 

( )
.

, , , , , ,CW S p CW CW S out CW S inSQ m c T T= −                            (43) 

Where: 
 

,p CWC  Specific heat capacity cooling water, kJ kg-1 K-1 

,CW Sm Cooling water flow rate separator, kg h-1 
                    
For the second output, the reactor liquid level is given 
by: 
  

,=  ; , , , ,i r
Lr

i

N
V i D E F G H

ρ
=∑                                  (44) 

 
Where: iρ  Molar density of component i, mol m-3 , 

,i rN  is the total molar holdup of the component i in 
the reactor. 

 

5. 2. 4 Modelling in RKHS 
To generate the data from simulink, the simulation 
step size was 0.0005 s and the data were collected 
every  0.02 s. 
To build the RKHS model we use the Kernel RBF 
(Radial Basis Function) 
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Where 120µ = , and  is the euclidean norm. The 

term of regularisation 610  −λ =  
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The chosen threshold  are:  
1 0.01ε =  

The number of observations in phase of identification 

offline is 300 and the number of principal component 

analysis obtained by RKPCA method is equal to 10. 

The number of observations in online identification 

phase is 5000. 

 
In Figure 5, we represent the online RKPCA-RN 
output as well as the Tennessee Eastman output. We 
remark that the model output is in concordance with 
the system output, indeed the Normalized mean 
Square Error is equal to 65,6310− . This shows the 
good performances of the proposed online 
identification method. 
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               Figure 5: Validation phase 

To evaluate the performance of the proposed method 

we plot in Figure 6, the evolution of the NMSE. 
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                Figure 6: Evolution of NMSE 
 
 
 
6    Conclusion 
In this paper, we have proposed an online reduced 
kernel principal component analysis method for 
nonlinear system parameter identification. Through 
several experiments, we showed the accuracy and 
good scaling properties of the proposed method. This 
algorithm has been tested for identifying a nonlinear 
system and a Tennessee Eastman process   and the 
results were satisfactying. The proposed technique 
may be very helpful to design an adaptive control 
strategy of non linear systems. 
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