
Integration of Object Recognition, Color Classification, and QR

Decoding for the Purposes of an Intelligent Mobile Robot

RADOSLAV VASILEV, NAYDEN CHIVAROV, VALENTINA IVANOVA

Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences,

1000 Sofia,
BULGARIA

Abstract: - The present work is part of the development process of a distributed platform for an intelligent
mobile robot, with the proposed vision module intended for future integration into the overall architecture.
Thanks to its built-in simulation testing capabilities, the functionality of the module can be validated even in the
absence of a fully constructed physical robot. The vision module is part of the platform's intelligent core, which
conceptually and functionally unifies algorithms, modules, and interfaces that collectively enable
environmental perception, information processing, and decision-making by the robot. The vision module
integrates algorithms for object recognition, color classification, and QR code decoding, executing them in a
logical sequence to ensure efficient processing of visual information. Furthermore, it serves as an entry point to
a broader logical model within the intelligent core. The paper presents the role of the vision module in the
platform, its connection with other modules, and the conceptual guidelines for future development.

Key-Words: - Object recognition, OpenCV, Color classification, QR decoding, Intelligent mobile robots,

Dynamic environment, Perceptual anchoring, Artificial intelligence.

Received: April 23, 2024. Revised: February 6, 2025. Accepted: March 9, 2025. Published: May 16, 2025.

1 Introduction
Intelligent mobile robots (IMRs) are agents
physically embedded in the real environment
through sensors and actuators that enable them to
perceive, analyze, and interact with the surrounding
world. The behavior of IMR is inherently linked to
their environment and assigned tasks, which
necessitates the development of flexible software-
hardware architectures that integrate perception,
logical processing, and control. With the growing
demand for IMR in areas such as logistics, industry,
and service operations, there is an increasing need
for platforms capable of processing sensor data in
real time and making autonomous decisions in
dynamic environments, [1].

The present work is part of the process of
developing a distributed platform for IMR. The
platform includes distributed modules for
perception, logical processing, and control, which
are tested step by step in both simulated and real
environments. One of the core components of the
platform is the vision module, which integrates
algorithms for object recognition, color
classification, and QR code decoding. The module
processes images from real cameras and simulated
scenes, implementing a sequential logic for
analyzing visual information.

The vision module is connected to a broader
logical model, in which the results of perception
will be used for decision-making based on context
and semantic dependencies, through the process of
perceptual anchoring, [2]. Therefore, it is part of the
platform’s intelligent core – a functional integration
of modules and algorithms that ensures adaptability
and autonomy in the behavior of the IMR.

At this stage, the functionality of the vision
module is validated through tests with simulated and
real images, allowing early evaluation without a
fully completed physical robot. The focus is on
building an integrated and extensible platform that
can be upgraded with additional algorithms and
sensors.

2 Architecture of the Distributed

 Platform
Different types of distributed platforms for IMR
have been a subject of interest and research for
years, [3], [4]. The architecture of our distributed
platform for IMR represents the interaction between
the robotic platform and the computer station
(Figure 1), with emphasis placed on the integration

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 66 Volume 21, 2025

of modules responsible for perception, logical
processing, and decision-making.

Fig. 1: Distributed platform for IMR

The computer station implements the vision
module, which serves as the foundation for building
the intelligent core of the platform. The purpose of
the intelligent core is to integrate three main
modules, each of which performs a specific role in
the processes of perception, understanding, and
decision-making:
 Vision module – Responsible for the perception

and initial processing of visual (perceptual)
information. This module extracts relevant
features from images captured by a camera or
other visual sources. It includes functionalities
such as object recognition, color classification,
and decoding of visual markers (QR codes).
Additionally, it provides spatial localization of
the recognized objects using a depth (D) camera.
The results from the vision module serve as input
data for the next module, which is responsible
for structuring the information.

 Structuring module – Organizes and transforms
the data received from the vision module (or
other sensors) into structured representations.
This is where the necessary structures and
classes are built to logically represent the
perceptual information. Static links between
objects are created, and dependencies,
hierarchies, and spatial relationships are defined.
The objects in the system will be instances of
these structured descriptions. The goal is to
prepare the information for deeper conceptual
interpretation.

 Conceptualization module – Performs semantic
interpretation of the structured information. By
using logical rules, symbolic representations, and
knowledge bases, this module creates an internal
model of the environment that can be used for
reasoning, planning, and decision-making. This

is where the transition occurs from “what is

seen” to “what it means” and “what should be

done”.

The development of the intelligent core with

these three main modules will enable the IMR to
perceive the world not only as a set of pixels or
objects but as a logically connected and
understandable environment in which informed and
autonomous decisions can be made.

The robotic side of the platform includes an
embedded controller (Raspberry Pi) connected to an
RGB-D camera and low-level software that
manages the sensors and actuators of the IMR. This
part of the architecture is responsible for collecting
sensor data, performing initial processing, and
executing commands received via Wi-Fi from the
controlling computer station.

Figure 2 shows the actual prototype of the IMR
used in the current phase of development and
testing.

Fig. 2: Prototype of the IMR

3 Vision Module

3.1 Overview
The vision module, which is part of the intelligent
core, integrates the following algorithms (Figure 3):
 Object recognition: Identifying and localizing

different types of objects in the input images.
 Color classification: Analyzing the colors of the

recognized objects in order to determine their
color within one of six possible color categories.

 QR decoding: Extracting information from QR
codes located within the recognized objects.

 Depth measuring: Calculating the distance to
recognized objects using data from a depth (D)
camera.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 67 Volume 21, 2025

Fig. 3: Intelligent core block with vision module

For the development of the algorithms in the
vision module, system libraries for working shared
memory and the OpenCV library are used,
providing a comprehensive solution for image
processing and visualization [5], [6].

Figure 4 (Appendix) shows the block diagram
of the program within the vision module. The
components shown in the block diagram have the
following meaning:
 Initialization – Creating variables, image display

windows, a trackbar (GUI slider) window for
setting RGB thresholds (used for filtering the
input image), and initializing the camera.

 Source selection menu – At this stage, for
experimental purposes, the program provides an
interactive menu for selecting the image source
(Figure 5).

Fig. 5: Program menu

Table 1 describes the different selection options.

Table 1. Menu with selection options

№ Menu option Description

1 Load from

Camera
Real-time image acquisition from a USB
camera.

2
Load from

Shared

Memory

Loading images from shared RAM
memory used by other programs or
cameras that write data into memory.

3 Load from

Picture
Opening an image file from the local
disk.

4 Load from

Clipboard

Loading an image saved in the system
clipboard (e.g., from an external
application).

5 Exit Exit the program.

 Cyclic image processing – The cycle ensures
continuous updating of the images. Each image
undergoes initial processing. This initial
processing is performed using a trackbar, which
allows the user to set lower and upper thresholds
for the pixel values of the colors, thereby
reducing noise in the image (Figure 6).

Fig. 6: Trackbar for setting pixel values of colors

After the initial image processing, the images are
passed to an object recognition algorithm,
followed by a color classification algorithm, and
finally QR decoding.

 Program termination – The program ends its
execution if the user selects the exit option from
the menu or presses the “e” or “E” key on the
keyboard.

At this stage, the main goal of the development

is to create a functional and extensible foundation
upon which the intelligent core of the platform can
be built. The integration of object recognition, color
classification, and QR decoding algorithms follows
a logically and functionally justified sequence,
providing a stable basis for the future development
of the platform.

3.2 Object Recognition
Object recognition is performed on predefined
classes. For the purposes of the experiments, simple
2D object classes (shapes) with potential
applications in robotics have been selected. The
recognized objects include: circles, triangles,
rectangles, pentagons, and hexagons. The algorithm
is robust against rotation and scaling, making it
suitable for real-world conditions with dynamically
positioned objects.

At this stage, storing information about the
objects is not supported. During recognition, the
system determines the class of a given object and its
characteristics while it is present in the currently
processed frames. Each detected object is classified,
visualized, and labelled with an appropriate tag and
unique number.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 68 Volume 21, 2025

In summary, the recognition algorithm goes through
the following steps:
1. Selecting the image source – The image can be

loaded from a USB camera, file, system
clipboard, or shared memory (Table 1).

2. Threshold-based color segmentation – The color
filtering is performed using the inRange()
function based on the RGB threshold values set
through the trackbar (Figure 6), creating a binary
image. Pixels whose values fall within the
specified color boundaries are marked as white
(value 255), while all other pixels are marked as
black (value 0). This isolates the color of the
target objects in the image, thereby separating
them from other elements. The HSV model is
more resistant to lighting changes and is often
the preferred model for tasks such as object
recognition and color segmentation, as
demonstrated in studies, [7], [8]. At this stage, in
our implementation, we use the RGB model for
its intuitiveness, easy processing, and good
visualization.

3. Contour detection – Closed contours (regions)
are extracted from the binary image using the
findContours() function.

4. Shape approximation – Each contour is
simplified using the approxPolyDP() function to
determine the number of vertices and the
corresponding object class.

5. Object recognition by shape – After
approximating the contours, an analysis of the
number of vertices in each contour is performed.
Based on this number, the geometric class of the
object is determined: 3 vertices – triangle; 4
vertices – rectangle; 5 vertices – pentagon; 6
vertices – hexagon; more vertices or contours
approaching a circle – circle.

The final result of these steps is the recognition

and classification of objects by shape, which are
visualized in a window with corresponding labels
describing their geometric class and identifier.

The recognition algorithm has specific features,
which are expressed in the fact that, at this stage of
development, no specific algorithms for
compensation during changes in lighting and colors
are used, limiting its robustness in dynamic
conditions. The recognition is sensitive to:
 Image quality – affected by noise, low

resolution, poor focus, unstable connection, or
poor lighting;

 Object placement – shading, reflections,
distance, and viewpoint affect visibility and
scale;

 Determining color thresholds – performed
manually using a trackbar, which creates
difficulties when changes occur in the external
environment, a characteristic of a real-world
IMR environment.

Although various approaches exist for

automatically adapting to changes in lighting and
colors, such as locally calculating threshold values
or using optimization algorithms for segmentation,
these are not implemented in the current version,
[9], [10]. Such compensatory algorithms are planned
for the next stage of development of the vision
module, when the focus will shift toward improving
robustness in dynamic environments.

After the recognition algorithm, each object is
passed for further color classification.

3.3 Color Classification
The color classification model is built in Matlab and
is based on a generalized mathematical model for
linear decision filters (linear classification), [11].
Based on this model, an algorithm in C++ has been
developed, which is included in the vision module
and classifies the recognized objects into one of the
following 6 colors within an acceptable time: Red,

Green, Blue, Magenta, Cyan, Yellow.

The construction of the model in Matlab follows
these steps:
1. Building a 3D color model in the RGB space;
2. Converting the 3D color space to 2D;
3. Creating lines for 2D color space separation;
4. Testing the model.

Implementation of the steps:
1. Building a 3D color model in the RGB space.
The RGB color space is described in [12]. To build
the 3D model, this space is discretized along the
three axes in the range [0, 1] with a step size of
0.02, resulting in 51 values per axis (50 intervals)
and a total of 132,651 points. The choice of 51
values was made to ensure the algorithm's
performance-higher values significantly slow down
execution without leading to substantial
improvements in results. A triple loop was used to
implement the discretization. The resulting points
form a 3D color matrix that covers all possible
combinations of RGB values at the selected
resolution. The created model is stored in a table
and serves as the basis for color classification.
2. Converting the 3D color space to 2D.
The next step is the normalization of the RGB
values, which allows the colors to be represented in

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 69 Volume 21, 2025

a two-dimensional space. The normalized values are
calculated using the following formulas:

r = R / (R + G + B), g = G / (R + G + B),
b = 1 – (r + g),

where the coordinates r and g define the position of
each color in the two-dimensional plane.
Figure 7 shows the two-dimensional rgb space,
which is used for visualization and classification of
colors.

Fig. 7: Two-dimensional rgb space

For more efficient processing, the values of r

and g are scaled from [0, 1] to [1, 100], and the
resulting integer values are used as indices in a two-
dimensional table (array). This enables fast
visualization and classification of colors. The first 6
indices obtained from the formulas are shown in
Figure 8.

The black pixels in the figure are the result of
rounding the real values of the r and g coordinates
(in the range [0, 1]) to integer values for faster
indexing in the two-dimensional space. This does
not affect the classification algorithm, as the graph
in Figure 7 is for demonstration purposes and is not
directly used in the calculations. The classification
itself is based on a generalized model that uses lines
to separate the color regions. In this way, even
colors falling within the black pixels of the
visualization are classified correctly.

Fig. 8: Indexing of r and g coordinates

3. Creating lines for 2D color space separation.

As seen in Figure 9, several primary colors stand out
in the two-dimensional space: Red, Green, and Blue.
There are also three more colors that are well-
defined in the graph: Magenta, Cyan, and Yellow.
Since these colors are clearly defined, the
classification model has been built for these 6
colors. To achieve color classification of the objects,
lines have been drawn to separate these color
regions.

Fig. 9: Lines in two-dimensional rgb space

The lines are mathematically described by linear
equations. Although in the figure they are shown as
finite segments, in the mathematical model they are
considered to be infinite in both directions.

The coefficients for the 6 lines of the model have
the following values:

Dbr1 = [-6 -34 1360] % first green line

Dbr2 = [-26 -34 2040] % second green line

Dbg1 = [34 6 -1360] % first red line

Dbg2 = [34 26 -2040] % second red line

Drg1 = [-26 6 680] % first blue line

Drg2 = [-6 26 -680] % second blue line

The signs (+) and (-) placed next to the lines
determine the values of Zbr1, Zbr2, Zbg1, Zbg2,
Zrg1, Zrg2, which are calculated in the procedure
shown below.

Color classification procedure:
 The average color value for the recognized

object in the 3D RGB space is determined, with
values in the range [0, 255].

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 70 Volume 21, 2025

 The obtained RGB color is converted into the 2D
rgb space in the range [0, 1]. The values for rg
are used to determine the following two values:
x_green = 1 + g * 99;

y_red = 1 + r * 99;

where: x_green and y_red are the color values of
the recognized object in the two-dimensional
space.

 The obtained values for x_green and y_red are
substituted into the equations of Zbr1, Zbr2,
Zbg1, Zbg2, Zrg1, Zrg2 shown below, and only
the resulting sign is considered.
W = [x_green; y_red; 1];

Zbr1 = Dbr1 * W;

Zbr2 = Dbr2 * W;

Zbg1 = Dbg1 * W;

Zbg2 = Dbg2 * W;

Zrg1 = Drg1 * W;

Zrg2 = Drg2 * W;

IF (Zbr1 > 0 && Zbg1 < 0) disp('blue');

IF (Zbg1 >= 0 && Zbg2 <= 0) disp('cyan');

IF (Zbg2 > 0 && Zrg2 < 0) disp('green');

IF (Zrg2 >= 0 && Zrg1 <= 0) disp('yellow');

IF (Zrg1 > 0 && Zbr2 < 0) disp('red');

IF (Zbr2 >= 0 && Zbr1 <= 0) disp('magenta');

In the vision module, color classification of the

recognized object is performed in the
colorClassification() function. This function
implements the program code of the model from
Matlab, which classifies the object's color.

4. Testing the model.
The goal of testing the Matlab model is to verify
whether the algorithm correctly classifies the
specified colors. For this purpose, manually
averaged RGB component values of objects with a
known color are entered.

Parameters and results from two of the many tests
conducted:

Test 1:
Object color (RGB): R = 255, G = 0, B = 0

Command in Matlab: >> color_classification_objects

Classification result: red

Color location in the 2D color space: а green star

Test 2:
Object color (RGB): R = 255, G = 255, B = 0

Command in Matlab: >> color_classification_objects

Classification result: yellow

Color location in the 2D color space: а grey star

Figure 10 shows the position of each object's
color in the two-dimensional color space as a result
of the classification of a red and a yellow object.

Fig. 10: Classification results for a red and a yellow
object in the two-dimensional color space

The classified colors and their placement in the

two-dimensional color space match the
expectations, which confirms the validity of the
model.

3.4 QR Decoding
QR codes (Quick Response codes) are two-
dimensional matrix barcodes designed to store
enough data for practical applications, while
enabling fast scanning, omnidirectional readability,
and error correction, [13]. In intelligent robotics,
they are often used for object identification,
navigation, and localization, [14], [15], [16], [17].

The vision module has implemented
functionality for recognizing and decoding QR
codes, taking into account specific features aimed at
enhancing the reliability and robustness of the
decoding process.
Working with QR codes involves the following
main steps:
1. Activating the decoding – The functionality is

activated by selecting from the program interface
(Figure 5).

2. Detecting the code – The program locates the QR
code within the input image, limited to the
recognized object.

3. Extracting information – If a valid code is found,
it is decoded and the result is displayed as a text
value.

In the current implementation, the QR code

must be located within the already recognized
object. This condition serves as a deliberate
protection against noise, visual artifacts, or the
presence of codes that do not logically relate to the
scene. This ensures that the decoded QR codes have
contextual meaning and are associated with real
objects identified by the system.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 71 Volume 21, 2025

Extended implementation variants, based on
fiducial markers such as AprilTag, are not included
at this stage but are planned for future development
stages of the architecture, [18], [19], [20].

Within the vision module, the QR decoding
functionality is implemented through the
QRDetector() function, which takes an image of a
recognized object and outputs the results to the
console.

QRDetector uses the QRCodeDetector class from
the objdetect.hpp header file of OpenCV. The
method detectAndDecode() performs the following
actions:
 Detecting the QR code in the image (if present);
 Decoding the content;
 Returning the following information:

o data – the decoded text;
o bbox – coordinates of the detected bounding

box;
o rectifiedImage – the rectified (restored) image

of the QR code, which can easily be
visualized if needed.

The results of the decoding (the text content,

coordinates, and the restored image) will be stored
in the structural module of the intelligent core
(Figure 1) and will be accessible at a higher level of
information processing.

4 Testing the Vision Module

4.1 Functionality
During testing, the following options were selected
from the program's user menu (Figure 5):
 Option 2: Load from Shared Memory – For this

experiment, the ESP32-CAM camera was used.
The pentagon model was created in Blender and
displayed on the monitor screen. The camera
captures the screen and saves the images in the
shared memory area, from where the vision
module loads them. An additional program was
developed to copy the obtained images into the
shared memory. This program is part of the
supporting modules block (Figure 1).

 Option 4: Load from Clipboard – The pentagon
model created in Blender is copied directly to the
system clipboard. The vision module loads the
image directly from this area.

The results of the program execution are shown

in Figure 11 (Appendix). In the left column, the
result of analyzing an image obtained from the

ESP32-CAM camera is displayed. The object is
recognized as a pentagon (PEN – pentagon), the
color is classified as blue, and the decoded QR code
contains the text “Chocolate products”.

In the right column, the result of analyzing the
same pentagon is presented, but this time the image
is loaded from the system clipboard. It is evident
that the result of the second analysis is more
accurate, as there is no noise in the image and the
color is correctly recognized.

In the center of the object, the label PEN 1 is
visible, which stands for pentagon, and the number
1 is the identification number of the object,
automatically assigned by the program. In the top-
left corner, the defined color “cyan” is displayed. In
the bottom-left corner, the values for the color in rg
(Red-Green) are shown in a two-dimensional color
scheme. At the bottom of the figure, information
about the object and the QR decoding result is
displayed.

For IMR, the use of real-time cameras is of
interest, but due to the presence of noise in the
images, the research with them is complicated. This
necessitates the application of additional approaches
for investigation and testing. For this reason, the
program provides options for loading images from
various sources. Based on the results obtained from
the experiments, cameras that are most suitable for
the IMR being used can be selected. For the
prototype we are developing, we are using the
Orbbec Petrel A RGB-D camera, [21].

Figure 12 (Appendix) illustrates additional
examples with geometric shapes for which all stages
of processing – object recognition, color
classification, and QR code decoding – have been
successfully implemented.

4.2 Practical Application
The architecture of the intelligent core is shown in
Figure 13 (Appendix).

The vision module has been successfully
integrated with the RGB-D camera, [22]. In the
same source, the definition of "program model" is
used, reflecting the initial concept of the software
architecture – without a clear distinction between
individual modules within the intelligent core.
According to the new architectural concept,
functionality is divided into separate modules that
interact dynamically. Information from the RGB
sensor of the camera is used for object recognition
in the environment and for determining their
characteristics, while the D-sensor is used to
measure the distance to objects and calculate their
spatial positioning relative to the camera. The
obtained data can be used for controlling the IMR

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 72 Volume 21, 2025

based on the objects' placement, avoiding obstacles,
optimizing routes, and performing other navigation
tasks.

The recognition of two-dimensional objects and QR
codes, which is one of the capabilities of the vision
module, finds application in:
 Navigation and routing – using 2D markers for

guiding along pre-defined paths;
 Positioning – using shapes or QR codes for

precise positioning (e.g., in warehouse
environments);

 Light signals – through color recognition in
industrial environments;

 Object sorting – using QR codes and color
classification in logistics.

 Visual inspection – using 2D shapes and
geometric features for defect detection and
classification in technical objects, [23].

The module's ability to process images from

both real cameras and simulated 2D/3D scenes
allows for preliminary testing, adaptation, and
verification of algorithms in various simulated
scenarios. This advantage is particularly valuable
for identifying potential issues and optimizing
system behavior without risking damage to the
hardware.

To enhance robustness, the vision module employs
the following mechanisms:
 Limiting recognition to predefined object

classes;
 Color classification through the average RGB

value of all object pixels;
 QR codes are recognized only within already

identified objects, which eliminates the decoding
of irrelevant information.

5 Development Opportunities for the

 Architecture

5.1 Activity and Expansion in the

 Architecture

The legend in Figure 13 (Appendix) shows the
activity in the architecture. The intelligent core has
three main modules, with the vision module
currently being developed. The "Structuring

Information" and "Perceptual Anchoring and

Conceptualization" modules are actively under
development. The meaning of the blocks in the
intelligent core is recorded in Table 2.

Table 2. Main modules in the intelligent core
Module Function

State Measurement
Processes data from the IMU to determine
the current state of the IMR (position,
movement, orientation).

Distance

Measurement

Analyzes information from LiDAR and
ultrasonic sensors for obstacle detection
and avoidance.

Object Recognition,

Color

Classification, and

QR Decoding.

Spatial positioning

(D-Camera)

Uses an RGB-D camera for object
recognition, color classification, and QR
code decoding. Determines the spatial
positioning of objects relative to the
camera.

Environment

Measurement

Works with data from temperature,
humidity, and light sensors to assess the
environment.

Structuring

Information

A central module that integrates and
structures all incoming data to make it
compatible with logical processing. This
is perceptual information that serves as a
transition to intelligent behavior.

Perceptual

Anchoring and

Conceptualization

A logical module that transforms
structured information into logical
conclusions and action decisions, [24].

The structuring of perceptual information and

the application of the perceptual anchoring process
allow the IMR not only to recognize objects
(percepts) but also to link them with corresponding
symbols – semantic representations, which are used
at the logical level. This connection between
perception and symbolic representation creates the
foundation for the process of conceptualization,
transitioning from sensory information to internal
knowledge that can be used for logical reasoning
and decision-making.

The "Other Library" block, connected with a
dashed arrow to the intelligent core in Figure 13,
provides the possibility for integration with various
libraries and algorithms. Table 3 shows examples of
integration.

Table 3. Integration possibilities with

libraries/algorithms
Library/Algorithm Function and Application

Dijkstra's

Algorithm

Optimal route planning in graph-based
environments (e.g., navigation for obstacle
avoidance).

Kalman Filter
Capabilities for calculating the IMR state
(position, speed, orientation) based on
noisy sensor data.

AI Methods
Classification, prediction, and decision-
making based on accumulated experience
and trained models, [25].

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 73 Volume 21, 2025

5.2 Integration Possibilities with Additional

Sensors
At the top of Figure 13 (Appendix), the real world is
represented, where the IMR perceives objects and
the state of the environment through various
sensors. The obtained information is structured and
subjected to logical interpretation before being used
to generate commands to the IMR. Thus, sensor data
is integrated with perceptual structures extracted
from the cameras, creating a more complete and
detailed picture of the surrounding environment.

Adding various sensors can significantly expand
the capabilities of the intelligent core. Temperature,
humidity, and light sensors can contribute to a better
understanding of the environment and allow for
adaptation to specific conditions, such as high
temperature, increased humidity, or low light, [26],
[27], [28], [29]. For example, detecting a change in
lighting can lead to adaptations in the algorithms
that process the images.

5.3 Integration Possibilities with

 Optimization Algorithms
The developed vision module can be used in motion
optimization algorithms, such as Dijkstra's
algorithm, [30], [31].

Through the vision module, the IMR can:
 Automatically identify nodes in the navigation

graph using QR codes.
 Recognize color markers and geometric shapes

that indicate the position and accessibility of
paths.

 Adapt its route based on the state of the
environment.

 Avoid blocked or occupied nodes by
dynamically recalculating their paths.

Figure 14 (Appendix) shows the state of a
simulated node after applying the current
capabilities of the vision module.

The figure shows that all node markers have
been successfully recognized regardless of their
location and rotation.

In a real environment, markers can be created in
various ways:
 Paint on the floor for fixed signs and paths.
 Colorful stickers or labels.
 RGB LED matrices that dynamically change

their meaning depending on the state of the node.

Using the vision module, the IMR can perform the
following tasks:
1. Initialization – Identifies its starting position by

recognizing a QR code at the center of the node.
2. Recognizing possible exits – Cyan rectangles

indicate allowable paths, and the QR codes
within them provide information about the edges
and weights in the navigation graph.

3. Determining the direction of movement –
Triangles indicate the direction to the exit path,
and their colors, when using RGB LED matrices,
can be used for signaling:
 Red – The node is occupied and cannot be

used.
 Yellow – The node is expected to become

available soon.
 Green – The node is free and accessible.

4. Movement to the next node – After selecting a
path, the IMR moves along the pre-calculated
route.

Although it is hypothetical, this node
demonstrates how the vision module can use visual
markers for navigation, allowing the IMR to
recognize available routes, adapt its movement, and
optimize its path in a dynamic environment.

6 Conclusion
The presented vision module is a functionally active
and validated component of the intelligent core of
the distributed platform for the IMR. Its
development provides a foundation for future
upgrades with additional algorithms, filters, and
logical mechanisms.

The module integrates three main algorithms –
object recognition, color classification, and QR code
decoding. Additionally, functionality for working
with the D-camera has been implemented, enabling
the determination of spatial coordinates. Thanks to
its flexibility, the module is applicable in both
stationary and IMR.

Experimental results confirm that the module
provides reliable object recognition (within
predefined classes), color recognition (using
predefined lines in the color space), and QR code
decoding (located within recognized objects). The
algorithms work stably even in environments with a
high concentration of visual markers. The
combination of visual markers with depth camera
information extends the IMR's capabilities, enabling
more precise perception of the spatial environment
and adaptive behavior in real-time.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 74 Volume 21, 2025

The intelligent core of the platform is under
development. Its capabilities can be expanded
through:
 Adding new algorithms and libraries;
 Integration of additional sensors.

The future development of the intelligent core
includes:
 Structuring and storing data for recognized

objects, supporting perceptual anchoring and
logical reasoning;

 Scene reconstruction through analysis of spatial
dependencies, enabling the creation of an
internal representation of the environment;

 Expanding algorithms for 2D object recognition
and adding algorithms for 3D recognition;

 Increasing the number of lines for color
classification and implementing alternative
approaches for color evaluation;

 Adapting to variable lighting and automatically
determining color thresholds to improve
robustness in different environments.

References:

[1] Rubio, F.; Valero, F.; Llopis-Albert, C. A
review of mobile robots: Concepts, methods,
theoretical framework, and applications.
International Journal of Advanced Robotic

Systems, 2019, vol. 16, no. 2.
https://doi.org/10.1177/1729881419839596.

[2] Coradeschi, S.; Saffiotti, A. Perceptual
Anchoring of Symbols for Action. In
Proceedings of the 17th International Joint

Conference on Artificial Intelligence (IJCAI-

01), Seattle, WA, USA, 4 August 2001; vol. 1,
pp. 407–412.

[3] Fernández, I.; Mazo, M.; Lázaro, J.L.; Pizarro,
D.; Santiso, E.; Martín, P.; Losada, C.
Guidance of a mobile robot using an array of
static cameras located in the environment.
Autonomous Robots 2007, vol. 23, no. 4, pp.
305–324. https://doi.org/10.1007/s10514-007-
9049-4.

[4] Hanel, M.L.; Kuhn, S.; Henrich, D.; Grüne,
L.; Pannek, J. Optimal Camera Placement to
Measure Distances Regarding Static and
Dynamic Obstacles. International Journal of

Sensor Networks 2012, vol. 12, no. 1, pp. 25–
36.
https://doi.org/10.1504/IJSNET.2012.047713.

[5] Microsoft. Using File Mapping, [Online].
https://learn.microsoft.com/en-
us/windows/win32/memory/using-file-
mapping (Accessed Date: April 29, 2024).

[6] OpenCV: Open Source Computer Vision
Library, [Online].
https://github.com/opencv/opencv (Accessed
Date: April 29, 2024).

[7] Kang, H.-C.; Han, H.-N.; Bae, H.-C.; Kim,
M.-G.; Son, J.-Y.; Kim, Y.-K. HSV Color-
Space-Based Automated Object Localization
for Robot Grasping without Prior Knowledge.
Applied Sciences, 2021, vol. 11, no. 16, 7593.
https://doi.org/10.3390/app11167593.

[8] Hema, D.; Kannan, S. Interactive Color Image
Segmentation Using HSV Color Space.
Science and Technology Journal, 2020, vol. 7,
no. 1, pp. 37–41.
https://doi.org/10.22232/stj.2019.07.01.05.

[9] Navon, E.; Miller, O.; Averbuch, A. Color
image segmentation based on adaptive local
thresholds. Image and Vision Computing, vol.
23, no. 1, January 2005, pp. 69-85.
https://doi.org/10.1016/j.imavis.2004.05.011.

[10] Xing, Z. An Improved Emperor Penguin
Optimization Based Multilevel Thresholding
for Color Image Segmentation. Knowledge-

Based Systems 2020, vol. 194, 105570.
https://doi.org/10.1016/j.knosys.2020.105570.

[11] Gochev, G. Kompyutarno zrenie i nevronni

mrezhi; Technical University – Sofia: Sofia,
Bulgaria, 1998; pp. 83–84, 125–143. (In
Bulgarian, Textbook).

[12] Gonzalez, R.C.; Woods, R.E. Digital Image

Processing, 4th ed.; Pearson: New York, NY,
USA, 2018; pp. 400–408, [Online].
https://www.cl72.org/090imagePLib/books/G
onzales,Woods-
Digital.Image.Processing.4th.Edition.pdf
(Accessed Date: April 29, 2024).

[13] Tiwari, S. An Introduction to QR Code
Technology, 2016 International Conference

on Information Technology (ICIT),
Bhubaneswar, India, 22–24 December 2016;
IEEE: 2016; pp. 39–44.
https://doi.org/10.1109/ICIT.2016.021.

[14] Zhang, H.; Zhang, C.; Yang, W.; Chen, C.-Y.
Localization and navigation using QR code
for mobile robot in indoor environment. In
2015 IEEE International Conference on

Robotics and Biomimetics (ROBIO), Zhuhai,

China, 6–9 December 2015; IEEE: 2015; pp.
2501–2506.
https://doi.org/10.1109/ROBIO.2015.7419715

[15] Sneha, A.; Sai Lakshmi Teja, V.; Mishra,
T.K.; Satya Chitra, K.N. QR Code Based
Indoor Navigation System for Attender Robot.
EAI Endorsed Transactions on Internet of

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 75 Volume 21, 2025

https://doi.org/10.1177/1729881419839596
https://doi.org/10.1007/s10514-007-9049-4
https://doi.org/10.1007/s10514-007-9049-4
https://doi.org/10.1504/IJSNET.2012.047713
https://learn.microsoft.com/en-us/windows/win32/memory/using-file-mapping
https://learn.microsoft.com/en-us/windows/win32/memory/using-file-mapping
https://learn.microsoft.com/en-us/windows/win32/memory/using-file-mapping
https://github.com/opencv/opencv
https://doi.org/10.3390/app11167593
https://doi.org/10.22232/stj.2019.07.01.05
https://doi.org/10.1016/j.imavis.2004.05.011
https://doi.org/10.1016/j.knosys.2020.105570
https://www.cl72.org/090imagePLib/books/Gonzales,Woods-Digital.Image.Processing.4th.Edition.pdf
https://www.cl72.org/090imagePLib/books/Gonzales,Woods-Digital.Image.Processing.4th.Edition.pdf
https://www.cl72.org/090imagePLib/books/Gonzales,Woods-Digital.Image.Processing.4th.Edition.pdf
https://doi.org/10.1109/ICIT.2016.021
https://doi.org/10.1109/ROBIO.2015.7419715

Things, vol. 6, no. 21, p. e3, Apr. 2020.
https://doi.org/10.4108/eai.13-7-2018.165519.

[16] Bach, S.-H.; Khoi, P.-B.; Yi, S.-Y.
Application of QR Code for Localization and
Navigation of Indoor Mobile Robot. IEEE

Access, vol. 11, pp. 28384–28390, 2023.
https://doi.org/10.1109/ACCESS.2023.32502
53.

[17] Aman, A.; Singh, A.; Raj, A.; Raj, S. An
Efficient Bar/QR Code Recognition System
for Consumer Service Applications. In
Proceedings of the 2020 Zooming Innovation

in Consumer Technologies Conference

(ZINC), Novi Sad, Serbia, 26-27 May 2020;
IEEE: 2020; pp. 127–131.
https://doi.org/10.1109/ZINC50678.2020.916
1778.

[18] Wang, J.; Olson, E. AprilTag 2: Efficient and
robust fiducial detection. 2016 IEEE/RSJ

International Conference on Intelligent

Robots and Systems (IROS), Daejeon, Korea
(South), 09-14 October 2016; pp. 4193–4198.
https://doi.org/10.1109/IROS.2016.7759617.

[19] Krogius, M.; Haggenmiller, A.; Olson, E.
Flexible Layouts for Fiducial Tags. In 2019

IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS),
Macau, China, 03-08 November 2019; IEEE:
2019; pp. 1898–1903.
https://doi.org/10.1109/IROS40897.2019.896
7787.

[20] Wang, X. High Availability Mapping and

Localization. Ph.D. Dissertation, University of
Michigan, 2019, [Online].
https://hdl.handle.net/2027.42/151428
(Accessed Date: April 29, 2024).

[21] Orbbec. Petrel-A User Manual, July 2023,
[Online].
https://www.orbbec.com/staging/wp-
content/uploads/2023/07/Petrel-A-En.pdf
(Accessed Date: April 29, 2024).

[22] Vasilev, R.; Chivarov, N.; Staikova, M.
Distributed 3D Camera Distance
Measurement System for Intelligent Mobile
Robots. In 2024 International Conference

Automatics and Informatics (ICAI), Varna,
Bulgaria, 10–12 October 2024; IEEE: 2025;
pp. 233–239.
https://doi.org/10.1109/ICAI63388.2024.1085
1561.

[23] Melnyk, R.; Viazovskyy, P. Detection of
Defects in PCB Images by Numbering,
Measurement of Chain Features and Machine
Learning. WSEAS Transactions on Circuits

and Systems, vol. 23, pp. 305–317, 2024.
https://doi.org/10.37394/23201.2024.23.30.

[24] R. Vasilev and D. Dimitrov, Logical
Modeling of Dynamic Environments for
Intelligent Robots Based on the Perceptual
Anchoring Process. In Proceedings of the

Technical University - Sofia, vol. 63, no. 2,
pp. 49–58, June 14–16, 2013, [Online].
https://proceedings.tu-
sofia.bg/volumes/Proceedings_Volume_63_b
ook_2_2013.pdf (Accessed Date: April 10,
2024).

[25] Bodapati, R. B.; Srinivas, R. S.; Ramana Rao,
P. V. Artificial Neural Network-Based Hybrid
Controller for Electric Vehicle Applications.
WSEAS Transactions on Circuits and Systems,
vol. 23, pp. 192–201, 2024.
https://doi.org/10.37394/23201.2024.23.20.

[26] Bonci, A.; Cheng, P. D. C.; Indri, M.; Nabissi,
G.; Sibona, F. Human-Robot Perception in
Industrial Environments: A Survey. Sensors
2021, vol. 21, no. 5, p. 1571.
https://doi.org/10.3390/s21051571.

[27] Zhmud, V. A.; Kondratiev, N. O.; Kuznetsov,
K. A.; Trubin, V. G.; Dimitrov, L. V.
Application of ultrasonic sensor for measuring
distances in robotics. Journal of Physics:

Conference Series, vol. 1015, no. 3, p.
032189, May 2018.
https://doi.org/10.1088/1742-
6596/1015/3/032189.

[28] Suh, Y. S. Laser Sensors for Displacement,
Distance and Position. Sensors 2019, vol. 19,
p. 1924. https://doi.org/10.3390/s19081924.

[29] Lee, C.; Song, H.; Choi, B. P.; Ho, Y.-S. 3D
scene capturing using stereoscopic cameras
and a time-of-flight camera. IEEE

Transactions on Consumer Electronics, vol.
57, no. 3, pp. 1370–1376, August 2011.
https://doi.org/10.1109/TCE.2011.6018896.

[30] GeeksforGeeks. How to Find Shortest Paths
from Source to All Vertices Using Dijkstra’s
Algorithm, [Online].
https://www.geeksforgeeks.org/dijkstras-
shortest-path-algorithm-greedy-algo-7/.

[31] Alshammrei, S.; Boubaker, S.; Kolsi, L.
Improved Dijkstra Algorithm for Mobile
Robot Path Planning and Obstacle Avoidance.
Computers, Materials & Continua, vol. 72,
no. 3, pp. 5939–5954, April 2022.
https://doi.org/10.32604/cmc.2022.028165.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 76 Volume 21, 2025

https://doi.org/10.4108/eai.13-7-2018.165519
https://doi.org/10.1109/ACCESS.2023.3250253
https://doi.org/10.1109/ACCESS.2023.3250253
https://doi.org/10.1109/ZINC50678.2020.9161778
https://doi.org/10.1109/ZINC50678.2020.9161778
https://doi.org/10.1109/IROS.2016.7759617
https://doi.org/10.1109/IROS40897.2019.8967787
https://doi.org/10.1109/IROS40897.2019.8967787
https://hdl.handle.net/2027.42/151428
https://www.orbbec.com/staging/wp-content/uploads/2023/07/Petrel-A-En.pdf
https://www.orbbec.com/staging/wp-content/uploads/2023/07/Petrel-A-En.pdf
https://doi.org/10.1109/ICAI63388.2024.10851561
https://doi.org/10.1109/ICAI63388.2024.10851561
https://doi.org/10.37394/23201.2024.23.30
https://proceedings.tu-sofia.bg/volumes/Proceedings_Volume_63_book_2_2013.pdf
https://proceedings.tu-sofia.bg/volumes/Proceedings_Volume_63_book_2_2013.pdf
https://proceedings.tu-sofia.bg/volumes/Proceedings_Volume_63_book_2_2013.pdf
https://doi.org/10.37394/23201.2024.23.20
https://doi.org/10.3390/s21051571
https://doi.org/10.1088/1742-6596/1015/3/032189
https://doi.org/10.1088/1742-6596/1015/3/032189
https://doi.org/10.3390/s19081924
https://doi.org/10.1109/TCE.2011.6018896
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://doi.org/10.32604/cmc.2022.028165

APPENDIX

Fig. 4: Block diagram of the program in the vision module

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 77 Volume 21, 2025

Fig. 11: Results after selecting Option 2 (left column) and Option 4 (right column) from the program menu

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 78 Volume 21, 2025

Fig. 12: Results from the vision module on different objects

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 79 Volume 21, 2025

Fig. 13: Architecture of the intelligent core

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 80 Volume 21, 2025

Fig. 14: Results after selecting Option 4 from the program menu with QR decoding enabled

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

- Radoslav Vasilev (R.V.): Conceptualization,
methodology, software development, validation,
formal analysis, investigation, data curation,
writing-original draft preparation, writing-review
and editing, visualization, project administration.

- Nayden Chivarov (N.C.): Conceptualization,
supervision, validation, formal analysis, resources,
software development, project administration,
funding acquisition.

- Valentina Ivanova (V.I.): Methodology,
validation, data curation, writing-review and
editing.

All authors have read and agreed to the published
version of the manuscript.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.

en_US

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2025.21.9 Radoslav Vasilev, Nayden Chivarov, Valentina Ivanova

E-ISSN: 2224-3488 81 Volume 21, 2025

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

