
for input-delayed systems, International
Journal of Robust and Nonlinear Control, Vol.
33, No. 2, 2023, pp. 1027–1042, DOI:
10.1002/rnc.6416.
[9] S. Nakamori, Design of RLS-FIR filter using
covariance information in linear continuous-
time stochastic systems, Applied Mathematics
and Computation, Vol. 219, No. 17, 2013, pp.
9598–9608, DOI: 10.1016/j.amc.2013.03.022.
[10] W. H. Kwon, P. S. Kim, S. H. Han, A receding
horizon unbiased FIR filter for discrete-time
state space models, Automatica, Vol. 38, No. 3,
2002, pp. 545–551, DOI: 10.1016/S0005-
1098(01)00242-4.
[11] S. Zhao, Y. S. Shmaliy, F. Liu, Fast
computation of discrete optimal FIR estimates
in white Gaussian noise, IEEE Signal Process.
Lett., Vol. 22, No. 6, 2015, pp. 718–722, DOI:
10.1109/LSP.2014.2368777.
[12] S. Zhao, Y. S. Shmaliy, F. Liu, Fast Kalman-
like optimal unbiased FIR filtering with
applications, IEEE Transactions on Signal
Processing, Vol. 64, No. 9, 2016, pp. 2284–
2297, DOI: 10.1109/TSP.2016.2516960.
[13] Y. S. Shmaliy, S. Khan, S. Zhao, Ultimate
iterative UFIR filtering algorithm,
Measurement, Vol. 92, 2016, pp. 236–242,
DOI: 10.1016/j.measurement.2016.06.029.
[14] S. Zhao, Y. S. Shmaliy, G. Ji, S. H. Khan, Fast
bias-constrained optimal FIR filtering for
time-invariant state space models, Adaptive
Control & Signal, Vol. 31, No. 7, 2017, pp.
1061–1076, DOI: 10.1002/acs.2747.
[15] S. Zhao, Y. Shmaliy, F. Liu, Optimal FIR filter
for discrete-time LTV systems and fast
iterative algorithm, IEEE Transactions on
Circuits and Systems II: Express Briefs, Vol.
68, No. 4, 2021, pp. 1527–1531, DOI:
10.1109/TCSII.2020.3021674.
[16] Y. S. Shmaliy, Optimal gains of FIR estimators
for a class of discrete-time state-space models,
IEEE Signal Processing Letters, Vol. 15, 2008,
pp. 517–520, DOI: 10.1109/LSP.2008.925746.
[17] Y. S. Shmaliy, Linear optimal FIR estimation
of discrete time-invariant state-space models,
IEEE Transactions on Signal Processing, Vol.
58, No. 6, 2010, pp. 3086–3096, DOI:
10.1109/TSP.2010.2045422.
[18] Y. S. Shmaliy, O. Ibarra-Manzano, Time-
variant linear optimal finite impulse response
estimator for discrete state-space models,
International Journal of Adaptive Control and
Signal Processing, Vol. 26, No. 2, 2012, pp.
95–104, DOI: 10.1002/acs.1274.
[19] Y. Levinson, L. Mirkin, Optimization in
discrete FIR estimation: Exploiting state-
space structure, SIAM J. Control Optim., Vol.
51, No. 1, 2013, pp. 419–441, DOI:
10.1137/110845185.
[20] S. Zhao, F. Liu, Y. S. Shmaliy, Optimal FIR
estimator for discrete time-variant state-space
model, 2014 11th International Conference on
Electrical Engineering, Computing Science
and Automatic Control, CCE 2014, 2014,
Ciudad del Carmen, Campeche. México. DOI:
10.1109/ICEEE.2014.6978270.
[21] S. Zhao, Y. S. Shmaliy, B. Huang, F. Liu,
Minimum variance unbiased FIR filter for
discrete time-variant systems, Automatica, Vol.
53, 2015, pp. 355–361, DOI:
10.1016/j.automatica.2015.01.022.
[22] C. K. Ahn, Strictly passive FIR filtering for
state-space models with external disturbance,
AEU - International Journal of Electronics
and Communications, Vol. 66, No. 11, 2012,
pp. 944–948, DOI:
10.1016/j.aeue.2012.04.002.
[23] C. K. Ahn, P. S. Kim, Fixed-lag maximum
likelihood FIR smoother for state-space
models, IEICE Electron. Express, Vol. 5, No.
1, 2008, pp. 11–16, DOI: 10.1587/elex.5.11.
[24] S. Nakamori, Robust RLS Wiener FIR filter
for signal estimation in linear discrete-time
stochastic systems with uncertain parameters,
Frontiers in Signal Processing, 2019, Vol. 3,
No. 2, pp. 19–36, [Online].
https://www.academia.edu/94119566/Robust_
RLS_Wiener_FIR_Filter_for_Signal_Estimati
on_in_Linear_Discrete_Time_Stochastic_Syst
ems_with_Uncertain_Parameters (Accessed
Date: December 28, 2024) .
[25] Z. Pan, B. Huang, F. Liu, A Koopman,
Operator-based finite impulse response filter
for nonlinear systems, 2023 62nd IEEE
Conference on Decision and Control (CDC),
2023, pp. 2159–2165. Marina Bay Sands,
Singapore.
https://doi.org/10.1109/CDC49753.2023.1038
3222.
[26] Z. Pan, S. Zhao, B. Huang, F. Liu, Confidence
set-membership FIR filter for discrete time-
variant systems, Automatica, Vol. 157, 2023,
Article 111231, DOI:
10.1016/j.automatica.2023.111231.
[27] D. Simon, Y. S. Shmaliy, Unified forms for
Kalman and finite impulse response filtering
and smoothing, Automatica, Vol. 49, 2013, pp.
1892–1899, DOI:
10.1016/j.automatica.2013.02.026.
[28] K. J. Uribe-Murcia, Y. S. Shmaliy, C. K. Ahn,
WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2024.20.11