In the proposed structure, the conventional UFIR
and cUFIR lters are run simultaneously in CMN
environment, and the best result of the dynam-
ically selected lter, using the Mahalanobis dis-
tance, goes to the output. The test results demon-
strate that our proposed UFIR/cUFIR ltering al-
gorithm performs better that the UFIR and cU-
FIR lters, which results in highest positioning ac-
curacy.
References:
[1] A. R. Jha, Theory, Design, and Applications
of Unmanned Aerial Vehicles. Boca Raton,
FL: CRC Press, 2017.
[2] L. Setlak and R. Kowalik, “The dynamics of
group ights of an unmanned aerial vehicle,”
WSEAS Trans. Appl. Theor. Mech., vol. 14,
pp. 129–139, 2019.
[3] X. Gao, Z. Chen, and Y. Hu, “Analysis of
unmanned aerial vehicle MIMO channel ca-
pacity based on aircraft attitude,” WSEAS
Trans. Inform. Sci. Appl., vol. 10, no. 2,
pp. 58–67, 2013.
[4] P. Wilson, Surviving with Navigation & Sig-
naling. Broomall, PA: Simon & Schuster,
2015.
[5] R. Perry, A History of Satellite Reconnais-
sance. Chantilly, VA: CSNR, 2015.
[6] B. C. Williams and G. C. Baker, “An electro-
magnetic induction technique for reconnais-
sance surveys of soil salinity hazards,” Aus-
tralian Journal of Soil Research, vol. 20, no. 2.
[7] X. Dong, Y. Gao, J. Guo, S. Zuo, J. Xiang,
D. Li, and Z. Tu, “An integrated UWB-IMU-
vision framework for autonomous approach-
ing and landing of UAVs,” Aerospace, vol. 9,
no. 12, pp. 6336–6350, 2022.
[8] Y. Xu, D. Wan, S. Bi, H. Guo, and
Y. Zhuang, “A FIR lter assisted with the
predictive model and ELM integrated for
UWB-based quadrotor aircraft localization,”
Satellite Navigation, vol. 4, p. 2, 2023.
[9] C. Z. L. Huang, J. Song and G. Cai, “Ob-
servable modes and absolute navigation ca-
pability for landmark-based IMU/vision nav-
igation system of UAV,” Optik, vol. 202,
p. 163725, 2020.
[10] Y. Xu, D. Wan, Y. S. Shmaliy, X. Chen,
T. Shen, and S. Bi, “Dual free-size LS-SVM
assisted maximum correntropy Kalman lter-
ing for seamless INS-based integrated drone
localization,” IEEE Trans. Ind. Electron.,
2023.
[11] X. Liang, G. Chen, S. Zhao, and Y. Yu,
“Moving target tracking method for un-
manned aerial vehicle/unmanned ground ve-
hicle heterogeneous system based on AprilT-
ags,” Meas. Control, vol. 53, no. 3-4, pp. 427–
440, 2020.
[12] C. Huang and G. Cai, “Design and perfor-
mance analysis of landmark-based INS/vision
navigation system for UAV,” Optik, vol. 172,
pp. 484–493, 2018.
[13] J.-P. Condomines, Nonlinear Kalman Filter-
ing for Multi-Sensor Navigation of Unmanned
Aerial Vehicles. London: Elsevier, 2018.
[14] M. H. Sadraey, Design of Unmanned Aerial
Systems. Hoboken, NJ: Wiley, 2020.
[15] F. L. Lewis, L. Xie, and D. Popa, Optimal and
Robust Estimation. Boca Raton, FL: CRC
Press, 2008.
[16] Y. S. Shmaliy and S. Zhao, Optimal and Ro-
bust State Estimation: Finite Impulse Re-
sponse (FIR) and Kalman Approaches. New
York: Wiley & Sons, 2022.
[17] Y. Xu, Y. S. Shmaliy, Y. Li, and X. Chen,
“UWB-based indoor human localization with
time-delayed data using EFIR ltering,”
IEEE Access, vol. 5, pp. 16676–16683, 2017.
[18] Y. Xu, Y. S. Shmaliy, C. K. Ahn, T. Shen,
H. Guo, and Y. Zhuang, “Blind robust multi-
horizon EFIR lter for tightly integrating INS
UWB,” IEEE Sensors J., vol. 21, no. 20,
pp. 23037–23045, 2021.
[19] Y. S. Shmaliy, S. Zhao, and C. K. Ahn,
“Kalman and UFIR state estimation with
coloured measurement noise using backward
Euler method,” IET Signal Process., vol. 14,
no. 2, pp. 64–71, 2020.
[20] M.-C. O. S. Popescu, O. V. Olaru, and
N. E. Mastorakis, “Processing data for col-
ored noise using a dynamic state estimator,”
Int. J. Comp. Commun., vol. 2, no. 3, pp. 77–
86, 2008.
[21] A. E. Bryson and L. J. Henrikson, “Estima-
tion Using Sampled-Data Containing Sequen-
tially Correlated Noise, Technical Report No.
533,” Tech. Rep. NR-372-912, Grant NGR 22-
007-068, National Aeronautics and Space Ad-
ministration, 06 1967.
[22] A. E. Bryson and L. J. Henrikson, “Esti-
mation using sampled data containing se-
quentially correlated noise,” J. Spacecraft and
Rockets, vol. 5, no. 6, pp. 662–665, 1968.
WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2024.20.4
Yide Zhang, Teng Li, Xin Zang,
Jingwen Yu, Yuan Xu, Yuriy S. Shmaliy