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1  Introduction 
The ability to comprehend and anticipate the 
outcomes of mathematical modeling is a crucial 
skill in the fields of science and engineering.  In the 
case of real-world phenomena, a model, which 
approximates some extent, is used to describe a 
physical process that generates a specific signal or 
set of observations. Ultimately, it is pertinent to 
inquire which model most accurately represents the 
data at hand and to identify the optimal estimate of 
the free parameters that characterize the model of 
interest. Consequently, a significant challenge arises 
in a multitude of applications, namely the extraction 
of these distinctive characteristics from physical 
processes based on observations. 

Given the extensive applicability of sinusoidal 
models, we initially focus our attention on these 
models, given the substantial attention they have 
received in the literature regarding the estimation of 
sinusoidal parameters. The frequency parameter has 
been the subject of significant research attention due 
to its non-linear incorporation into a signal model. 
The entirety of research conducted in the field of 
data analysis has previously been based on a 

classical approach to statistical methodology. 
However, there has been a notable increase in 
interest in the Bayesian approach among scientists 
in a range of fields in recent times.  In this analysis, 
unknown parameters are random variables 
distributed according to prior probabilities that 
express the analyst's degree of belief or ignorance. 
This allows for the derivation of statistical 
inferences about the parameters from their posterior 
distributions, which combine the analyst's beliefs 
with observations in a probabilistic framework. 
Nonetheless, the formulation of prior beliefs in the 
form of prior probability distributions on models 
under consideration, coupled with the calculation of 
the variables that underpin Bayesian model 
detection and parameter estimation, often presents a 
significant hurdle. These variables are typically 
integrals of substantial dimensions, lacking any 
closed-form analytical solution. These issues 
represent a significant challenge to the 
implementation of the Bayesian approach. 
Furthermore, the latest advances in computing have 
transformed Bayesian data analysis. Over the past 
few decades, we have seen the development of 
cutting-edge computational techniques that have led 
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to a new area of data analysis. In a few cases, for 
example, when the sinusoids are well separated, and 
many samples are available, suitable analytic 
approximations to these integrals can be performed. 
Moreover, these approximations are challenging to 
quantify and not valid in cases where the amount of 
available data is limited, and some sinusoids are 
close to each other. Some initial efforts to address 
this computational challenge using classical 
deterministic multiple integration techniques, as 
outlined in [1], [2], [3] and Monte Carlo methods, as 
presented in [3], [4], [5], [6], [7], [8], [9] have been 
made. In addition, these approaches lack flexibility 
and become challenging to utilize when the 
dimension of the integrand becomes substantial.  

The recent advances in the Bayesian literature, 
and in particular the advent of the reversible jump 
Markov chain Monte Carlo (RJMCMC) sampling 
[10], [11], [12] initially proposed by [11], have 
greatly simplified the determination of Bayesian 
models and the estimation of parameters. The 
method is based on the creation of a Markov chain, 
which can “jump” between models with parameter 
spaces of varying dimensions. In a Bayesian 
framework, the significant impact allows the 
calculation of probabilities for competing models. It 
can only explore the parameter space within the 
model space but can jump between plausible 
models. The RJMCMC sampler [11], [12], [13], 
[14] has trans-dimensional moves in addition to 
fixed-dimensional moves. Under certain conditions, 
these moves leave joint posterior probability density 
functions unchanged. Although RJMCMC has been 
extensively used in many applied model 
determination problems, its widespread applicability 
has been limited by the difficulty of achieving 
proposal moves between models that employ some 
notion of inter-model consistency, which facilitates 
good mixing across models. We therefore present a 
methodology that constructs moves between any 
models in model space in a general regression 
setting and illustrate its applicability. 

In this paper, we examine the potential of 
combining the RJMCMC sampler with the SA 
algorithm [10], [15], [16]. We investigate the impact 
of varying proposal distributions on the 
effectiveness of this approach in detecting the 
number of sinusoids and estimating their parameters 
from noisy observations. 

 
 

2   Mathematical Problem 
Let 1 2{ , ,..., }t

N
d d dD  be a vector of N  samples 

of an observed signal, which is a subset of a finite 

family of embedded models kM ,with

max{0,..., }k k . The model kM assumes that D  
can be written as a linear combination of k sinusoids 
corrupted by a zero mean white Gaussian noise 

 kn t  with a variance 
2
k , as follows  
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where ,
j jc s

k ka a  and k
j  are the amplitudes and the 

radial frequencies of the j th sinusoids of the k th 
model signal, respectively. Without loss of 
generality, we assume that the frequencies

 0,k

j  and 
1 2
k k
j j  for 1 2j j . In vector-

matrix form, we can rewrite the Eq. (1) for 0k    as  

  2; tk k k D G ω a n ,                   (2) 

where  1 12 , ,..., ,
k k

T
c s c sk a a a aa  is the 2k -

dimensional vector of amplitudes, and   ;kG ω t  is 

a  2N k  matrix, defined by 
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The subscript k  that represents the number of 

sinusoids and the parameters 
2

2{ , , }k k k kθ a ω  

in the model kM  are unknowns. Therefore, given 
the data set D our goal is to determine k    and 

estimate kθ  simultaneously. Although inference 

about two kinds of unknowns  , kk θ  is based on 
different logical principles Bayes paradigm offers an 
opportunity of a single logical framework briefly 
described in the following sections. 
 
 
3   Bayesian Framework 
Bayesian parameter inference task [10], [11], [15], 
[16], [17], [18], [19], [20], [21] is therefore to infer 

the probability over parameters kθ  for the 

hypothesis or model kM , given some data D from 
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experiment and capturing all relevant information I . 
This can be done within the setting of Bayes’ 
Theorem which states 

 
   

 

, , ,
, ,

,
k k k k

k k

k

p M I p M I
p M I

p M I


D θ θ
θ D

D
,(4) 

where  , ,k kp M Iθ D  is the posterior PDF, 

 , ,
k k

p M ID θ is the likelihood,  ,
k k

p M Iθ is the 

prior PDF and  ,
k

p M ID  is evidence. Bayes’ 
theorem not only helps us to infer parameter 
distributions but, also provides a framework for 
model comparison. To compare models we take 

posterior odds of two models kM and 'kM  by 

taking the ratio and cancelling the term  ,kp M ID   
Thus 

 
 
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k k k

k k k

p M I p M I p M I

p M I p M I p M I


D D

D D
         (5) 

 
Although inferences about two kinds of 

unknowns ( , )
k

k θ are based on different logical 
principles Bayes paradigm offers an opportunity of 
a single logical framework briefly described in the 
following sections. 
 
3.1   Prior Distributions and Likelihood 
We set up a parameter space that is a countable 
union of subspaces of possible varying 
dimensionality:              

 
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0

,
k

k

k

k
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where 0
  corresponds to the case where the 

signal consists just of noise and 
2k

k k
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0
{ }k

kk
k


    where 0 .   On 

this parameter space, we consider assignments of 
the prior PDF of all parameters by using the product 
rule of probability calculus: 
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where 
2
k  is a scale parameter, assumed to be 

distributed according to a conjugate inverse Gamma 

prior distribution,  2 1
0 0/ 2, / 2k    . When 

0 0   and 0 0   it turns out Jeffreys’ 

uninformative prior [22], [23], [24]  2 21/k kp  

To facilitate the subsequent analysis, we propose the 
following prior distribution for  , kk θ :  
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where    1 2 , ,T

k k k


 
Σ G ω t G ω t and    is 

an expected signal-to-noise ratio. If 0k   it is 

assumed that 
1

0 0 0 0a Σ a
   and 

0.52
0 02 1



  . 

The first term in Eq. (8) is a prior PDF of k  which 
 is a truncated Poisson distribution with an expected 
number of sinusoids  ; the second term is a 
prior PDF of 

kω which is also uniformly distributed  

on the condition that k  is given  and   ,
k kkI ω is 

an indicator function of the set k , defined in the 
following sense:  

 
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 

1 if ,
,

0 if ,k

k k

k
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k
k

k
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ω
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The last term is a prior PDF of ka which is a 

zero mean Gaussian with a covariance
2 1
k k 
Σ . 

Next, we consider the assignment of a functional 
form for the likelihood function, which is equivalent 
to the direct probability for data given the signal 
parameters. In the absence of a detailed knowledge 
of the noise distribution, other than that it has a 

finite variance 
2
k , the application of the principle of 

maximum entropy [25] informs us that a Gaussian 
distribution is the most conservative choice for the 
direct probability of the data D . Nevertheless, the 
application of the maximum entropy principle to 
assign a Gaussian distribution to the noise does not 
imply any assertion regarding its true sampling 
distribution. Instead, it merely represents a state of 
knowledge that is as uninformative as possible. 
Based on these considerations, the likelihood 
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function for our problem can be formulated as 
follows: 

 
2

2 2( , , ) 2 exp
2

N
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3.2  Posterior Distribution 

Bayesian statistical inference of k   and kθ   involves 

calculating their posterior PDF  , kp k θ D  
expressed as: 
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By using Equations (8) and (10) in (12) and 

simplifying the resulting expressions, we obtain the 
following posterior PDF for 0k  : 
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where NI  is a  N N dimensional identity matrix.  
By completing the square of Eq. (13), we integrate 

out with ˆ
ka : 
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Finally, integration of Eq. (13) with respect to ˆ
ka

and 
2
k  yields:  

 

   

2

0( )
2

0,

( , )
(1 )

!

k

k

k

k

N v
T

kp k

k

k

 












 
 
 





ω D

Λ
I ω

D P D

. (18) 

 
Although considerable complexity reduction is 

made by integrating out the nuisance parameters

 2,k ka , Eq. (18) is still extremely complicated so 

that analytic methods cannot be used to calculate 
any statistics, and the model dimension is also not 
fixed. Therefore, the BI-RJMCMC -SA algorithm 
has been chosen to explore the posterior over the 
different spaces.  
 
 
4 Bayesian Computation 
To perform the Bayesian computation in extracting 
the parameters of interest from the posterior PDF 
given in Eq. (18),  k  is initially chosen at  random 

from the  uniform distribution   max1,U k , where

 max 1 / 2k N  . Then, we introduced an 
algorithm, summarized in Table 1 (Appendix), 
which  is based on two steps. The first step is called 
RJMCMC step which consists of a variety of 
Metropolis Hastings (MH) moves under different 
proposal distributions, [26], [27]. Once we get to 
update the hyper parameter 2  and the second step 
uses the SA algorithm to perform a global search in 
the joint space of the parameters, thereby 
surmounting the problem of local optima to a large 
extent.  

 

4.1  RJMCMC Step 
It allows the sampler to jump between spaces of 
different dimensionality. This is achieved by doing 
Markov chain sampling in spaces of varying 
dimensions.  

RJMCMC unequivocally can change the 
dimension of the state space in a single move. This 
move is called a reversible jump [4], [11], [20], 
[28], [29] and allows the algorithm to switch back 
to the recent space with a later move. The 
reversibility of Markov chains is fundamental and 
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exploited in classical MH algorithms. A given 
distribution  , kk ω is easily ascertained as an 
invariant Markov distribution, [30]. Then our task 
is to make an inference about the joint distribution 

 , kk ω  which is Bayesian in nature:  

  , ( , )k kk p k ω ω D  .       (19) 
 

The constant of proportionality is not required, 
as it cancels out of the numerator and denominator 
of the acceptance ratio. As [8] notes, the Bayesian 
formulation, when used in conjunction with 
RJMCMC, provides a logical approach to making 

combined inferences about  ,
k

k ω .  
Here, we implement the Markov transition from 

a current state ( X ) by first proposing a new state (
'X ), drawn from proposal distribution  'q X X . 

We accept the move with a probability  , ' X X , 
and if rejected, the chain remains at the current 
state. We compute the acceptance probability,  

    , ' min 1, , 'A X X X X ,     (20) 
which includes the Jacobian term to satisfy the 
detailed balance [6], [8], [11], [23], [26] within each 
jump:  
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where  , kkX ω and  '

'' ', kkX ω . Although 
convenient choices of mappings may be far from 
optimal and identifying a potential mapping may be 
difficult in most of applications, various approaches 
have already been proposed to both automate and 
improve efficiency between model proposals [15], 
[16], [17], [18], [ 23].  

The exploration of different moves, either 
deterministically or randomly, is now possible 
within a range of  , kk ω . Consequently, a 
candidate move is selected at random, resulting in a 
transition density for the simulated Markov chain 
that is a mixture of different transition densities 
associated with various move types (birth, death, 
split, merge, and update), with equal probabilities. A 
random walk is then performed. 

 
4.1.1  Birth-Death Move 

Let us suppose that the current state of the Markov 
chain is in  kk  . We now propose a new 

frequency  chosen at random on the interval

 0, , set up  and then evaluate the 
acceptance ratio : 
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If a random number  generated from a 

uniform distribution   0,1U   satisfies , 1k ku      
then the new state of the Markov chain becomes

; otherwise, we stay at the current state
.  

Let us suppose that the current state of the 
Markov chain is in . We then choose a 

sinusoid with a label  1,2,..., 1l k   at random 
among the  existing sinusoids and remove it. 
Thus, we get a new state of the Markov chain 

 and accept it if a random number  
generated from a uniform distribution 

  0,1u U satisfies  1
1, min 1,k k birthu r 

  ;  

otherwise, we stay at the current state.  11, kk  ω . 

 
4.1.2  Split-Merge Move 

These moves are motivated when two sinusoids are 
closely spaced in frequency. In split move, we 
choose a sinusoid with a label   1,l U k among 
the existing ones. Then, the l th sinusoid with 

parameters , ,
l lc s l

a a   is split into two sinusoids 
with parameters: 
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where 
lw and  1,2l l   are a predetermined 

constant. Once 1


ω   and 2


ω   have been sampled. If 
there is no other frequency located between them 
then the move is rejected; otherwise, it is accepted if 

    , 10,1 min 1,k k splitu U A r          (26)  
 with 

/21
2 2

1

(1 )
N

T

k

split T

k

r
P

 






 
   

 

D P D

D D
,   (27) 

where    1 2 ,, / ,l u        .  

 
We choose a label   max1,l U k  and

  0,1u U . Then we get two sinusoids with 

parameters  1 1 1, ,
l lc s la a 
   and , ,

l lc s la a  so 

that we merge them into one sinusoid with 
parameters , ,

l lc s la a    :  

1 1

1 1

2 2 2 2
1 0

2 2 2 2
2 0

( ) ,

(1 )( )

l l l l l

l l l l l

c c s c s

s c s c s

a u a a a a

a u a a a a





 

 





   

    
    (28) 

and  

1 1

1 1

2 2 2 2
1

2 2 2 2

( ) ( )
( ) ( )

l l l l

l l l l

c s l c s l

l

c s c s

a a a a

a a a a

 
  

 


  


  

.     (29)                               

 
One can easily check that (25) and (26) are 

compatible with (28) and (29) so that it is accepted 
if: 

    1
1,0,1 min 1,k k splitu U A r   .   (30) 

 
4.1.3  Update Move 

This move does not entail modifying the dimensions 
of the model; rather, it necessitates an iteration of 
hybrid MCMC samplers. In the context of our 
application, the target distribution represents a full 
conditional distribution of a frequency:  

 
0( )

2
, , 0( , ) ( )

N
T

j k j k k kp


  





  D D P D I ω (31) 

 

As with all MCMC methods that use the 
Metropolis-Hastings algorithm, suitable proposal 
distributions , ,( ' )j k j kq   for the proposed 
transitions must be chosen. The efficiency of the 
reversible jump sampler is highly dependent on this 
choice. 

A cautious proposal distribution generating 
small steps will typically be well received but will 
nevertheless progress slowly. Conversely, a bold 
proposal distribution generating large steps will 
often result in moves from the body to the tails of 
the distribution, leading to a low acceptance ratio 
and a low probability of acceptance. However, 
determining an appropriate width for the proposal 
distribution of each frequency is a time-consuming 
process. 

To circumvent this, we have opted to perform a 
Metropolis-Hasting step [6], [7], [8], [9] and [10] 
with four different proposal distributions, as 
outlined below, with an equal probability.  

The first proposal distribution of  which is 

independent from the current state , is defined in 
the form:                                                             

 
1

1 , , ( / ,( 1) / ) ,
0

' ( )

( 1,..., )

p

p p

N

j k j k l l N l N j k

l

q p

j k

   










 I , (32) 

where  is the value of the squared modulus of the 
Fourier transform of the observations D at 
frequency . We will take  but, 

 can also be used to improve the 
interpolation of the Fourier Transform via zero 
padding. Choosing a new frequency  

independent from in the regions where the 
modulus of the Fourier transform has high values 
helps us to build the regions of interest of the 
posterior distribution quickly. 

The second proposal distribution is, in common, 
defined as a normal distribution with the mean 
which is the current estimated values  and the 
variance which is a Cramer-Rao lower bond [18], 
[19] defined by: 

,

2 -1 2

2
2

2 2 2( ) ( -1)j k

j j

k

a a N N



 


,         (33) 

 
that is a lower limit to the variance for a 
measurement of the current frequency :    

,

2
2 , , ,( ' ) ( , )

j kj k j k j kq     .        (34) 

,j k

,j k

lp

( / )pl N pN N

pN N

,' j k

,j k

,j k

,j k
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It can be demonstrated that the square root of 

the value in question generates a natural scale size 
of the search space around the estimated value of 

. Given that the search space is relatively 
smooth, it can be expected that superior solutions 
will be found near those that are already optimal 

. This random walk with a normally distributed 
step size leads to the exploration of the posterior 
distribution on a local scale and ensures the 
irreducibility of the Markov chain.   

If all estimated frequencies are sorted into 
ascending order 1, 2, ,0 ...

k k k k
        , one 

then assigns a broad uninformative Gaussian prior 
to each frequency by specifying its low and high 
value. From this range, a mean of any frequency

 is computed by  and 
the standard deviation of the Gaussian prior is set so 
the entire interval, low to high, represents a three-
standard deviation of the interval

. Then the third proposal 
distribution can be defined by an uninformative 
Gaussian prior probability for the frequency in 
the following form: 

, ,

2
3 , ,( ' ) ( , )

j k j kj k j kq      ,           (35) 

where
, ,, ( , )

j k j k

low high

j k    . By making a 
discretization of the Langevin diffusion [30] using a 
first-order Euler approximation, we get: 

  

   
,

,

2
, ,

4 , ,

log , ;

N ,

j k

j k

j k j k

j k j k

p k

q





   

   

  


,    (36) 

where , , ,( , )low high

j k j k j k    . According to (5), the 
target distribution becomes a full conditional PDF 
of ,j k . Then we get: 

 
 

/2
, , '

, '
' , ' ,

ω
min 1,

( 1,..., 4)

N
T

l j k j k
k

k k T

k l j k j k

q

q

l




 



 

   
   

   



D P D

D P D ,          (37)                                          

where 

k k
k k 






ω ω
P P , =

k k
k k 



ω ω
M M         (38) 

and  

k k
k k 






ω ω
Σ Σ .                        (39) 

 

 
4.2   Simulated Annealing 
Our hierarchical Bayesian formulation demonstrates 
that traditional model selection criteria [4], [6], [26] 
within a penalized likelihood framework correspond 
to particular hyper-parameter choices. In other 
words, the prior choices can be calibrated in such a 
way that the issue of model selection within the 
context of penalized likelihood is transformed into a 
problem of model selection based on posterior 
probabilities.  Once the calibration issue has been 
resolved, we proceed with maximum likelihood 
estimation using the aforementioned model 
selection criteria. This allows us to maximize the 
calibrated posterior distribution. To achieve this 
objective, we propose a simulated annealing 
algorithm that employs the homogeneous reversible 
jump MCMC kernel [19], [20], [22], [28], [31] as a 
proposal. This approach has the advantage of 
allowing an arbitrary model order to be used as a 
starting point, with the algorithm performing 
dimension jumps until the "true" model order is 
identified. This eliminates the need for a more 
expensive task, such as running a fixed-dimension 
algorithm for each possible model order and 
subsequently selecting the best model. In 
Mathematical terms,  this estimate is given by  

 
  

max: 0,

ˆarg min log ,
k

s
M k k

M p k P


  D θ ,    (40) 

where  2ˆ ˆ ˆ, ,k k k kθ a ω is esimates of kθ  for the 

model kM . P  is the penalty term that depends on 
the model order. In the case of Gaussian noise, 

AICP  and  log
2BIC MDLP P N


  , where   

denotes the number of model parameters. The above 
criteria are driven by a few factors, including the 
fact that the Akaike information criteria (AIC) [4] is 
founded upon anticipated information, the Bayesian 
information criteria (BIC) is an asymptotic Bayes 
factor, and the Minimum description length (MDL) 
necessitates the assessment of the minimal data 
transmission requirements [6], [10], [22]. 

 Consequently, the penalized likelihood 
framework can be interpreted as a problem of 
maximizing the joint posterior distribution 
 , kp k ω D . Effectively, this maximum posterior 

(MAP) estimate can be obtained as follows:  

,

2
j k

,j k

,j k
, , ,( ) / 2

j k

high low

j k j k   

, , ,( ) / 3
j k

high low

j k j k   
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   

   

,

2

,

, arg max ,

arg max exp

k k

k k

k kMAP
k

N

T

k
k

k p k

P










 
 
 
 

ω

ω

ω ω D

D P D

.(41) 

 
The simulated annealing method involves 

simulating a non-homogenous Markov chain whose 
invariant distribution at iteration i  is no longer 

equal to  , kk ω , but to:  

   
1

, ,iT

k kk k ω ω ,        (42) 

where iT  is a decreasing cooling schedule with  

lim 0i iT  . As with MH method, the simulated 

annealing method with distribution   X and 

proposal distribution  'q X X  involves sampling a 

candidate value 'X  given the current value X . The 
Markov chain moves towards 'X  with a probability 

 

 

1

1

( ')
min 1,

( ' )

i

i

T

SA

T

q
A

q





 
 

  
 
 

X' X X

X X X

,     (43) 

otherwise, it remains equal to X . It is of critical 
importance to select an effective proposal 
distribution to ensure the development of an 
efficient algorithm. A homogeneous transition 
kernel  , 'K X X  that satisfies the following 
reversibility property is a key component in this 
process [21], [32], [33]: 

       ' ', , 'K K X X X X X X      (44) 
 
It follows that:  

 

 

1/ 1

1/ 1

'
min 1,

i

i

T

SA T
A









  
  

  

X

X
 .           (45) 

 
These candidates are randomly accepted 

according to an acceptance ratio which ensures 
reversibility and thus invariance of the Markov 
chain with respect to the posterior distribution. 
Here, the chain must move across subspaces of 
different dimensions, and therefore the proposal 
distributions are more complex. In accordance with 
a set of proposal distributions, a random selection of 
candidates is made and accepted in accordance with 
an acceptable ratio. This provides reversibility and 
invariance of the Markov chain related to the 
posterior PDF in Eq. (5).  For further details, please 

refer to [10], [11]. For the sake of simplicity, we 
will drop the superscript from all variables and 
assume that a candidate move is selected at random. 
The resulting transition distribution of the simulated 
Markov chain will then be a mixture of the different 
transition distributions related to the different move 
types, with equal probabilities.    
 
 
5   Computer Simulations 
This section will examine how effectively the 
previously discussed algorithm can summarise 
variable-dimensional posterior probability density 
functions (PDFs). These are the types of PDFs that 
may be encountered when undertaking joint 
detection and estimation of sinusoids in white 
Gaussian noise [34], [35], [36]. The only additional 
information required by the algorithm is a 
specification of a few other parameters, such as 

and , which we will refer to as 
hyperparameters. The values of  and  can be 
fixed using a priori information about  . As there 

is no specific a priori information about 2 ,k  we set 

 and  so that  is known as 

an uninformative Jeffreys' prior [24]. As discussed 
in [8], [25], it has been demonstrated that by 
calibrating the priors in the hierarchical Bayesian 
formulation, by treating  and  as fixed 
quantities instead of as random variables. We may 
begin by assuming that the hyperparameters  is 
fixed to a particular value, say 

 2 2

2
,IG

 
 

 


                        (46) 

and   
2 21 exp 1  
     

        
    

,       (47) 

where  2 2

22 and ,max N k
 

   . Simulations 
have demonstrated that the selection of Λ has no 
impact on the outcome of model order selection and 
parameter estimation. However, it does influence 
the duration of the transient state. For further details, 
please refer to the following papers [5], [9], [10]. 

The transition kernel of the simulated Markov 
chain is a mixture of the associated transition 
kernels. This is determined by selecting one of the 
candidate moves at each iteration, which can be 
birth, death, merge, split or update. The probabilities 

for choosing these moves are , , ,k k k kb d s m  and  

0 0, ,   2

0 0
2
k

0 0v  0 0  2
2

1( )k

k

p 




2 

2
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ku  respectively, such that 1k k k kb d s m     

with respect to all  max0,k k .  A move is 
performed if the algorithm accepts it. For 0k   the 
death, split and merge moves are impossible, so that 

0 0 0 0d s m   .  The merge move is also not 

permitted for 1k  , that is 1 0m  .  For maxk k , 
the birth and split moves are not allowed and 
therefore  

max max
0k kb s  . 

The algorithm summarized in Table 1 
(Appendix) needs  some initial starting 

configurations k , kω  and .T  An initial value for k  is 

chosen at random from the interval max1,k , where 

maxk  is chosen as max 10k  . To start iterations, the 

initial values for kω  are selected from k  largest 
values of Fourier Power spectral densities [20], [34] 
because they are more likely to occur. As is well 
documented, SA constitutes a general-purpose 
global optimization algorithm that makes use of 
Monte Carlo calculations in a multidimensional 
solution space formed by the combination of all 
permissible values of the free model parameters. 

Then it will explore that space in a series of sn  

steps, starting from a given point, , kk ω  which 
represents a state of the values of the model 
parameters at any iteration. In each step of the SA, a 
transition to a new state  , kk 

ω  is proposed by 

RJSA  step and the algorithm decides whether to 
accept the transition following a probabilistic 
criterion given in (45). On the other hand, the 

temperature iT called control parameter varies from 
high to low values towards the end.  The whole 
cycle is then repeated  100Tn   times, after 

which iT is gradually decreased by annealing (or 
cooling) schedule which is the heart of the SA 
algorithm. Although there are various cooling 
schedules suggested by different researchers [4], [7] 

for lowering, iT we choose: 

       1/
1 exp{ 1 }k

i T i TT T      ,     (48)                                                                       
where   represents several iterations and 

(0,1)T  is a constant. Finally, the algorithm 
terminates when average function value of the 

sequences of the points after each s Tn n  step 
cycle reaches a stable state: 

  

   

   

, ,

, ,

( 1,..., 4)

i k i r k

i k opt k

p k p k

p k p k

r





 


 

 

 



D ω D ω

D ω D ω ,   (49)                                           

where  is defined by user,  ,opt kp k 
D ω the 

last current optimum value and r indicates the last 
four successive iterations. 

The proposed algorithm outlined in Section 4, 
was implemented in Mathematica [37], a software 
platform offering a comprehensive range of 
programming techniques and a vast array of built-in 
functions. This resulted in a significantly more 
concise computer code than those written in 
comparable languages, such as C or FORTRAN. 
The algorithm's performance was evaluated on a 
workstation equipped with four processors. 

In this section, we present experimental results 
which demonstrate the performance of the selection 
rules. For the purposes of this investigation, three 
experiments were considered. The first experiment 
involved the generation of data which was in 
accordance with: 

     

 

1 1 1 2 2 2cos cos

, N

d t a t a t

e t t

      

 
, (50) 

where  

1 2 1 2

1 1

20, 0 rad., rad.
4

12 0.2, 2 0.2

a a

N


 

   

   

 
   

 

 ,  (51) 

and 64N  . Throughout the experiment, the SNR 
[38] defined by: 

2

10 210log
2

ia
SNR


 ,            (52) 

was varied from -3 to 10 dB in steps of 1 dB. The 
noise sequences were generated according to a 
Gaussian density function with 2  appropriately 
chosen to yield the required SNR.  

We let the reversible jump SA sampler to run 
and go through 10 thousand iterations. The 
computer output of simulations, illustrated in Table 
2 (Appendix). The estimated parameter values are 
quoted as estimated value ± standard deviation and 
show that all parameters are clearly recovered 
within the calculated accuracy. Figure 1(a) 
(Appendix) shows predicted signal and data samples 
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with errors that indicate uncertainty in the data 
points. In Figure 1 (b) (Appendix), it is seen that the 
proposed algorithm clearly separates the noise in 
data. In addition, Figure 1(c) (Appendix) shows a 
comparison of Fourier and Bayes spectral density 
[15], [39], [40], [41]. A comparison of these two 
spectral densities indicates that frequencies obtained 
by the proposed algorithm have separated the 
sinusoids very well although the separation of the 
sinusoids is less than the Rayleigh resolution [4], 
[42]. However, as the number of samples was 
increased its performance was improved. In the 
second experiment the data D , were represented 
three closely spaced sinusoids and generated by 

     

   

1 1 1 2 2 2

3 3 3

cos cos

cos , N

d t a t a t

a t e t t

   

 

   

   
,  (53) 

where  

 

1 3 2

1 2 3

1 2 1

20, 6.3246,

0 rad , rad, rad,
4 3

12 0.2 , 2 ,

a a a

N

 
  

    

  

  

 
   

 

(54) 

3 1
2and 2 .
N

  
 

  
 

  In a similar way, we 

produced data samples 64N   shown in Figure 
2(a) (Appendix) and ran the Mathematica code of 
this proposed algorithm again for this experiment. 
After 10 thousand iterations, Figure 2(b) (Appendix) 
shows the histogram and   the probability density of 
approximated noise and its exact distribution.  The 
best estimates of parameters for this frequency 
signal model are tabulated in Table 3 (Appendix). 
Once again, all the frequencies have been well 
resolved.  Even the second frequencies which are 
too close not to be separated by the Fourier power 
spectral density shown in Figure 2(c) (Appendix). 
With the Fourier spectral density when the 
separation of two frequencies is less than the 
Nyquist step, defined as 2 / N , the two frequencies 
are indistinguishable. This is simply because there 
are no sample points in between the two frequencies 
in the frequency domain. If 1 2 2 / N   

theoretically, the two frequencies can then be 
distinguished. If 1 2  is not large enough, the 
resolution will be very poor. Therefore, it is hard to 
tell where the two frequencies are located. This is 
just the inherent problem of the discrete Fourier 
power spectral density. In this example two 
frequencies are separated by 0.01, which is less than 
the Nyquist step size so that there is no way by 

using Fourier power spectral density that one can 
resolve these closed frequencies. However, 
Bayesian power spectral density shown in Figure 
2(c) (Appendix) gives us very good results with 
high accuracy. These results are also consistent with 
those obtained by. [4], [6], [7] and demonstrate the 
advantages of BI-RJMCMC-SA. To evaluate the 
efficacy of the algorithm, it was deployed in a 
scenario utilizing a synthetic data set derived from a 
multiple harmonic frequency model signal, which 
was also employed in reference, [40]: 

 

 

 

cos(0.1 1) 2cos(0.15 2)
5cos(0.3 3) 2cos(0.31 4)
3cos( 5)

d t t t

t t

t e t

   

   

  

      (55) 

The symmetric time interval  256,256  is 
traversed in discrete steps. Figure 3(a) (Appendix) 
depicts noisy data. The results presented in Table 4 
(Appendix) are expressed as estimated values ± 

standard deviations. As anticipated, all parameters 
are accurately estimated within the specified 
accuracy limits. A comparison of the current results 
with those obtained by [19] and [40] reveals that all 
frequencies are well resolved, including the third 
and fourth, which are in relatively closed proximity 
and therefore require separation. The typical 
representation of the results from a spectral analysis 
is in the form of power spectral density. Figures 3(b) 
(Appendix) shows the Fourier and Bayesian power 
spectral densities for this model signal, respectively. 
The Fourier power spectral density exhibits a mere 
four peaks, whereas the Bayesian power spectral 
density displays five peaks, which aligns with the 
number of frequencies present in the model signal.  

The algorithm proposed here automatically 
estimates the number of sinusoids in data. Computer 
simulations demonstrate that there is no limit to the 
number of sinusoids. If a scheme is devised that 
allows the reachability of any model from any point 
in the state space, the RJMCMC-SA sampler will 
move through it and spend most of its time with a 
model or set of models that are the most likely to 
occur. 
 

 

6 Conclusion 
We have presented a straightforward and direct 
approach for the simultaneous detection of the 
number of sinusoids and the estimation of their 
parameters from noisy data. Our method employs a 
Bayesian inference in conjunction with RJMCMC-
SA sampling, thereby providing a robust solution to 
the challenging problem of estimating the number of 
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sinusoids and their parameters from complex, noisy 
data sets. A concise overview of the underlying 
theory and illustrative examples of its practical 
applications are also provided. The results indicate 
that, despite the computational intensity, Bayesian 
RJMCMC-SA sampling is a powerful methodology 
for signal processing. Nevertheless, there remains a 
certain reluctance to employ MCMC algorithms, 
largely due to concerns pertaining to programming 
and reliability-convergence. It is thus recommended 
that further investigations be conducted to address 
this reluctance and facilitate further advances in the 
Bayesian exploration of complexity. Additionally, 
these analyses are particularly well suited for 
computation in the Mathematica program.   
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APPENDIX 
 

Table 1. The RJMCMC-SA algorithm 

1.Initialization: Choose an initial temperature 0T   and 
some initial starting configuration 

(0)(0) 2(0) (0), , ,kk  ω . 
2.Iteration i. 
SA 
RJMCMC step 

Sample  0,1u U:  

If 
ku u  

Update: update the radial frequencies 
kω  without 

altering the k   number of components using difffferent 
puposals in Section 4.1.3 

ku b  
Birth: add a sinusoid at random in Section 4.1.1 

ku d  
Death: remove a sinusoid at random in Section 4.1.1 

ik
u s  
Split: choose a sinusoid randomly and split it into two 
close sinusoids in Section 4.1.2 

ik
u m  
Merge: choose two close sinusoids randomly and 
merge them into one sinusoid in Section 4.1.2 
3.Demarginalization: Updating noise variance 2

k   
and amplitudes 

ka  
4.Perform an SA step with Simulated annealing 
acceptance ratio in Section 4.2 
Convergence: Test the convergence in  
   Section 5 
Cooling: Control the cooling schedule in Section 5 

5. 1i i   and go to 2 

 
Table 2. Output of Computer simulation of noisy 

two sinusoids  
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Table 3. Computer output of three noisy sinusoids 

 

 
 

Table 4. Computer output of   multiple noisy 
sinusoids 

CPU: 1274.52s. 
Number of Observations: 512 
Number of Parameters: 15 
STN ratio: 4.34691 ̂  : 1 

  
 

 
(a) 

 
(b) 

 
(c) 

Fig. 1: (a) Red points show data samples from noisy 
two sinusoids.  (b) Comparison of noise separate 
from data with its exact distribution. (c) Power 
spectral density varies with angular frequency 
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(a)                 

 

(b)          

 
(c) 

Fig. 2:  (a) Red points show data samples from 
noisy three sinusoids.  (b) Comparison of noise 
separated from data with its exact distribution. (c) 
Power spectral distribution varies with angular 
frequency 
 

           

 
Fig. 3(a): Noisy data for multiple sinusoids 
 

 

 
(b) 

Fig. 3(b): Power spectral distribution varies with 
angular frequency for multiple sinusoids 
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