Acknowledgements
Authors are grateful to three anonymous
reviewers for their constructive comments
and suggestions, which certainly helped to
improve the quality and presentation of the
paper.
References:
[1] Abu-Shaweish, M O A, Akyz, H. E. and
Kibria, B. M. G. (2019). Performance of
Some Confidence Intervals for Estimating
the Population Coefficient of Variation
Under both Symmetric and Skewed
Distributions. Statistics, Optimization and
Information Computing, 7, 277-290.
[2] Albatineh, A, N., Kibria, B. M. G., Wilcox,
M. L. and Zogheib, B. (2014). Confidence
interval estimation for the population
coefficient of variation using ranked set
sampling: a simulation study, Journal of
Applied Statistics, 41(4), 733-751.
[3] Andrew, H., George, F. and Kibria, B. M. G.
(2015). Methods for Identifying
Differentially Expressed Genes: An
Empirical Comparison. Journal of
Biometrics and Biostatistics. 6:5, 1-6.
[4] Banik, S., Kibria, B M G. (2010).
Comparison of some parametric and
nonparametric type one sample confidence
intervals for estimating the mean of a
positively skewed distribution.
Communications in Statistics-Simulation and
Computation, 39: 361-389.
[5] Banik, S., Kibria, B. M. G. and D. Sharma
(2012). Testing the Population Coefficient of
Variation. Journal of Modern Applied
Statistical Methods. 11(2), 325 – 335.
[6] Bekker, A., J. J. J. Roux and P. J. Mosteit.
2000. A generalization of the compound
Rayleigh distribution: using a Bayesian
method on cancer survival times. Commun.
Stat. Theory Methods. 29: 1419–1433.
[7] Curto, J. D., Pinto, J. C. (2009). The
coefficient of variation asymptotic
distribution in the case of non-iid random
variables. Journal of Applied Statistics,
36(1), 21-32.
[8] George, F. and Kibria, B. M. G. (2012).
Confidence Intervals for estimating the
population signal-to-noise ratio: a simulation
study. Journal of Applied Statistics
39(6):1225–1240.
[9] John, C. R. (2007). The image processing
handbook. CRC Press, Boca Raton, Florida.
[10] Kibria, B. M. G. (2006). Modified
confidence intervals for the mean of the
asymmetric distribution. Pakistan Journal
of Statistics, 22 (2), 109-120.
[11] Kibria, B. M. G. and George, F. (2014)
Methods for Testing Population Signal-to-
Noise Ratio, Communications in Statistics -
Simulation and Computation, 43:3, 443-461,
DOI: 10.1080/03610918.2012.70454
[12] Koopmans, L. H., Owen, D. B.,
Rosenblatt, J. I. (1964) Confidence intervals
for the coefficient of variation for the normal
and log normal distributions. Biometrika
Trust , 51(1/2), 25-32.
[13] Linhart, H. and W. Zucchini. 1986.
Model Selection. Wiley, New York, USA
[14] McGibney, G., Smith, M.R. (1993). An
unbiased signal-to-noise ratio measure for
magnetic resonance images. Medical
Physics, 20(4), 1077-1079.
[15] McKay, A.T.(1932). Distribution of the
coefficient of variation and the extended $t$
distribution. Journal of Royal Statistical
Society, 95, 695-698.
[16] Miller, E.G.(1991). Asymptotic test
statistics for coefficient of variation.
Communications in Statistics - Theory and
Methods, 20, 3351-3363.
[17] Panichkitkosolkul, W. (2009). Improved
confidence intervals for a coefficient of
variation of a normal distribution. Thailand
Statistician, 7(2), 193-199.
[18] Panichkitkosolkul, W. and Tulyanitikul,
B. (2022). Performance of statistical methods
for testing the signal-to-noise ratio of a log-
normal distribution. 2020 IEEE 7th
International Conference on Industrial
Engineering and Applications, 656-661.
[19] Rousseeuw, P.J.,and Croux,C. (1993).
Alternatives to the median absolute
deviation, Journal of the American Statistical
Association,88(424), 1273-1283.
WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2023.19.10
Samantha Menendez,
Florence George, B. M. Golam Kibria