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Abstract: - In the digital imaging process, fuzzy logic provides many advantages, including uncertainty 
management, adaptability to variations, noise tolerance, and adaptive classification. One of the techniques of digital 
image processing is the edge detection. The edge detection process is an essential tool to segment the foreground 
objects from the image background. So, it facilitates subsequent analysis and comprehension of the image’s 
underlying structural properties. This process can be moved on with the notion of fuzzy sets and their 
generalizations. The concept of Linear Diophantine fuzzy sets is a generalization of fuzzy sets where reference 
parameters correspond to membership and non-membership grades. This study aims to apply linear Diophantine 
fuzzy sets (LDFSs) to edge detection of images. The novelty of this paper is twofold. The first one is that we 
conduct a comprehensive evaluation to ascertain the similarity values using the linear Diophantine fuzzy similarity 
measure by leveraging the gray normalized membership values associated with fundamental edge detection 
techniques. The other is to modify the image pixels into the LDFSs and then filter the images by using the 
presented similarity measure operators given in the LDFS environment. 
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1   Introduction 
In 1965, fuzzy set (FS) theory was given in [1], to 
overcome ambiguous and uncertain information. 
Then, FS theory has been applied in different areas 
from economics, information sciences, computer 
sciences, and medical sciences to the social sciences. 
While the authors applied this theory effectively, 
some of them have stated that there are some 
situations where this theory is inadequate. For this 
reason, different generalizations of FS theory have 
been presented such as intuitionistic fuzzy set (IFS), 
Pythagorean fuzzy set (PyFS), picture fuzzy set 
(PFS), spherical fuzzy set (SFS), and LDFSs. These 
generalized fuzzy sets have been the subject of 
numerous studies in the literature, and their 
applications have been extensively explored in 
various domains.  The authors in [2], [3], [4], [5], [6], 

[7], [8], have successfully applied these theories to 
the decision-making problems. Also, distance, 
similarity, and entropy measures have been defined 
in the mentioned environment and applied to real-life 
problems, [9], [10], [11], [12].   
     The notion of IFSs was introduced in [13], 
according to this theory, every element is defined by 
a degree of membership and a degree of non- 
membership, with the condition that the total of these 
levels does not surpass one. There are a lot of 
applications of IFSs such as decision-making, image 
processing, expert systems, pattern recognition, and 
multi-criteria decision analysis, [14], [15], [16], [17]. 
Then a more generalized version of IFSs, named 
LDFSs, was given in [18], by incorporating reference 
parameters to offer a more flexible and efficient 
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approach. The theory of LDFSs expands the range of 
membership and non-membership degrees through 
the use of reference parameters. There are many 
application areas where LDFSs find practical use that 
have been described in the current literature [19], 
[20], [21], [22]. These studies cover the extent and 
various domains and include a wide variety of 
problem-solving. Moreover, some works on image 
processing can be found in [23], [24]. In this work, 
we aim to give an application of LDFSs to image 
processing that efficiently provides numerous 
benefits such as effectively handling uncertainty, 
adapting to variations, tolerating noise and enable 
adaptive classification. These benefits significantly 
increase the precision and adaptability of image 
processing, enabling more accurate and flexible 
handling of visual data. Image processing consists of 
multiple stages and edge detection is a crucial first 
step. Accurate edge detection is crucial for the 
correct execution of the subsequent stages. Therefore, 
we first establish some new similarity measures and 
show that an image can be represented as LDFSs. 
Then, using the similarity measures, we show that the 
edge detection process can be effectively managed 
and executed using LDFS principles. In conclusion, 
with this work we can show that image processing is 
a suitable application area for theoretical 
mathematics topics. 
 
2   Preliminaries 
2.1 Linear Diophantine Fuzzy Sets 
In this subsection, we give the concepts of FSs, IFSs, 
and LDFSs. Then, we recall some distance and 
similarity measures for LDFSs. Furthermore, we give 
the definition of the Minkowski distance measure 
which is a generalization of the mentioned distance 
measures. 
 
Definition 1, [1], [13], Let U be a non-empty set. 
(i) A fuzzy set (FS) F on U is given by  

𝐹 =  {(𝑢, µ𝐹  (𝑢)) ∶  𝑢 ∈  𝑈 } 
where µ𝐹: 𝑈 → [0, 1] is the function that 
represent the membership of u to the F. 
(ii) An intuitionistic fuzzy set (IFS) A on U is 
given by 

𝐴 =  {(𝑢, µ𝐴(𝑢), 𝜈𝐴(𝑢)): 𝑢 ∈  𝑈 } 
where µ𝐴, 𝜈𝐴: 𝑈 → [0, 1] are the functions that 
represent the membership and non-membership 
function of u to the A, respectively, satisfying 0 ≤
𝜇𝐴(𝑢) + 𝜈𝐴(𝑢) ≤ 1 for all u ∈  U. 

 
Remark 2 Each FS can be taken as an IFS by 
considering the non-membership function  
𝜈𝐴(𝑢) = 1 − 𝜇𝐴(𝑢). So, the collection of FSs is the 
subset of the collection of IFSs. 
     As a more general form, the notion of LDFSs is 
described in [18], in the following manner: 
 
Definition 3, [18], Let U be a non-empty set. A 
LDFS 𝐿 on 𝑈 is given by 

𝐿 = {(𝑢, ⟨𝜇𝐿(𝑢), 𝜈𝐿(𝑢)⟩, ⟨𝛼𝐿 , 𝛽𝐿⟩): 𝑢 ∈ 𝑈} 
where 𝜇𝐿 , 𝜈𝐿: 𝑈 → [0,1] are the functions that 
represent the membership and non-membership 
function of u to the L, respectively, and  
𝛼𝐿 ,  𝛽𝐿 ∈ [0,1] denotes the reference parameters 
value satisfying 0 ≤ 𝛼𝐿𝜇𝐿(𝑢) + 𝛽𝐿𝜈𝐿(𝑢) ≤ 1, for all 
u ∈ U, with 0 ≤ 𝛼𝐿 + 𝛽𝐿 ≤ 1. This reference 
parameters help us to define or classify a particular 
system. 
     The hesitation value πL is calculated by  
𝜋𝐿(𝑢) = 1 − (𝛼𝐿𝜇𝐿(𝑢) + 𝛽𝐿𝜈𝐿(𝑢)) for all u ∈ U. 
We use the pair (⟨𝜇, 𝜈⟩, ⟨𝛼, 𝛽⟩) to denote the linear 
Diophantine fuzzy number (LDFN) if the conditions 
0 ≤ 𝛼𝜇 + 𝛽𝜈 ≤ 1 and 0 ≤ 𝛼 + 𝛽 ≤ 1 are satisfied. 
The collection of all LDFSs on U will be represented 
by L(U). 
 
Remark 4 Each IFS can be taken as an LDFS. That 
is, if 𝐴 = {(𝑢, 𝜇𝐴(𝑢), 𝜈𝐴(𝑢)): 𝑢 ∈ 𝑈} is an IFS and 
the parameter values 𝛼𝐴, 𝛽𝐴 ∈ [0,1] satisfies 0 ≤
αA + βA ≤ 1, then we have that 0 ≤ 𝛼𝐴𝜇𝐴(𝑢) +
𝛽𝐴𝜈𝐴(𝑢) ≤ 𝜇𝐴(𝑢) + 𝜈𝐴(𝑢) ≤ 1. Hence the set 𝐴 =
{(𝑢, ⟨𝜇𝐴(𝑢), 𝜈𝐴(𝑢)⟩, ⟨𝛼𝐴, 𝛽𝐴⟩): 𝑢 ∈ 𝑈} satisfying 
αA, βA ∈ [0,1] and 0 ≤ 𝛼𝐴 + 𝛽𝐴 ≤ 1, for all u ∈ U, is 
an LDFS. 
     We obtain the following results from Remark 2 
and Remark 4: 

 
Corollary 5  If 𝐹 = {(𝑢, 𝜇𝐹(𝑢)): 𝑢 ∈ 𝑈} is a  
FS, then we have that the set  
𝐴 = {(𝑢, ⟨𝜇𝐴(𝑢), 1 − 𝜇𝐴(𝑢)⟩, ⟨𝛼𝐴, 𝛽𝐴⟩): 𝑢 ∈ 𝑈} 
satisfying 0 ≤ 𝛼𝐴 + 𝛽𝐴 ≤ 1 is an LDFS. 
 
Definition 6, [18], A LDFS on L(U) of the form 
𝐿𝑈 = {(𝑢, ⟨1,0⟩, ⟨1,0⟩): 𝑢 ∈ 𝑈} is called absolute 
LDFS and 𝐿0 = {(𝑢, ⟨0,1⟩, ⟨0,1⟩): 𝑢 ∈ 𝑈} is called 
null (empty) LDFS. 
 
Definition 7, [18], Let L ∈ L(U). Then the 
complement of L, represented by Lc, is given by  
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𝐿𝑐 = {(𝑢, ⟨𝜈𝐿(𝑢), 𝜇𝐿(𝑢)⟩, ⟨𝛽𝐿(𝑢), 𝛼𝐿(𝑢)⟩): 𝑢 ∈ 𝑈}. 
 
Algebraic operations between LDFSs were defined in 
[18], as follows: 
 

Definition 8, [18], Let L, L1, L2 ∈ L(U) and k > 0. 
Then, 
• 𝐿1⨁𝐿2 = {(𝑢, ⟨𝜇𝐿1

(𝑢) + 𝜇𝐿2
(𝑢) −

𝜇𝐿1
(𝑢)𝜇𝐿2

(𝑢), 𝜈𝐿1
(𝑢)𝜈𝐿2

(𝑢)⟩, ⟨𝛼𝐿1
(𝑢) +

𝛼𝐿2
(𝑢) − 𝛼𝐿1

(𝑢)𝛼𝐿2
(𝑢), 𝛽𝐿1

(𝑢)𝛽𝐿2
(𝑢)⟩): 𝑢 ∈ 𝑈} 

• 𝐿1⨂𝐿2 = { (𝑢, 〈𝜇𝐿1
(𝑢)𝜇𝐿2

(𝑢), 𝜈𝐿1
(𝑢) + 𝜈𝐿2

(𝑢) −

𝜈𝐿1
(𝑢)𝜈𝐿2

(𝑢)〉, 〈 𝛼𝐿1
(𝑢)𝛼𝐿2

(𝑢), 𝛽𝐿1
(𝑢) +

𝛽𝐿2
(𝑢) − 𝛽𝐿1

(𝑢)𝛽𝐿2(𝑢)
〉 ): 𝑢 ∈ 𝑈}  

• 𝑘. 𝐿 = {(𝑢, ⟨1 − (1 − 𝜇𝐿(𝑢))
𝑘

, 𝜈𝐿(𝑢)𝑘⟩, ⟨1 −

(1 − 𝛼𝐿(𝑢))
𝑘

, 𝛽𝐿(𝑢)𝑘⟩) : 𝑢 ∈ 𝑈}, 

• 𝐿𝑘 = {(𝑢, ⟨𝜇𝐿(𝑢)𝑘, 1 − (1 −

𝜈𝐿(𝑢))
𝑘

⟩, ⟨𝛼𝐿(𝑢)𝑘 , 1 − (1 − 𝛽𝐿(𝑢))
𝑘

⟩) : 𝑢 ∈ 𝑈}. 
 

Proposition 9, [18], For LDFSs 𝐿, 𝐿1, 𝐿2 ∈ 𝐿(𝑈) and  
𝑘 > 0, 𝐿1⨁𝐿2, 𝐿1⨂𝐿2, 𝑘. 𝐿 and 𝐿𝑘 are also LDFSs. 
 

The concept of distance measurement is a very 
important tool because it shows how different or far 
away two objects are from each other. The definition 
of distance measure in LDFS environment was given 
as follows: 
 
Definition 10, [20], Let U be a non-empty set. Then a 
mapping 𝐷: 𝐿(𝑈) × 𝐿(𝑈) → [0,1] is said to be a 
distance measure on LDFSs if the following 
conditions hold for all L1, L2 ∈ L(U): 

• 0 ≤ 𝐷(𝐿1, 𝐿2) ≤ 1, 
• 𝐷(𝐿1, 𝐿2) = 𝐷(𝐿2, 𝐿1), 
• 𝐷(𝐿1, 𝐿2) = 0 if 𝐿1 = 𝐿2, 
• If 𝐿1 ⊑ 𝐿2 ⊑ 𝐿3 then 𝐷(𝐿1, 𝐿3) ≥ 𝐷(𝐿1, 𝐿2) 

and 𝐷(𝐿1, 𝐿3) ≥ 𝐷(𝐿2, 𝐿3). 
 

Theorem 11, [20], Let 𝑈 = {𝑢1, 𝑢2, . . , 𝑢𝑛},  
𝐿1, 𝐿2 ∈ 𝐿(𝑈) and the mappings  
𝐷𝐻 , 𝐷𝐸: 𝐿(𝑈) × 𝐿(𝑈) → [0,1] defined as follows:   

𝐷𝐻(𝐿1, 𝐿2) =
1

4𝑛
∑[

𝑛

𝑖=1

|𝜇𝐿1
(𝑢𝑖) − 𝜇𝐿2

(𝑢𝑖)|

+ |𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖)| 
+|𝛼𝐿1

(𝑢𝑖) − 𝛼𝐿2
(𝑢𝑖)| + |𝛽𝐿1

(𝑢𝑖) − 𝛽𝐿2
(𝑢𝑖)|]  

𝐷𝐸(𝐿1, 𝐿2) = (
1

4𝑛
∑ [𝑛

𝑖=1 (𝜇𝐿1
(𝑢𝑖) − 𝜇𝐿2

(𝑢𝑖))
2

+

(𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖))
2
  

+ (𝛼𝐿1
(𝑢𝑖) − 𝛼𝐿2

(𝑢𝑖))
2

+ (𝛽𝐿1
(𝑢𝑖) − 𝛽𝐿2

(𝑢𝑖))
2

])
1

2  

 
Then the mappings 𝐷𝐻 and 𝐷𝐸 are distance 

measures on LDFSs. These distance measures are 
called the normalized Hamming distance and the 
normalized Euclidean distance, respectively. 
    In the following, we define the Minkowski 
distance between LDFSs: 
 

Definition 12 Let 𝑈 = {𝑢1, 𝑢2, . . , 𝑢𝑛}, 𝐿1, 𝐿2 ∈ 𝐿(𝑈) 
and the mapping 𝐷𝑀: 𝐿(𝑈) × 𝐿(𝑈) → [0,1] defined 
as follows:  

𝐷𝑀(𝐿1, 𝐿2) = (
1

4𝑛
∑[

𝑛

𝑖=1

|𝜇𝐿1
(𝑢𝑖) − 𝜇𝐿2

(𝑢𝑖)|
𝑎 

+|𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖)|
𝑎

+ |𝛼𝐿1
(𝑢𝑖) − 𝛼𝐿2

(𝑢𝑖)|
𝑎 

+|𝛽𝐿1
(𝑢𝑖) − 𝛽𝐿2

(𝑢𝑖)|
𝑎

])
1

𝑎. 
 

Then the mapping 𝐷𝑀 is a distance measure on 
LDFSs. This distance measure is called the 
normalized Minkowski distance. 
     Note that, in the definition of the normalized 
Minkowski distance, if 𝑎 = 1 and 𝑎 = 2, then we 
have the definitions of the normalized Hamming 
distance and the normalized Euclidean distance, 
respectively. 
 
Definition 13, [20], Let 𝑈 be a non-empty set. Then a 
mapping 𝑆: 𝐿(𝑈) × 𝐿(𝑈) → [0,1] is said to be a 
similarity measure on LDFSs if the following 
conditions hold for all 𝐿1, 𝐿2 ∈ 𝐿(𝑈): 

• 0 ≤ 𝑆(𝐿1, 𝐿2) ≤ 1, 
• 𝑆(𝐿1, 𝐿2) = 𝑆(𝐿2, 𝐿1), 
• 𝑆(𝐿1, 𝐿2) = 1 if 𝐿1 = 𝐿2, 
• If 𝐿1 ⊑ 𝐿2 ⊑ 𝐿3 then 𝑆(𝐿1, 𝐿3) ≤ 𝑆(𝐿1, 𝐿2) 

and 𝑆(𝐿1, 𝐿3) ≤ 𝑆(𝐿2, 𝐿3). 
Next, we show that a similarity measure can be 
induced via distance measure: 
 
Theorem 14 Let 𝑓: [0,1] → [0,1] be a decreasing 
function and 𝐷 be a distance measure on LDFSs. 
Suppose that the mapping 𝑆𝐷

𝑓
: 𝐿(𝑈) × 𝐿(𝑈) → [0,1]  

is defined by 𝑆𝐷
𝑓(𝐿1, 𝐿2) =

𝑓(𝐷(𝐿1,𝐿2))−𝑓(1)

𝑓(0)−𝑓(1)
. Then the 

mapping 𝑆𝐷
𝑓 is a similarity measure on LDFSs. This 
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similarity measure is said to be an f-similarity 
measure based on the distance measure on LDFSs. 
Now, we give some specific examples to demonstrate 
the Theorem 14. 
 
Example 15 (1) Let 𝑓1: [0,1] → [0,1] be defined by 
𝑓1(𝑢) = 1 − 𝑢 and 𝐷 be a distance measure on 
LDFSs. Then, we obtain 
𝑆𝐷

𝑓1(𝐿1, 𝐿2) =
𝑓1(𝐷(𝐿1,𝐿2))−𝑓1(1)

𝑓1(0)−𝑓1(1)
=

1−𝐷(𝐿1,𝐿2)−0

1−0

= 1 − 𝐷(𝐿1, 𝐿2).                              
  

(2) Let 𝑓2: [0,1] → [0,1] be defined by 𝑓2(𝑢) = 𝑒−𝑢 
and 𝐷 be a distance measure on LDFSs. Then, we 
obtain  

𝑆𝐷
𝑓2(𝐿1, 𝐿2) =

𝑓2(𝐷(𝐿1,𝐿2))−𝑓2(1)

𝑓2(0)−𝑓2(1)
=

𝑒−𝐷(𝐿1,𝐿2)−𝑒−1

𝑒0−𝑒−1

=
𝑒−𝐷(𝐿1,𝐿2)−𝑒−1

1−𝑒−1 .                                  
  

(3) Let 𝑓3: [0,1] → [0,1] be defined by 𝑓3(𝑢) =
1

1+𝑢
 

and 𝐷 be a distance measure on LDFSs. Then, we 
obtain 

 
𝑆𝐷

𝑓3(𝐿1, 𝐿2) =
𝑓3(𝐷(𝐿1,𝐿2))−𝑓3(1)

𝑓3(0)−𝑓3(1)
=

1

1+𝐷(𝐿1,𝐿2)
−

1

2

1−
1

2

=
1−𝐷(𝐿1,𝐿2)

1+𝐷(𝐿1,𝐿2)
.                                    

 

Using the distance measures introduced and 
described above, we can obtain similarity measures 
to use in the process of edge detection as follows; 
Corollary 16 Let 𝑈 = {𝑢1, 𝑢2, . . , 𝑢𝑛} and 𝐿1, 𝐿2 ∈
𝐿(𝑈). Then the similarity measures 
SDH

f1 , SDE

f1 , SDM

f1 , SDH

f2 , SDE

f2 , SDM

f2 , SDH

f3 , SDE

f3  and SDM

f3  are 
obtained as follows:  
 

𝑆𝐷𝐻

𝑓1 (𝐿1, 𝐿2) = 1 − 𝐷𝐻(𝐿1, 𝐿2) 

= 1 − (
1

4𝑛
∑[

𝑛

𝑖=1

|𝜇𝐿1
(𝑢𝑖) − 𝜇𝐿2

(𝑢𝑖)|

+ |𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖)| 

+|𝛼𝐿1
(𝑢𝑖) − 𝛼𝐿2

(𝑢𝑖)| + |𝛽𝐿1
(𝑢𝑖) − 𝛽𝐿2

(𝑢𝑖)|]) 

 

𝑆𝐷𝐸

𝑓1 (𝐿1, 𝐿2) = 1 − 𝐷𝐸(𝐿1, 𝐿2) 

= 1 − (
1

4𝑛
∑[

𝑛

𝑖=1

|𝜇𝐿1
(𝑢𝑖) − 𝜇𝐿2

(𝑢𝑖)|
2
 

+|𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖)|
2

+ |𝛼𝐿1
(𝑢𝑖) − 𝛼𝐿2

(𝑢𝑖)|
2

+

|𝛽𝐿1
(𝑢𝑖) − 𝛽𝐿2

(𝑢𝑖)|
2

])1/2  

 
 

𝑆𝐷𝑀

𝑓1 (𝐿1, 𝐿2) = 1 − 𝐷𝑀(𝐿1, 𝐿2) 

= 1 − (
1

4𝑛
∑[

𝑛

𝑖=1

|𝜇𝐿1
(𝑢𝑖) − 𝜇𝐿2

(𝑢𝑖)|
𝑎

 

+|𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖)|
𝑎

+ |𝛼𝐿1
(𝑢𝑖) − 𝛼𝐿2

(𝑢𝑖)|
𝑎

+

|𝛽𝐿1
(𝑢𝑖) − 𝛽𝐿2

(𝑢𝑖)|
𝑎

])1/𝑎  

 

𝑆𝐷𝐻

𝑓2 (𝐿1, 𝐿2) =
𝑒−𝐷𝐻(𝐿1,𝐿2) − 𝑒−1

1 − 𝑒−1
 

= (𝑒𝑥𝑝 (1 − 1/4𝑛 ∑ [𝑛
𝑖=1 |𝜇𝐿1

(𝑢𝑖) − 𝜇𝐿2
(𝑢𝑖)|  

+|𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖)|  + |𝛼𝐿1
(𝑢𝑖) − 𝛼𝐿2

(𝑢𝑖)| +

|𝛽𝐿1
(𝑢𝑖) − 𝛽𝐿2

(𝑢𝑖)|])) − 1/(𝑒 − 1)  

 

𝑆𝐷𝐸

𝑓2 (𝐿1, 𝐿2) =
𝑒−𝐷𝐸(𝐿1,𝐿2) − 𝑒−1

1 − 𝑒−1
 

= (𝑒𝑥𝑝 (1 −
1

4𝑛
∑[

𝑛

𝑖=1

|𝜇𝐿1
(𝑢𝑖) − 𝜇𝐿2

(𝑢𝑖)|
2
 

+|𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖)|
2

+ |𝛼𝐿1
(𝑢𝑖) − 𝛼𝐿2

(𝑢𝑖)|
2

+

|𝛽𝐿1
(𝑢𝑖) − 𝛽𝐿2

(𝑢𝑖)|
2

])1/2) − 1/(𝑒 − 1)  

 

𝑆𝐷𝑀

𝑓2 (𝐿1, 𝐿2) =
𝑒−𝐷𝑀(𝐿1,𝐿2) − 𝑒−1

1 − 𝑒−1
 

= (𝑒𝑥𝑝 (1 −
1

4𝑛
∑[

𝑛

𝑖=1

|𝜇𝐿1
(𝑢𝑖) − 𝜇𝐿2

(𝑢𝑖)|
𝑎

 

+|𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖)|
𝑎

+ |𝛼𝐿1
(𝑢𝑖) − 𝛼𝐿2

(𝑢𝑖)|
𝑎

  

+|𝛽𝐿1
(𝑢𝑖) − 𝛽𝐿2

(𝑢𝑖)|
𝑎

])1/𝑎) − 1/(𝑒 − 1)  

         

𝑆𝐷𝐻

𝑓3 (𝐿1, 𝐿2) =
1 − 𝐷𝐻(𝐿1, 𝐿2)

1 + 𝐷𝐻(𝐿1, 𝐿2)
 

= (1 −
1

4𝑛
∑[

𝑛

𝑖=1

|𝜇𝐿1
(𝑢𝑖) − 𝜇𝐿2

(𝑢𝑖)|

+ |𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖)| 
 +|𝛼𝐿1

(𝑢𝑖) − 𝛼𝐿2
(𝑢𝑖)| + |𝛽𝐿1

(𝑢𝑖) − 𝛽𝐿2
(𝑢𝑖)|])  

    /(1 +
1

4𝑛
∑[

𝑛

𝑖=1

|𝜇𝐿1
(𝑢𝑖) − 𝜇𝐿2

(𝑢𝑖)|

+ |𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖)| 

 +|𝛼𝐿1
(𝑢𝑖) − 𝛼𝐿2

(𝑢𝑖)| + |𝛽𝐿1
(𝑢𝑖) − 𝛽𝐿2

(𝑢𝑖)|]) 
 
𝑆𝐷𝐸

𝑓3 (𝐿1, 𝐿2) =
1−𝐷𝐸(𝐿1,𝐿2)

1+𝐷𝐸(𝐿1,𝐿2)
  

=(1 −
1

4𝑛
∑ [𝑛

𝑖=1 |𝜇𝐿1
(𝑢𝑖) − 𝜇𝐿2

(𝑢𝑖)|
2  

+|𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖)|
2
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+|𝛼𝐿1
(𝑢𝑖) − 𝛼𝐿2

(𝑢𝑖)|
2

+ |𝛽𝐿1
(𝑢𝑖) − 𝛽𝐿2

(𝑢𝑖)|
2

]
1

2) 

/(1 +
1

4𝑛
∑[

𝑛

𝑖=1

|𝜇𝐿1
(𝑢𝑖) − 𝜇𝐿2

(𝑢𝑖)|
2

+ |𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖)|
2

 

+|𝛼𝐿1
(𝑢𝑖) − 𝛼𝐿2

(𝑢𝑖)|
2

+ |𝛽𝐿1
(𝑢𝑖) − 𝛽𝐿2

(𝑢𝑖)|
2

]1/2) 
 
 
𝑆𝐷𝑀

𝑓3 (𝐿1, 𝐿2) =
1−𝐷𝑀(𝐿1,𝐿2)

1+𝐷𝑀(𝐿1,𝐿2)
  

= (1 −
1

4𝑛
∑ [𝑛

𝑖=1 |𝜇𝐿1
(𝑢𝑖) − 𝜇𝐿2

(𝑢𝑖)|
𝑎

   

+|𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖)|
𝑎

+ |𝛼𝐿1
(𝑢𝑖) − 𝛼𝐿2

(𝑢𝑖)|
𝑎  

+|𝛽𝐿1
(𝑢𝑖) − 𝛽𝐿2

(𝑢𝑖)|
𝑎

]
1

𝑎)  
/(1 +

1

4𝑛
∑ [𝑛

𝑖=1 |𝜇𝐿1
(𝑢𝑖) − 𝜇𝐿2

(𝑢𝑖)|
𝑎  

+|𝜈𝐿1
(𝑢𝑖) − 𝜈𝐿2

(𝑢𝑖)|
𝑎

+ |𝛼𝐿1
(𝑢𝑖) − 𝛼𝐿2

(𝑢𝑖)|
𝑎  

 +|𝛽𝐿1
(𝑢𝑖) − 𝛽𝐿2

(𝑢𝑖)|
𝑎

]1/𝑎) 
 
 
2.2  Basic Edge Detection Techniques 
Edge detection plays a crucial role in various image-
related tasks such as image processing, image 
analysis, image pattern recognition, and computer 
vision techniques. The outcome of the edge detection 
process on an image provides a collection of 
connected curves that represent object boundaries, 
surface markings, and variations in surface 
orientation. By applying an edge detection algorithm 
to an image, it becomes possible to significantly 
reduce the data volume for processing, effectively 
filtering out less relevant information while 
preserving the essential structural characteristics of 
the image. Successful execution of the edge detection 
step allows for a simplified interpretation of the 
information contained in the original image. 

Brief information about the commonly used edge 
detection techniques Sobel, Prewitt, LoG (Laplacian 
of Gaussian), Canny and Roberts are given below 
and these techniques are applied for a grey level 
image on MATLAB and given in Figure 1, Figure 2, 
Figure 3, Figure 4 and Figure 5. 

In the Sobel technique, edges are identified by 
employing a 3 × 3 image filter in the local 
neighborhood. This technique gives some smoothing 
effect against the random noise of the image, making 
the edges appear thicker and brighter. 
 

 
Fig. 1: The results of Sobel technique 
 

The Prewitt technique which is very similar to 
the Sobel technique estimates edge detection by 
utilizing a simplified 3 × 3 image filter in the local 
neighborhood. 
 

 
Fig. 2: The results of Prewitt technique 

 
The Laplacian technique detects edges by 

searching for points where the second derivative 
crosses zero. The second derivative is more effective 
in capturing fine details compared to the first 
derivative. However, it has the disadvantage of being 
highly sensitive to noise. Therefore, to mitigate this, 
a Gaussian filter is applied beforehand to remove 
noise. 
 

 
Fig. 3: The results of LoG technique 
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The Canny technique is designed to reduce noise, 
emphasize actual edges, and increase the sensitivity 
of edge detection. It involves several steps to identify 
edges. Firstly, it uses a Gaussian filter to reduce the 
details and noise in the image, finds the edge 
candidates by determining the direction and 
magnitude of the gradient for each pixel, and then 
selects the most suitable edges by removing the weak 
pixels with the thresholding method. 

 

 
Fig. 4: The results of Canny technique 

 
The Roberts method employs two separate 2x2 

convolutional masks to compute the gradient 
magnitude within the image. This involves applying 
these masks to specific pixel neighborhoods through 
a process known as convolution, enabling the 
derivation of gradients across the image. 
 

 
Fig. 5: The results of Roberts technique 

 
To facilitate a comparative analysis among the 

aforementioned edge detection techniques, each 
method is individually employed on the grayscale 
version of a different image. Subsequently, a 
collective presentation of the outcomes is provided in 
the combined Figure 6 for easy comparison. 

 

 
Fig. 6: Comparison of edge detection techniques 

 
Fuzzification of an image is particularly useful 

when working with algorithms or techniques that 
require a specific range of inputs, such as image 
processing algorithms based on normalized values. 
Generally, fuzzification of an image involves 
rescaling pixel values to the range [0, 1], this can be 
made in various ways using different membership 
functions. This process allows for easier analysis and 
processing of image data while ensuring consistency 
and compatibility with image processing techniques 
and algorithms. 

The above-mentioned techniques are employed 
on the image after fuzzification, and the resulting 
outputs are displayed in Figure 7. 

 

 
Fig. 7: Edge detection for fuzzified image 
 
 
3  Modification of an Image to   LDFS 
The process of modification of an image into LDFS 
entails the incorporation of the specific characteristic 
of being LDFN into the data, wherein said data 
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possesses pixel values falling within the predefined 
range of [0, 1]. For example, if image A satısfies the 
condition 𝑎(𝑖, 𝑗) ∗ 𝛼 + (1 − 𝑎(𝑖, 𝑗)) ∗ 𝛽)) < 1 where 
𝑎(𝑖, 𝑗) is its (𝑖, 𝑗)th pixel and 𝛼, 𝛽 are randomly 
chosen, then we can define each pixel of A as 
𝑎(𝑖, 𝑗) =< (𝑎(𝑖, 𝑗), 1 − 𝑎(𝑖, 𝑗)), (𝛼, 𝛽) >. Therefore, 
it can be argued that every image has the potential to 
be expressed and characterized within the LFDS 
framework. 

Implementing such a modification facilitates the 
seamless utilization of operators specifically defined 
for LDFS, enabling straightforward integration into 
various operations and processes applied to the 
image. 

The modified version of the Lena image and 
traditional edge detection filters applied can be seen 
in Figure 8 and Figure 9 for different 𝜶 and 𝜷. 
 

 
Fig. 8: Edge detection for modified image with 𝛼 =
0.0971 and 𝛽 = 0.8235 
 

 
Fig. 9: Edge detection for modified image with 𝛼 =
0.1869 and 𝛽 = 0.4898 

 
The modification has some disadvantages as well 

as advantages. As seen in Figure 8 and Figure 9, this 

process does not work in harmony with the LoG filter 
for the selected alpha and beta values and does not 
give a clear output. However, compatible alpha and 
beta values can be found. The results obtained from 
the LoG filter for some values of 𝛼 and 𝛽 are given 
in Figure 10 below. 
 

 
Fig. 10: Results of LoG filter: (a) 𝛼 = 0.4018 and 
𝛽 = 0.0760, (b) 𝛼 = 0.2399 and 𝛽 = 0.1233, (c) 
𝛼 = 0.3685 and 𝛽 = 0.6256 

 
On the other hand, it is imperative to 

acknowledge its performance, mainly when operating 
with filters rooted in matrix-based methodologies. 
This noteworthy observation underscores the 
remarkable compatibility between this approach and 
the application of matrix-oriented filtering 
techniques. 
 
 
4 An Application of the LDFSs 

Similarity for Edge Detection 
The similarities between each edge detection filter 
were calculated based on the similarity measures 
obtained from the above-mentioned distance 
measures and by using random 𝛼 𝑎𝑛𝑑 𝛽 parameters. 
Different outcomes are obtained when employing 
various 𝛼 𝑎𝑛𝑑 𝛽 parameters, which are randomly 
chosen. To illustrate, specified 𝛼 𝑎𝑛𝑑 𝛽 values for 
each filter given in Table 1 are used and the 
corresponding outcomes are presented in Table 2, 
Table 3 and Table 4. 
 

Table 1. Parameters for filters 
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Table 2. Similarity results under 𝑆𝐷𝐻

𝑓1 , 𝑆𝐷𝐸

𝑓1  and 

𝑆𝐷𝑀

𝑓1  

 
 

Table 3. Similarity results under 𝑆𝐷𝐻

𝑓2 , 𝑆𝐷𝐸

𝑓2  and 

𝑆𝐷𝑀

𝑓2  

 
 

Table 4. Similarity results under 𝑆𝐷𝐻

𝑓3 , 𝑆𝐷𝐸

𝑓3  and 

𝑆𝐷𝑀

𝑓3  

 
 

The similarities between the fuzzified images 
obtained from each edge detection technique were 
calculated with the defined similarity measures. 

According to the results obtained, it is seen that 
the Sobel and Prewitt filters are largely similar to 
each other. This similarity gives close results even 
if the alpha and beta parameters change. Both 
filters are popular image processing methods used 
for edge detection. Both perform a gradient 
calculation to detect the horizontal and vertical 
edges in the image and use the differences between 
pixel values to determine the boundaries. However, 

there are also some differences. For example, the 
Sobel filter does more computation than the Prewitt 
filter and may therefore have a higher 
computational cost. Also, the Sobel filter may have 
a better edge redirection ability than the Prewitt 
filter. In general, however, Sobel and Prewitt filters 
give similar results and are interchangeable. 

We can apply the above calculations on the 
modified image and filters, similarly. The results 
obtained by using the alpha and beta values in 
Table 1 are shown in Table 5, Table 6 and Table 7. 
 

Table 5. Similarity results of modified image 

filters under 𝑆𝐷𝐻

𝑓1 , 𝑆𝐷𝐸

𝑓1  and 𝑆𝐷𝑀

𝑓1  

 
 

Table 6. Similarity results of modified image 

filters under 𝑆𝐷𝐻

𝑓2 , 𝑆𝐷𝐸

𝑓2  and 𝑆𝐷𝑀

𝑓2  

 
 

Table 7. Similarity results of modified image 

filters under 𝑆𝐷𝐻

𝑓3 , 𝑆𝐷𝐸

𝑓3  and 𝑆𝐷𝑀

𝑓3  
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5    Conclusion 
In this paper, we combine the structure of LDFSs 
with edge detection techniques using the presented 
similarity measures defined on LDFSs to generalize 
the fuzzy edge detection domain. We give 
numerical results of this technique on some images, 
analyze the validity of the techniques, and show 
these results in tables. Different generalizations of 
FS theory can be applied to the edge detection 
process for future work. Some different operators 
can be created to be used in this process. Moreover, 
LDFSs can be applied to problems such as image 
denoising and recognition. 
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