
A
LTHOUGH the incidence of epidemic diseases has
reached historic lows in many parts of the world,

these diseases still causes substantial morbidity globally.
Even where control programs have succeeded in epidemic
diseases locally extinct, unless vaccination coverage is
maintained at extremely high levels, susceptible num-
bers may increase sufficiently to spark large outbreaks.
Human mobility will drive potentially infectious contacts
and interact with the landscape of susceptibility to deter-
mine the pattern of epidemic diseases outbreaks. These
interactions have proved difficult to characterize empiri-
cally.

So, it is of great interest to explore the degree to
which new sources of data, combined with existing pub-
lic health data, can be used to evaluate the landscape of
immunity and the role of vaccination in the eradication
of epidemic diseases. The understanding of data dynam-
ics of people affected by epidemic diseases from year to
year is important for the management of infectious dis-
ease epidemics. In this context, different public health
surveillance systems have been developed to facilitate the
detection of abnormal behavior of infectious diseases and
other adverse health events. To achieve this goal, differ-
ent approaches have been used for assessing and forecast-
ing of infectious disease incidence. The dynamics and
control of infectious diseases in terms of mathematical
models are discussed in, [1], among others. Time series
analysis enjoys of great interest in this field. It makes use
of statistical models able to forecast the epidemiological
behavior of the historical surveillance data. Different
methods have been reported in the literature. So, ex-

ponential smoothing, [2], and generalized regression, [3],
methods were used to forecast in-hospital infection and
incidence of cryptosporidiosis respectively. Decomposi-
tion methods, [4], and multilevel time series models, [5],
were used to forecast respiratory syncytial virus.

Seasonal autoregressive integrated moving average
(SARIMA) models have been extensively used for epi-
demic time series forecasting including the hemoragic
fever renal syndrome, [6], [7], dengue fever, [8], [9], and
tuberculosis, [10].

Model based on artificial neural networks were also
used to forecast the incidence of hepatitis A, [4], [11],
and typhoid fever, [12]. The decomposition methods are
the most traditional methods in time series analysis, [13],
[14]. Recently, machine learning based time series models
such as artificial neural networks have been successfully
applied for modeling infectious disease incidence time se-
ries, [15], [16]. Support vector machines (SVM), a new
type of machine learning methods based on statistical
learning theory, [17], are used for epidemic time series
forecasting, [18].

Two epidemic diseases will make the object of as-
sessing, modeling and forecasting using time series anal-
ysis, in the case studies presented in the paper: se-
vere acute respiratory syndrome and measles infections.
Different approaches are used for severe acute respi-
ratory syndrome (SARS) assessing, making the object
of many papers, [19], [20], [21], among others. The
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problem of modeling and forecasting of measles infec-
tion is present in many papers. So, in [22] is pro-
vided an early signal of infectious disease epidemics by
analyzing the disease dynamics. The model consisted
of a seasonal autoregressive integrated moving average
SARIMA(3, 1, 0)(0, 1, 1)12 model, used in measles dy-
namics analysis in Bangladesh. A mathematical model
of the dynamics of measles in New Zealand, to predict
an epidemic in 1997, which was used in the decision to
carry out an intensive immunization campaign in 1997
is presented in [23]. In [24] is developed a model, the
TSIR (Time-series Susceptible Infected Recovered), that
can capture both endemic cycles and episodic out- breaks
in measles. It is a doubly stochastic model for disease
dynamics, and includes seasonality in the transmission
rates. All parameters of the model are estimated on
the basis of time series data on reported cases and re-
constructed susceptible numbers from a set of cities in
England and Wales in the pre-vaccination era (1944-
1966). A new prediction analysis procedure for measles
epidemics, a combination of nonlinear squares method
with the maximum entropy spectral analysis method, is
presented in [25].

The paper is organized as follows. In Section 2 is
given a general view on the time series models, regres-
sion and intervention models, to be used in modeling
and forecasting of epidemiological surveillance data. Sec-
tion 3 discusses some methodological aspects of time
series modeling and forecasting, based on Box-Jenkins
methodology, with the emphasis on practical aspects.
Section 4 discusses a case study having as object mod-
eling and forecasting of a time series representing the
cumulative number of individuals infected with severe
acute respiratory syndrome, or SARS, in Singapore, from
24 February to 7 May 2003. Section 5 presents a case
study of modeling and forecasting, using a multiplicative
SARIMAmodel, for a time series representing the num-
ber of measles infections, in Great Britain in the period
1971-1994, and an example of intervention analysis, us-
ing as the exogenous data the measles infections, and as
endogenous variable the number of vaccinated persons,
in the same time period.

The statistical approaches adopted in time series
modeling and forecasting usually rely on multiplicative
SARIMA (Seasonal Auto Regressive Integrated Moving
Average) model. A such model has the following form
for the time series zt, [26]:

φ(B)Φ(Bs)▽d ▽D
s zt = θ(B)Θ(Bs)at (1)

where at is a white noise and

φ(B) = 1 + φ1B + φ2B
2 + · · ·+ φpB

p;

θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q;

Φ(Bs) = 1 + ΦsB
s +Φ2sB

2s + . . .+ΦPsB
Ps;

Θ(Bs) = 1 + ΘsB
s +Θ2sB

2s + . . .+ΘQsB
Qs;

with B the time delay operator, Bzt = zt−1, ▽zt =
(1−B) = zt−zt−1, nonseasonal differentiating operator,
and ▽szt = (1−Bs) = zt−zt−s, seasonal differentiating
operator: d is the nonseasonal differentiating order, D
is the seasonal differentiating order and s is the seasonal
period of the series.

The model is defined as SARIMA(p, d, q)(P,D,Q)s
where (p, d, q) denotes nonseasonal orders, and (P,D,Q)
seasonal order of the model. The model is presented in
Fig. 1.

at- θ(B)Θ(Bs)
▽dφ(B)▽DΦ(Bs)

zt-

Fig. 1: Multiplicative SARIMA(p, d, q)(P,D,Q)s
model

The multiplicative form of the model simplifies the
stationarity and invertibility conditions checking; these
conditions can be separately checked, for seasonal and
nonseasonal coefficients of the model.

Starting from the general model form of the model
SARIMA it can be obtain related models: AR (Auto
Regressive), MA (Moving Average), ARMA (Auto Re-
gressiveMoving Average) andARIMA (Auto Regressive
Integrated Moving Average), with or without seasonal
components. These models are identified by the mean of
the autocorrelation (ACF ) and the partial autocorrela-
tion functions (PACF ).

In some situations, it is known that some external
events can affect the variables for which the practitioner
intends to forecast the future time series values. Dy-
namic models, used in this case, include several vari-
ables, as input variables, which are intended to take into
account in the dynamics model, the mentioned excep-
tion events. A special kind of SARIMA model with in-
put series is called an intervention model or interrupted
time series (ITS) model, [27]. In an intervention model,
the input series is an indicator variable that contains dis-
crete values that flag the occurrence of an event affecting
the response series. This event is an intervention in or
an interruption of the normal evolution of the response
time series, which, in the absence of the intervention,
is usually assumed to be a pure SARIMA process. As
examples of practical interventions can be mentioned:
the effect of different promotions activities on the sales,
the effect of strikes on the volume of the products and
the price of the products, the effect of medication on
the health of the patient, the effect of the exchange of
the laws in the legislation on the mortalities resulting
from car accidents, etc. In this case, some variables as
step function, consisting of ”zero” values and ”unit” val-
ues, before and after application respectively change pol-
icy, medication, or exchange of laws are included in the
model, as an external variable.

A such intervention model can be represented like a
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transfer function (TF ) model (see Fig. 2), where zt is
the value of the endogenous variable at time t, ut =
[u1t, . . . , urt]

T is the vector of exogenous variables, and
at is a white noise error.

Ωi(B) = ωi0+ωi1B+ωi2B
2+· · ·+ωini

Bni ; i = 1, 2, . . . , r

∆i(B) = 1+δi1B+θi2B
2+· · ·+δinδiB

nδi ; i = 1, 2, . . . , r

φ(B), θ(B),Φ(Bs) and Θ(Bs) have been described above.
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Fig. 2: Transfer function (TF ) model

The time series model construction usually include
the following stages, [26]:

• Identification (specification) of the time series model
using some data analysis tools (different graphical
representations, autocorrelation functions (ACF )
and partial autocorrelation functions (PACF )) in
order to determine the types of transformations to
obtain stationarity and to estimate the degree of dif-
ferentiation needed to induce stationarity in data, as
well as the polynomial degrees of autoregressive and
moving average operators in the model.

• Model parameter estimation of the time series im-
plies the use of efficient methods (such as maximum
likelihood, among others) for parameter estimation,
standard errors and their correlations, dispersion of
residuals, etc.

• Model evaluation (validation) aims to establish the
model suitability, or to make some simplifications
in structure and parameter estimates. Key elements
for model validation refers to residuals which can not
be justified, these being any residuals of abnormal
value that can not be explained by the action of

known external factors or other variables; also the
correlations and partial correlations of the residuals
prove useful tools in model evaluation.

More explanations of the process, [28], often add a
preliminary stage of data preparation and a final stage
of model application, or forecasting.

Visual analysis of series data allows a first image on
the series’ non-stationarity and on the presence of a sea-
sonal pattern in the data. The final decision on the inclu-
sion of seasonal elements in the time series model will be
taken after the autocorrelation function (ACF ) and par-
tial autocorrelation function (PACF ) analysis, as well as
after the estimation results analysis; the visual analysis
of the data can provide useful additional information.

Significant changes in the mean value of the series
data require non seasonal differentiation of the first or-
der, while the varying of the rate for average value im-
poses the nonseasonal differentiation of the second order
of the series. Strong seasonal variations usually require,
not more than the seasonal differentiation of the first
order of the series’data. Autocorrelation function of the
series offers information on the nonseasonal and seasonal
degrees to be used to obtain the stationarity of the data.

An ARMA stationary process is characterized by the-
oretical autocorrelation and partial autocorrelation func-
tions tending to zero. The autocorrelation function tends
to zero after the first q − p values of the delay, following
the evolution of a exponential function or of a damped
sinusoidal function, and the partial autocorrelation func-
tion is canceled after the first p − q values of the delay,
[29].

An AR or MA seasonal process is characterized by
similar autocorrelation and partial autocorrelation func-
tions, corresponding to nonseasonal processes, but the
coefficients of autocorrelation and partial autocorrelation
functions, significant for the seasonal process, appear at
multiple seasonal delay values.

At the stage of model identification a special atten-
tion will be given to nonseasonal autocorrelation coeffi-
cients with absolute values of the associated t statistic
test exceeding the value 1.6, [29]. Model parameters, as-
sociated to these coefficients prove to be significant from
the statistical point of view, in the estimation stage.

In the identification and validation-diagnosis stages,
the attention will be focused on the coefficients of sea-
sonal autocorrelations with the absolute values of the
t statistic test associated which overcome 1.25 value.
The seasonal parameters estimates AR or MA , asso-
ciated to these coefficients, will appear more significant
in the estimation stage. If the residual autocorrelation
function has zeros values, from statistical point of view,
to seasonal delays: s, 2s, . . . , and to the delays of the
form 0.5s, 1.5s, and in the vicinity of seasonal delays:
s+1, s−1, 2s+1, 2s−1, . . . , the same warning level will
be used: 1.25. More information on the methodology
used in this case can be find in [29] and [30].

In the estimation stage, the use of the initial esti-
mates of the model parameters of the value of 0.1 leads
to good results in most cases; better initial estimates
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for model parameters can be obtained based on the au-
tocorrelation and partial autocorrelation functions, used
to determine the structure of the model. In this stage as
model parameters will be retain those for which |t| ≥ 2,
[29]. The criteria Akaike Information Criterion (AIC),
Bayesian information criterion (BIC) or Schwarz infor-
mation criterion (also SIC, SBC, SBIC), [31], Adjusted
Root Mean Square Error (ARMSE) and Absolute Mean
Percent Error (AMPE), [29], offer information on the
parameter estimation quality.

Forecasting is what the whole procedure is designed
to accomplish. Once the model has been selected, esti-
mated and checked, it is usually a straight forward task
to compute forecasts. The forecasting problem can be
solved, in the most direct way, using the multiplicative
ARIMA model of the form (1). The description of the
model by an infinitely weighted sum of current values
and the earlier noise is proving useful, in particular, to
estimate the variance of forecasting values, as well as
to determine their confidence intervals. Standards and
practices for time series forecasting are given in, [32].

The time series making the object of the case study
represents the cumulative number of individuals infected
with severe acute respiratory syndrome (SARS) in Sin-
gapore 24.02.2003-8.05.2003, [19], and is given in Fig.
3.
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Fig. 3: SARS series 24.02.2003-8.05.2003.

We present in Fig. 4 the autocorrelation (ACF ) and
partial autocorrelation (PACF ) functions of the original
data, and the Ljung-Box-Q (LBQ) test.

It can be noted, from the data analysis, the non-
stationary character of the series, due to presence of a
trend component in the data. The series of differences
of the original series is given in Fig. 5 and the ACF and
PACF functions are presented in Fig. 6.

The results mentioned above suggested the following
model of the original SARS series:

(1 + φ1B)zt = (1 + θ1B + θ2B
2 + θ3B

3)at, v[at] = σ2

(2)
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Fig. 4: ACF and PACF functions of SARS series.
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Fig. 5: Differences of SARS series.
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Fig. 6: ACF and PACF functions of SARS series dif-
ferences.
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The model parameters: φ1, θ1, θ2, θ3 and σ2 have been
initialized with 0.1 value. The model parameter esti-
mation has been performed using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) optimization algorithm, [33].
The results are presented in Table 1 and Table 2, with
the objective function = 168.3458, nr. of iterations =
120 and information criteria: AIC = 4.883 and SBC =
5.0423.

Table 1: Results for ARIMA model parameter estima-
tion
Parameter Estimate Appr.Std.Dev. t-test

φ1 -1.0014 0.0050 -202.1841
θ1 0.6421 0.1137 5.6490
θ2 0.5229 0.1060 4.9349
θ3 0.2453 0.1145 2.1422

v[at] 6.8256 1.1011 6.1986

Table 2: Correlation matrix of ARIMA model parame-
ter estimates

φ1 θ1 θ2 θ3 v[at]
φ1 1.00
θ1 0.04 1.00
θ2 0.04 0.52 1.00
θ3 0.03 0.09 0.05 1.00

v[at] 0.03 -0.05 -0.04 -0.02 1.00

The model residuals are presented in Fig. 7, and the
residual ACF , PACF , with Ljung-Box-Q test, are given
in Fig. 8.
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Fig. 7: Model residuals.

The forecasting, for the resulted model, has been per-
formed, started from the 64 day, for a horizon time of 7
days, and 95% confidence limits, to compare the original
data with the forecasting results. It can be noted that
the forecasting results follow the evolution trend of the
original time series, and are in the confidence limits 95%.
The forecasting results and confidence limits are given in
Fig. 9.
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Fig. 8: ACF and PACF of model residuals.
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Fig. 9: Forecasting results and confidence limits 95% for
7 days using the resulted model.

The case study making the object of this section has
as subject the modeling and forecasting of a time se-
ries representing the measles infections, in Great Britain
in the period 1971-1994, quarterly recorded, and an ex-
ample of intervention analysis, using as the exogenous
data the number of measles infections, and as endoge-
nous variable the number of vaccinated persons, in the
same time period, using a transfer function (TF ) model.

The time series representing the measles infections,
in Great Britain in the period 1971-1994, quarterly
recorded, is presented in Fig. 10.

We present in Fig. 11 the autocorrelation (ACF ) and
partial autocorrelation (PACF ) functions of the original
data, and the Ljung-Box-Q (LBQ) test.

It can be noted, from the data analysis, the non-
stationary and seasonal character of the series. Because
the data are quarterly recorded, it can be supposed the
presence in the data series of a seasonal component of
period s = 4 (yearly); it is also confirmed by the auto-
correlation function ACF . So, the original time series
has been seasonal differentiated with period s = 4, and
it is presented in Fig. 12.

The ACF and PACF of differentiated series, and
Ljung-Box-Q test, are given in Fig. 13.

Starting from these functions, the following
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Fig. 10: Number of measles infections/1000 inhabitants,
Great Britain, 1971-1994.
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Fig. 11: ACF and PACF functions of measles infec-
tions/1000 inhabitants, Great Britain, 1971-1994.

0 10 20 30 40 50 60 70 80 90 100
−40

−30

−20

−10

0

10

20

30

40

50
Diff. of measles patients/1000 inhabitans in Great Britain 1971−1994

Di
ff.

 o
f m

ea
sle

s p
at

ien
ts

Fig. 12: Differentiated series with s = 4.
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Fig. 13: ACF and PACF of differentiated series with s
= 4.

SARIMA model structure resulted:

(1+Φ4B
4+Φ8B

8)(1−B4)zt = (1+θ1B+θ2B
2)(1+Θ4B

4)at
(3)

and v[at] = σ2.
The model parameter estimation has been performed

using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
optimization algorithm, [33]. The results are presented
in Table 3 and Table 4, with the objective function =
315.7083, nr. of iterations = 24 and information crite-
ria: AIC = 6.7728 and SBC = 6.9341.

Table 3: Results for SARIMA model parameter estima-
tion

Parameter Estimate Appr.Std.Dev. t-test
Φ4 -0.4614 0.1040 -4.4357
Φ8 -0.5098 0.1003 -5.0846
θ1 1.0436 0.1062 9.8243
θ2 0.5074 0.0882 5.7555
Θ4 -0.4927 0.0964 -5.1107
v[at] 40.6531 5.9866 6.7907

Table 4: Correlation matrix of SARIMA model param-
eter estimates

Φ4 Φ8 θ1 θ2 Θ4 v[at]
Φ4 1.00
Φ8 -0.88 1.00
θ1 -0.01 0.04 1.00
θ2 0.13 -0.11 0.78 1.00
Θ4 0.53 -0.48 -0.18 -0.21 1.00
v[at] -0.03 0.04 0.01 -0.04 -0.00 1.00

The model residuals are presented in Fig. 14, and
residual ACF , PACF , Ljung-Box-Q test, are given in
Fig. 15.
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Fig. 14: Model residuals

The estimation results confirm the model quality, ac-
cording with the Box-Jenkins methodology used in time
series analysis, [29].

The forecasting, for the resulted model, has been per-
formed, started from the 92 quarter, for a horizon time
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Fig. 15: ACF and PACF of model residuals.

of 4 quarters, and 95% confidence limits, to compare the
original data with the forecasting results. It can be noted
that the forecasting results follow the evolution trend of
the original time series, and are in the confidence limits
95%. The forecasting results and confidence limits are
given in Fig. 16.
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Fig. 16: Forecasting results and confidence limits 95%
for 4 quarters.

In this case an intervention model, a transfer func-
tion (TF ) model, has been used, with the exogenous
variable the number of measles infections, zt,and with
endogenous variable the percent of vaccinated persons,
ut, in the time period making the object of the analy-
sis. The percent of measles vaccinations, Great Britain,
1971-1994 is presented in Fig. 17.

After preliminary analysis of the data, and different
model structures, resulted the following structure of the
transfer function model, representing the intervention
model:

(1−B4)zt =
ω1

1 + δ1B
ut +

(1 + θ1B + θ2B
2)(1 + Θ4

4
)

1 + Φ4B4 +Φ8B8
at;

(4)
with v[at] = σ2 and s = 4, due to the nostationarity of
the data. For the model parameters and variance, σ2,
have been used as initial values 0.1. Broyden-Fletcher-
Goldfarb-Shanno (BFGS) optimization algorithm, [33],
was used for parameter estimation, resulting the follow-
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Fig. 17: Percent of measles vaccinations, Great Britain
1971-1994.

ing values for model parameters and correlation matrix
(see Table 5 and Table 6, respectively):

Table 5: Results for TF model parameter estimation
Parameter Estimate Appr.Std.Dev. t-test

Φ4 -0.5800 0.0907 -6.3979
Φ8 -0.3495 0.0860 -4.0657
θ1 1.0556 0.0888 11.8939
θ2 0.5293 0.0792 6.6838
Θ4 -1.0000 0.0379 -26.3829
ω1 -0.2891 0.1183 -2.4435
δ1 0.8736 0.0637 13.7216

v[at] 25.6828 4.1370 6.2081

for an objective function = 290.7013, nr. of iterations =
50 and information criteria: AIC = 6.2884, and SBC =
6.5035.

Table 6: Correlation matrix of TF model parameter es-
timates

Φ4 Φ8 θ1 θ2 Θ4 ω1 δ1 v[at]

Φ4 1.00
Φ8 -0.89 1.00
θ1 -0.14 0.14 1.00
θ2 0.13 -0.12 0.72 1.00
Θ4 0.34 -0.33 0.11 0.07 1.00
ω1 0.22 -0.13 -0.05 0.04 0.21 1.00
δ1 0.13 -0.07 -0.15 -0.07 0.27 0.59 1.00

v[at] 0.43 -0.40 0.14 0.15 0.40 0.31 0.38 1.00

The model residuals are presented in Fig. 18, and the
residual ACF and PACF , with Ljung-Box-Q test, are
given in Fig. 19.

The results confirm the model quality, according with
the Box-Jenkins methodology used, [29]. The forecasting
results, for the transfer model resulted, started from the
92 quarter for a horizon time of 4 quarters and the 95%
confidence limits are given in Fig. 20; the values used,
as percent of vaccinations for the forecasting measles in-
fections, in forecasting, represent the values recorded for
the last 4 quarters of the original series. It can be noted
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Fig. 18: Transfer function model residuals.
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Fig. 19: ACF and PACF transfer function residuals.

that the forecasting results follow the evolution trend of
the time series of measles infections, and are in the con-
fidence limits 95%.
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Fig. 20: Forecasting results and confidence limits 95%
for 4 quarters using transfer function model.

The time series modeling and forecasting of epidemi-
ological surveillance data using seasonal multiplicative
SARIMAmodels and the attractive features of the Box-
Jenkins approach provide an adequate description to the
data in this field. The SARIMA processes are a very
rich class of possible models and it is usually possible
to find a process which provides an adequate description
to the data. Also, the intervention analysis proved to
be a useful approach to model interrupted time series,
in this case, when such time series are affected by the
effect of medication on the health of the patient, popu-

lation vaccination policies, some economical constraints,
etc. The case studies presented in the paper proved the
efficiency of the approach. The underlying strategy of
Box and Jenkins is applicable to a wide variety of sta-
tistical modeling situations in assessing and forecasting
of epidemiological data series. It provides a convenient
framework which allows an analyst to think about the
data, and to find an appropriate statistical model which
can be used to help answer relevant questions about the
data.
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