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Abstract: - For linear continuous-time systems with uncertainties in the system and observation matrices, an 

original robust RLS Wiener filter is designed in this study. The robust RLS Wiener filter does not assume 

norm-bounded uncertainty for the system and observation matrices, in contrast to the robust Kalman filter. In 

the design of the robust RLS Wiener filter, the degraded signal, affected by the uncertainties in the system and 

observation matrices, is modeled by an autoregressive (AR) model. The system and observation matrices for 

the degraded signal are formulated from the relationship between the AR model of the degraded signal and the 

state-space model. Estimation formulas for the system and observation matrices are proposed in Section 2. The 

robust filtering problem is introduced based on the minimization of the mean-square value of the filtering errors 

for the system states. The robust filtering estimate is given as an integral transformation of the degraded 

observations using the impulse response function. The integral equation that an optimal impulse response 

function satisfies is given in Section 3. Theorem 1 presents a robust RLS Wiener filtering algorithm starting 

from this integral equation. The proposed robust RLS Wiener filter outperforms the existing robust Kalman 

filter regarding estimate accuracy, as shown by a numerical simulation example. 
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1 Introduction 
For both continuous-time and discrete-time 

uncertain stochastic systems, robust filters have 

been studied during the past few decades, e.g., [1]- 

[8]. For linear continuous-time stochastic systems 

with norm-bounded uncertainties in the system and 

observation matrices, robust Kalman filters [1], [2] 

are developed. In [3], norm-bounded uncertainties 

are assumed in the four matrices, including the input 

and observation noise matrices in the continuous-

time state-space model. In [4], the filtering, 

prediction, and smoothing problems are considered 

for the system with uncertain matrices and known 

input. The discrete-time robust Kalman filter is 

investigated in [5] and [6]. In [7], robust Kalman 

filters are described for continuous and discrete-time 

stochastic systems with uncertainties. For linear 

discrete-time stochastic systems with uncertainties, 

the robust recursive least-squares (RLS) Wiener 

filter is proposed [8]. A specific characteristic is that 

the degraded signal affected by uncertain parameters 

is expressed in terms of an autoregressive (AR) 

model of finite order. Unlike the robust Kalman 

filter, the robust RLS Wiener filter does not use 

knowledge of norm-bounded uncertainties. 

This paper designs a novel robust RLS Wiener 

filter for linear continuous-time stochastic systems 

with uncertainties in the system and observation 

matrices. This paper does not assume norm-bounded 

uncertainties for the system and observation 

matrices. The AR model [9] and the autoregressive 

moving average (ARMA) model [10] have been 

investigated in conjunction with modeling for 

continuous-time stochastic processes. In the design 

of the robust RLS Wiener filter, the degraded signal, 

influenced by the uncertainties in the system and 

observation matrices, is modeled by an AR model. 

The system and observation matrices for the 

degraded signal are formulated from the relationship 

between the AR model of the degraded signal and 

the state-space model, as shown in Section 2.  

The vehicle tracking problem with model 

uncertainty is an example where the proposed robust 

RLS Wiener filter can be applied similarly to the 

robust Kalman filter. Also, the H-infinity tracking 

control algorithm in [11] is designed for linear, 

discrete-time stochastic systems with uncertain 

parameters. It includes a practical example of 
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tracking control for an F-16 aircraft. In [11], the 

robust RLS Wiener filter of [12] and [13] estimates 

signal and state based on the separation principle 

between control and estimation. The H-infinity 

tracking control algorithm in [14] is designed for 

linear, continuous-time deterministic systems.  

The estimates of the system and observation 

matrices are formulated in Section 2. Section 3 

introduces a robust filtering problem. In Section 4, 

Theorem 1 presents the robust RLS Wiener filtering 

algorithm. Section 5 demonstrates a numerical 

simulation example of the robust RLS Wiener filter 

in comparison with the robust Kalman filter [1]. 

 

 

2 Nominal and Degraded State-Space 

Models and Degraded System 

Realization 

Let (1) be a discrete-time state-space model of the 

linear stochastic system. 

 

𝑦(𝑡) = 𝑧(𝑡) + 𝑣(𝑡), 𝑧(𝑡) = 𝐻𝑥(𝑡),

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴𝑥(𝑡) + Γ𝑤(𝑡), 𝑥(0) = 𝑐,

𝐸[𝑣(𝑘)𝑣𝑇(𝑠)] = 𝑅𝛿(𝑡 − 𝑠), 𝑅 > 0

𝐸[𝑤(𝑡)𝑤𝑇(𝑠)] = 𝑄𝛿(𝑡 − 𝑠), 𝑄 > 0

𝐸[𝑣(𝑡)𝑤𝑇(𝑠)] = 0, 𝐸[𝑥(0)𝑤𝑇(𝑡)] = 0.

 (1) 

Here, 𝑥(𝑡) ∈ 𝑅𝑛 is the state vector, and 𝑧(𝑡) ∈ 𝑅𝑚 

is the signal vector. The input noise 𝑤(𝑡) ∈ 𝑅𝑙 and 

the observation noise 𝑣(𝑡) are mutually uncorrelated 

white Gaussian noise of mean zero. Γ is the 𝑛 × 𝑙 
input matrix, and 𝐻  is the 𝑚 × 𝑛  observation 

matrix. The auto-covariance functions for the input 

noise 𝑤(𝑡) and the observation noise 𝑣(𝑡) are given 

in (1). This paper considers the state and 

observation equations with uncertain parameters in 

(2). 

 

�̆�(𝑡) = �̆�(𝑡) + 𝑣(𝑡), 

�̆�(𝑡) = 𝐻(𝑡)𝑥(𝑡), 𝐻(𝑡) = 𝐻 + 𝛥𝐻(𝑡), 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴(𝑡)𝑥(𝑡) + Γ𝑤(𝑡), 

𝐴(𝑡) = 𝐴 + ΔA(𝑡), 𝑥(0) = 𝑐, 
E[v(t)𝑤𝑇(s)] = 0, E[∆A(t)𝑤𝑇(s)] = 0, 
𝐸[ΔC(𝑡)𝑣𝑇(𝑠)] = 0, 𝐸[𝑥(0)𝑤𝑇(𝑡)] = 0, 
𝐸[𝑥(0)𝑣𝑇(𝑡)] = 0 

(2) 

In (2), the degraded system matrix 𝐴(𝑡)  and the 

degraded observation matrix 𝐶(𝑡)  are introduced 

instead of the system matrix 𝐴 and the observation 

matrix 𝐶  in (1), respectively. Here, the matrix 

elements of ΔA(𝑡)  and ΔC(𝑡) contain uncertain 

variables. The initial system state 𝑥(0) is a random 

vector that is uncorrelated with both system and 

measurement noise processes.  

Assume that the degraded signal is expressed by 

�̆�(𝑡) = �̆��̆�(𝑡) with a state vector �̆�(𝑡) having 𝑛 

components. 

 

�̆�(𝑡) = �̆��̆�(𝑡), �̆�(𝑡) = �̆�1(𝑡) 
�̆� = [𝐼𝑚×𝑚 0 0 ⋯ 0], 

�̆�(𝑡) =

[
 
 
 
 

�̆�1(𝑡)

�̆�2(𝑡)
⋮

�̆�𝑛−1(𝑡)

�̆�𝑛(𝑡) ]
 
 
 
 

. 
(3) 

Let �̆�1(𝑡) satisfy a differential equation 

 

𝑑�̆�1
𝑛(𝑡)

𝑑𝑡𝑛
= −�̆�1

𝑑�̆�1
𝑛−1(𝑡)

𝑑𝑡𝑛
− �̆�2

𝑑�̆�1
𝑛−2(𝑡)

𝑑𝑡𝑛−2
⋯

− �̆�𝑛−1

𝑑�̆�1(𝑡)

𝑑𝑡
− �̆�𝑛�̆�1(𝑡)

+ 𝜉(𝑡). 

(4) 

(4) is transformed into the state differential 

equations. 

 

𝑑�̆�(𝑡)

𝑑𝑡
= �̆��̆�(𝑡) + Γ̆𝜉(𝑡),

𝐸[𝜉(𝑡)𝜉𝑇(𝑠)] = �̆�𝛿(𝑡 − 𝑠),

�̆� =

[
 
 
 
 

0 𝐼𝑚×𝑚 0 ⋯ 0
0 0 𝐼𝑚×𝑚 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐼𝑚×𝑚

−�̆�𝑛 −�̆�𝑛−1 −�̆�𝑛−2 ⋯ −�̆�1 ]
 
 
 
 

,

Γ̆ = [0 0 ⋯ 0 𝐼𝐼𝑚×𝑚]𝑇 ,

 (5) 

𝜉(𝑡)  in (4) is the residual in approximating the 

degraded signal �̆�(𝑡) . It is recommended that the 

order of the differential equation of (4) is 𝑛 and the 

variance �̆� of the random residual 𝜉(𝑡) is set to zero 

from the viewpoint of least mean squares estimation 

for the system matrix �̆� . A numerical simulation 

example will verify these two suggestions. For �̆� =

0 , 
𝑑�̆�(𝑡)

𝑑𝑡
= �̆��̆�(𝑡)  is valid. Hence, �̆�  satisfies 

𝐸 [
𝑑�̆�(𝑡)

𝑑𝑡
�̆�𝑇(𝑡)] = �̆�𝐸[�̆�(𝑡)�̆�𝑇(𝑡)] and �̆� is estimated 

by the relationship of (6). 
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�̆� = 𝐸 [
𝑑�̆�(𝑡)

𝑑𝑡
�̆�𝑇(𝑡)] 𝐸[�̆�(𝑡)�̆�𝑇(𝑡)]−1. 

�̆�𝑇(𝑡) =
[�̆�1(𝑡) �̆�2(𝑡) ⋯ �̆�𝑛−1(𝑡) �̆�𝑛(𝑡)], 

�̆�1(𝑡) = �̆�(𝑡) , �̆�2(𝑡) =
𝑑�̆�(𝑡)

𝑑𝑡
, ⋯ , 

�̆�𝑛−1(𝑡)=
𝑑𝑛−2�̆�(𝑡)

𝑑𝑡𝑛−2 , �̆�𝑛(𝑡) =
𝑑𝑛−1�̆�(𝑡)

𝑑𝑡𝑛−1  

(6) 

Also, �̆� is estimated by 

 
�̆� = 𝐸[�̆�(𝑡)�̆�𝑇(𝑡)]𝐸[�̆�(𝑡)�̆�𝑇(𝑡)]−1. (7) 

 

 

3 Robust Filtering Problem 
Let the filtering estimate 𝑥(𝑡) of 𝑥(𝑡) be given by  

 
𝑥(𝑡) = ∫ ℎ(𝑡, 𝑠)�̆�(𝑠)𝑑𝑠

𝑡

0

 
(8) 

as a linear transformation of the degraded observed 

value �̆�(𝑠) . Here, ℎ(𝑡, 𝑠) represents an impulse 

response function. Let us consider minimizing the 

mean-square value  

 
𝐽 = 𝐸[(𝑥(𝑡) − 𝑥(𝑡))𝑇(𝑥(𝑡) − 𝑥(𝑡))] (9) 

of the filtering error 𝑥(𝑡) − 𝑥(𝑡) . The filtering 

estimate 𝑥(𝑡)  to minimize the cost function 𝐽 

satisfies the relationship 

 
𝑥(𝑡) − 𝑥(𝑡) ⊥ �̆�(𝑠), 0 < 𝑠 < 𝑡, 

(10) 

from the orthogonal projection lemma [16]. 

Therefore, we get an integral equation 

 

𝐸[𝑥(𝑡)�̆�𝑇(𝑠)]

= ∫ ℎ(𝑡, 𝜏)𝐸[�̆�(𝜏)�̆�𝑇(𝑠)]𝑑𝑠,
𝑡

0

0 < 𝑠 < 𝑡. (11) 

Substituting the degraded observation equation in 

(2) into (11), (11) is transformed into  

 

ℎ(𝑡, 𝑠)𝑅

= 𝐾𝑥�̆�(𝑡, 𝑠) − ∫ ℎ(𝑡, 𝜏)�̆�𝐾�̆�(𝜏, 𝑠)�̆�
𝑇𝑑𝜏.

𝑡

0

 

𝐾𝑥�̆�(𝑡, 𝑠) = 𝐸[𝑥(𝑡)�̆�𝑇(𝑠)], 

𝐾�̆�(𝜏, 𝑠) = 𝐸[�̆�(𝜏)�̆�𝑇(𝑠)]. 

(12) 

Starting with (12), the robust RLS Wiener filtering 

algorithm is derived. Assume that the cross-

covariance function 𝐾𝑥�̆�(𝑡, 𝑠)  of 𝑥(𝑡)  with �̆�(𝑠) is 

expressed as 

 
𝐾𝑥�̆�(𝑡, 𝑠) = {

𝛼(𝑡)𝛽𝑇(𝑠), 0 ≤ 𝑠 ≤ 𝑡,

𝛾(𝑡)𝛿𝑇(𝑠), 0 ≤ 𝑡 ≤ 𝑠.
 

(13) 

Let the covariance function 𝐾�̆�(𝑡, 𝑠) of �̆�(𝑡)  be 

expressed by 

 
𝐾�̆�(𝑡, 𝑠) = {

�̆�(𝑡)�̆�𝑇(𝑠), 0 ≤ 𝑠 ≤ 𝑡,

�̆�(𝑡)�̆�𝑇(𝑠), 0 ≤ 𝑡 ≤ 𝑠.
 

(14) 

Apart from the current approach, the Kalman 

filter is utilized for state estimation with accurate 

information on the state-space model. When dealing 

with systems that have uncertain parameters, the 

Kalman filter with artificial intelligence (AI) based 

on neural networks (NN) can be classified into four 

groups [17].  

 

 

4 Robust RLS Wiener Filtering 

Algorithm 

Theorem 1 presents the robust RLS Wiener filtering 

algorithm for 𝑥(𝑡). 

Theorem 1 For the nominal system (1), the robust 

RLS Wiener filtering algorithm with the degraded 

observed value �̆�(𝑡) in (2) consists of (15)-(20). 

 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴𝑥(𝑡) + ℎ(𝑡, 𝑡) (�̆�(𝑡) − �̆��̂̆�(𝑡)) , 

𝑥(0) = 0 
(15) 

ℎ(𝑡, 𝑡): Filter gain for 𝑥(𝑡). 

 

ℎ(𝑡, 𝑡) = (𝐾𝑥�̆�(𝑡, 𝑡) − 𝑆(𝑡)�̆�𝑇)𝑅−1, 𝑅 > 0 

𝐾𝑥�̆�(𝑡, 𝑡): Cross-variance function of 𝑥(𝑡) 

with �̆�(𝑡). 

(16) 

𝑆(𝑡) : Cross-variance function of 𝑥(𝑡)  with �̆̂�( t), 

E[�̂�(𝑡)�̆̂�𝑇(t)]. 

 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝐴𝑆(𝑡) + 𝑆(𝑡)�̆�𝑇

+ ℎ(𝑡, 𝑡)�̆�(𝐾�̆�(𝑡, 𝑡)

− 𝑆0(𝑡)), 

𝑆(0) = 0 

(17) 

�̆̂�(𝑡): Filtering estimate of �̆�(𝑡). 

 

𝑑�̆̂�(𝑡)

𝑑𝑡
= Ă�̆̂�(𝑡) + ℎ̆(𝑡, 𝑡) (�̆�(𝑡) − �̆��̆̂�(𝑡)) , 

�̆̂�(0) = 0 
(18) 

ℎ(𝑡, 𝑡): Filter gain for �̆̂�(𝑡). 
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 ℎ̆(𝑡, 𝑡) = (𝐾�̆�(𝑡, 𝑡) − 𝑆0(𝑡))�̆�
𝑇𝑅−1, 𝑅 > 0 (19) 

𝑆 (𝑡): Variance function of �̆̂�(t), E[�̂̆�(t)�̂̆�𝑇(t)]. 

 

𝑑𝑆0(𝑡)

𝑑𝑡
= �̆�𝑆0(𝑡) + 𝑆0(𝑡)�̆�

𝑇

+ ℎ̆(𝑡, 𝑡)�̆�(𝐾�̆�(𝑡, 𝑡)

− 𝑆0(𝑡)), 

𝑆0(0) = 0 

(20) 

For the robust RLS Wiener filter of Theorem 1 to 

be stable, 𝑅 must be a positive definite matrix: 𝑅 >
0. In addition, the asymptotic stability condition for 

the robust RLS Wiener filter is that all eigenvalues 

of the matrices A and Ă − ℎ̆(𝑡, 𝑡)�̆� have negative 

real parts.  

Proof of Theorem 1 is deferred to the Appendix. 

 

 

4 A Numerical Simulation Example 
Let the observation equation for 𝑦(𝑡) and the state 

differential equations for 𝑥(𝑡) be given by 

 

𝑦(𝑡) = 𝑧(𝑡) + 𝑣(𝑡), 𝑧(𝑡) = 𝐻𝑥(𝑡), 

 𝐻 = [1 0], 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴𝑥(𝑡) + Γ𝑤(𝑡), 

𝑥(𝑡) = [
𝑥1(𝑡)

𝑥2(𝑡)
] , 𝑥(0) = [

0.6
0.8

] , 

𝐴 = [
0 1

−𝑎2 −𝑎1
] , 𝑎1 = 4, 𝑎2 = 3, 

Γ = [
1

−2
] , 

𝐸[𝑣(𝑘)𝑣(𝑠)] = 𝑅𝛿(𝑡 − 𝑠),  
𝐸[𝑤(𝑡)𝑤(𝑠)] = 𝑄𝛿(𝑡 − 𝑠), 𝑄 = 1, 
𝐸[𝑣(𝑡)𝑤(𝑠)] = 0. 

(21) 

Let the observation equation for the degraded signal 

�̆�(𝑡) , and the state differential equations for the 

degraded state 𝑥(𝑡) be given by 

 

�̆�(𝑡) = �̆�(𝑡) + 𝑣(𝑡), �̆�(𝑡) = 𝐻(𝑡)𝑥(𝑡), 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴(𝑡)𝑥(𝑡) + Γ𝑤(𝑡), 

𝐴(𝑡) = 𝐴 + ΔA(𝑡), 𝐻(𝑡) = 𝐻 + ΔH(𝑡), 

ΔA(𝑡) = [
0 0

−0.1 ∗ 𝑟𝑎𝑛𝑑 −0.1 ∗ 𝑟𝑎𝑛𝑑
] , 

ΔH(𝑡) = [0.1 0], 
𝐸[𝑥(0)𝑤(𝑡)] = 0. 

(22) 

Here, 𝛥𝐴(𝑡) is the additional uncertain matrix to the 

system matrix 𝐴. “𝑟𝑎𝑛𝑑” represents a scalar random 

number chosen from a uniform distribution in the 

interval (0,1). From (3) and (5), let the observation 

equation for the degraded signal �̆�(𝑡) and the state 

differential equations for the degraded state �̆�(𝑡) be 

given by 

 

�̆�(𝑡) = �̆�(𝑡) + 𝑣(𝑡), �̆�(𝑡) = �̆��̆�(𝑡), 
�̆�(𝑡) = �̆�1(𝑡), 

�̆�(𝑡) = [
�̆�1(𝑡)

�̆�2(𝑡)
] , 

𝑑�̆�(𝑡)

𝑑𝑡
= �̆��̆�(𝑡) + Γ̆𝜉(𝑡), Γ̆ = [0 1]𝑇, 

𝐸[𝜉(𝑡)𝜉(𝑠)] = �̆�𝛿(𝑡 − 𝑠). 

(23) 

It should be noted that the robust RLS Wiener 

filtering algorithm of Theorem 1 does not require 

information on the input noise variance �̆�. Provided 

that �̆� = 0, from (6), �̆� is calculated by 

 

�̆�

=

[
 
 
 
 𝐸 [

𝑑�̆�(𝑡)

𝑑𝑡
�̆�(𝑡)] 𝐸 [

𝑑�̆�(𝑡)

𝑑𝑡

𝑑�̆�(𝑡)

𝑑𝑡
]

𝐸 [
𝑑2�̆�(𝑡)

𝑑𝑡2
�̆�(𝑡)] 𝐸 [

𝑑2�̆�(𝑡)

𝑑𝑡2

𝑑�̆�(𝑡)

𝑑𝑡
]
]
 
 
 
 

 

× [
𝐸[�̆�2(𝑡)] 𝐸 [�̆�(𝑡)

𝑑�̆�(𝑡)

𝑑𝑡
]

𝐸 [
𝑑�̆�(𝑡)

𝑑𝑡
�̆�(𝑡)] 𝐸 [

𝑑�̆�(𝑡)

𝑑𝑡

2

]
]

−1

. 

(24) 

The other expression for �̆� is given by 

 

�̆�

=

[
 
 
 
 𝐸 [

𝑑�̆�(𝑡)

𝑑𝑡
�̆�(𝑠)] 𝐸 [

𝑑�̆�(𝑡)

𝑑𝑡

𝑑�̆�(𝑠)
]

𝐸 [
𝑑2�̆�(𝑡)

𝑑𝑡2
�̆�(𝑠)] 𝐸 [

𝑑2�̆�(𝑡)

𝑑𝑡2

𝑑�̆�(𝑠)
]
]
 
 
 
 

 

× [
𝐸[�̆�(𝑡)�̆�(𝑠)] 𝐸 [�̆�(𝑡)

𝑑�̆�(𝑠)
]

𝐸 [
𝑑�̆�(𝑡)

𝑑𝑡
�̆�(𝑠)] 𝐸 [

𝑑�̆�(𝑡)

𝑑𝑡

𝑑�̆�(𝑠)
]
]

−1

. 

(25) 

In (25), 𝑠 = 𝑡 − ℎ, ℎ = 0.001, is one candidate. The 

estimates of �̆�  by (24) and (25) for 𝑛 = 2  are an 

exact coincidence. (25) is based on the relationship 
𝜕𝐾�̆�(𝑡,𝑠)

𝜕𝑡
= �̆�𝐾�̆�(𝑡, 𝑠), 0 ≤ 𝑠 < 𝑡 [11]. 

For the data sampling interval ℎ = 0.001, a four-

point forward-difference formula with a truncation 

error of 𝑂(ℎ2)  is utilized in numerical 

differentiation to approximate the derivatives in 

(24). For computing the expectation 𝐸 [
𝑑�̆�(𝑡)

𝑑𝑡
�̆�(𝑡)] as 

an example, 
1

𝑇
∫

𝑑�̆�(𝑡)

𝑑𝑡
�̆�(𝑡)𝑑𝑡

𝑇

0
,  𝑇 = 2.0,  is 

approximately computed using Simpson's 
1

3
 rule's 
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ds

ds

ds

ds

0



numerical integration method. The integral step size 

in this case is 0.001. For the state vector �̆�(𝑡) with 

two components, the estimate of the system matrix 

�̆� is calculated by (24) as  

 
[2.380918 × 10−19 9.999999 × 10−1

−3.20776 −4.194539
]. 

(26) 

For the state vector �̆�(𝑡)  with three and four 

components, respectively, the estimates of the 

system matrices are calculated as (27) and (28). 

 

[
−4.408317 × 10−17 9.999999 × 10−1

−3.894717 × 10−16 7.728085 × 10−16

−6.847911 × 103 −8.989048 × 103

 

2.623525 × 10−18

9.999999 × 10−1

−2.131369 × 103

] 

(27) 

 

 

[

 −8.919732 × 10−17                                   1
−2.607540 × 10−16  2.135920 × 10−16

−9.375048 × 10−13 −2.060725 × 10−12

−4.0327561 × 107      −5.292500 × 107

 

 

8.299837 × 10−18 −1.417337 × 10−21

 9.999999 × 10−1 −4.299229 × 10−20

−3.707363 × 10−13 9.999999 × 10−1

−1.251926 × 107 −4.814171 × 103

] 

(28) 

The estimates of the system matrices �̆� in (27) and 

(28) are unavailable, since the third row in (27) and 

the fourth row in (28) display large values of orders 

103and 107 , respectively. Therefore, 𝑛 = 2  is the 

appropriate order for the estimate of �̆� . Table 1 

shows the estimates of �̆�  from (7) for the white 

Gaussian observation noises 𝑁(0, 0.12), 𝑁(0, 0.32), 

and 𝑁(0, 0.52) . For the degraded signal �̆�(𝑡) =
�̆��̆�(𝑡) in (23), the estimate of �̆�  is very close to 

𝐻 = [1 0].  Substituting 𝐴 , �̆� , �̆� , 𝐾𝑥�̆�(𝑡, 𝑡) , 

𝐾�̆�(𝑡, 𝑡) and the observed value �̆�(𝑡) into the robust 

RLS Wiener filtering algorithm of Theorem 1, the  

Table 1. Estimates of �̆� for the white Gaussian 

observation noises 𝑁(0, 0.12), 𝑁(0, 0.32), and 

𝑁(0, 0.52). 

White 
Gaussian 
observation 
noise 

Estimates of �̆� 

𝑁(0, 0.12) [9.999999 × 10−1 −1.694109 × 10−16] 

𝑁(0, 0.32) [1 2.227923 × 10−16] 

𝑁(0, 0.52) [9.999999 × 10−1 1.736875 × 10−17] 

filtering estimate 𝑥(𝑡)of the state 𝑥(𝑡)is recursively 

computed. Fig. 1 illustrates the filtering estimate 

𝑥1(𝑡) of the state variable 𝑥1(𝑡) vs. 𝑡 for the white 

Gaussian observation noise 𝑁(0, 0.32). 

 
Fig. 1: Filtering estimate 𝑥1(𝑡) of the state variable 𝑥1(𝑡) vs. 𝑡 for the white Gaussian observation noise 

𝑁(0, 0.32). 
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Fig. 2: Filtering estimate 𝑥2(𝑡) of the state variable 𝑥2(𝑡) vs. 𝑡 for the white Gaussian observation noise 

𝑁(0, 0.32). 

As time 𝑡 advances, the filtering estimate 

𝑥1(𝑡) approaches the state 𝑥1(𝑡) gradually. Fig. 2 

illustrates the filtering estimate 𝑥2(𝑡)  of the state 

variable 𝑥2(𝑡)  vs. 𝑡  for the white Gaussian 

observation noise 𝑁(0, 0.32) . As time 𝑡 advances, 

the filtering estimate 𝑥2(𝑡)  approaches the state 

𝑥2(𝑡) gradually. Table 1 shows mean-square values 

(MSVs) of the filtering errors 𝑥1(𝑡) − 𝑥1(𝑡) and 

𝑥2(𝑡) − 𝑥2(𝑡)  for the white Gaussian observation 

noises 𝑁(0, 0.12), 𝑁(0, 0.32), and 𝑁(0, 0.52). Here, 

the MSVs are calculated by
1

2500
∑ (𝑥1(𝑖 ∙ ℎ) −2500

𝑖=1

𝑥1(𝑖 ∙ ℎ))
2

and
1

2500
∑ (𝑥2(𝑖 ∙ ℎ) − 𝑥2(𝑖 ∙ ℎ))

22500
𝑖=1 ,

ℎ = 0.001, respectively. 

Table 2. Mean-square values of the filtering errors 

𝑥1(𝑡) − 𝑥1(𝑡) and 𝑥2(𝑡) − 𝑥2(𝑡) for the white 

Gaussian observation noises 𝑁(0, 0.12), 𝑁(0, 0.32), 

and 𝑁(0, 0.52). 

Table 3 shows the MSVs of the filtering errors 

𝑥1(𝑡) − 𝑥1(𝑡)  and 𝑥2(𝑡) − 𝑥2(𝑡)  for the white 

Gaussian observation noises 𝑁(0, 0.12), 𝑁(0, 0.32), 

and 𝑁(0, 0.52)  by the robust Kalman filter [1]. 

Based on the robust Kalman filter [1], we employ 

the following parameters: 

𝐷1 = [
0 0
0 −1

], 𝐹 = [
0 0
0 −1

], 𝐷2 = [0 1], ∆(𝑡) =

[
0 0
0 −0.1

], 0 ≤ ∆𝑇(𝑡)∆(𝑡) ≤ 𝐼, a scaling parameter 

휀 = 1 > 0. 
Table 2 and Table 3 show that the proposed 

robust RLS Wiener filter is superior in estimation 

accuracy to the robust Kalman filter [1].  

In the simulation example, the numerical 

integration computations were performed using a 

fourth-order Runge-Kutta-Gill method with a 

sampling interval of h=0.001. 

Table 3. Mean-square values of the filtering errors 

𝑥1(𝑡) − 𝑥1(𝑡) and 𝑥2(𝑡) − 𝑥2(𝑡) for the white 

Gaussian observation noises 𝑁(0, 0.12), 𝑁(0, 0.32), 

and 𝑁(0, 0.52) [1]. 

 

 

4 Conclusion 
This paper has proposed a novel robust RLS Wiener 

filter for linear continuous-time systems with 

uncertainties in the system and observation matrices. 

Under the uncertainties in the system and 

observation matrices, the degraded signal is fitted to 

the AR model of finite order. The AR model of the 

degraded signal is related to the state-space model, 

White Gaussian 

observation 

noise 

MSV of 

𝑥1(𝑡) − 𝑥1(𝑡) 

MSV of 

𝑥2(𝑡) − 𝑥2(𝑡) 

𝑁(0, 0.12) 6.707662×
10−2 

3.209815×
10−2 

𝑁(0, 0.32) 4.526449×
10−2 

2.479447×
10−2 

𝑁(0, 52) 8.558077×
10−2 

3.611747×
10−2 

White Gaussian 

observation 

noise 

MSV of 

𝑥1(𝑡) − 𝑥1(𝑡) 

MSV of 

𝑥2(𝑡) − 𝑥2(𝑡) 

𝑁(0, 0.12) 0.125156 7.160740×
10−2 

𝑁(0, 0.32) 0.128165 7.178225×
10−2 

𝑁(0, 52) 0.133048 7.222379×
10−2 
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and the system and observation matrices for the 

degraded signal are formulated. Estimation formulas 

for the system and observation matrices were 

suggested in Section 2. Therefore, unlike the robust 

Kalman filter, the robust RLS Wiener filter of 

Theorem 1 does not need to assume norm-bounded 

uncertainties for the uncertain system and 

observation matrices. The robust RLS Wiener filter 

does not use the information of input matrix Γ and 

the input noise variance Q  in (1). The robust 

filtering problem is introduced based on the 

minimization of the mean-square value of the 

filtering errors for the nominal system states. The 

robust filtering estimate is given as the integral 

transformation of the degraded observations using 

the impulse response function. The integral equation 

that the optimal impulse response function satisfies 

is given in Section 3. Theorem 1 presented the 

robust RLS Wiener filtering algorithm starting from 

this integral equation.  

The numerical simulation example has shown 

that the robust RLS Wiener filter has better 

estimation accuracy than the robust Kalman filter. 

The new design of an H-infinity tracking 

controller is desirable for linear continuous 

stochastic systems with uncertain parameters as a 

future challenge. By combining the robust RLS 

Wiener filter proposed in this paper with the new H-

infinity tracking control algorithm, tracking control 

is implementable in linear continuous-time 

stochastic systems with uncertain parameters.  

 

Appendix: Proof of Theorem 1 

Substituting 𝐾𝑥�̆�(𝑡, 𝑠) = 𝛼(𝑡)𝛽𝑇(𝑠), 0 ≤ 𝑠 ≤ 𝑡,  in 

(13) into (12), (12) is rewritten as 

 

ℎ(𝑡, 𝑠)𝑅
= 𝛼(𝑡)𝛽𝑇(𝑠)

− ∫ ℎ(𝑡, 𝜏)�̆�𝐾�̆�(𝜏, 𝑠)�̆�
𝑇𝑑𝜏.

𝑡

0

 
(A-1) 

Let us introduce an auxiliary function 𝐽(𝑡, 𝑠), which 

satisfies 

 

𝐽(𝑡, 𝑠)𝑅

= 𝛽𝑇(𝑠) − ∫ 𝐽(𝑡, 𝜏)�̆�𝐾�̆�(𝜏, 𝑠)�̆�
𝑇𝑑𝜏.

𝑡

0

 (A-2) 

From (A-1) and (A-2), ℎ(𝑡, 𝑠) is given by 

 
ℎ(𝑡, 𝑠) = 𝛼(𝑡)𝐽(𝑡, 𝑠). (A-3) 

Differentiating (A-2) with respect to 𝑡, we have 

 

𝜕𝐽(𝑡, 𝑠)

𝜕𝑡
𝑅

= −𝐽(𝑡, 𝑡)�̆�𝐾�̆�(𝑡, 𝑠)�̆�
𝑇

− ∫
𝜕𝐽(𝑡, 𝜏)

𝜕𝑡
�̆�𝐾�̆�(𝜏, 𝑠)�̆�

𝑇𝑑𝜏.
𝑡

0

 

(A-4) 

Introducing 

 

𝐿(𝑡, 𝑠)𝑅
= �̆�𝑇(𝑠)�̆�𝑇

− ∫ 𝐿(𝑡, 𝜏)�̆�𝐾�̆�(𝜏, 𝑠)�̆�
𝑇𝑑𝜏

𝑡

0

, 
(A-5) 

and using (14), 
𝜕𝐽(𝑡,𝑠)

𝜕𝑡
 satisfies 

 
𝜕𝐽(𝑡, 𝑠)

𝜕𝑡
= −𝐽(𝑡, 𝑡)�̆��̆�(𝑡)𝐿(𝑡, 𝑠). (A-6) 

Putting 𝑠 = 𝑡 in (A-2), we have 

 

𝐽(𝑡, 𝑡)𝑅

= 𝛽𝑇(𝑡) − ∫ 𝐽(𝑡, 𝜏)�̆�𝐾�̆�(𝜏, 𝑡)�̆�
𝑇𝑑𝜏.

𝑡

0

 
(A-7) 

Introducing 

 𝑟(𝑡) = ∫ 𝐽(𝑡, 𝜏)�̆��̆�(𝜏)𝑑𝜏,
𝑡

0

 (A-8) 

and using (14), we have 

 𝐽(𝑡, 𝑡)𝑅 = 𝛽𝑇(𝑡) − 𝑟(𝑡)�̆�𝑇(𝑡)�̆�𝑇. (A-9) 

Differentiating (A-8) with respect to 𝑡, we have 

 

𝑑𝑟(𝑡)

𝑑𝑡

= 𝐽(𝑡, 𝑡)�̆��̆�(𝑡) + ∫
𝜕𝐽(𝑡, 𝜏)

𝜕𝑡
�̆��̆�(𝜏)𝑑𝜏.

𝑡

0

 
(A-10) 

Substituting (A-6) into (A-10), we have 

 

𝑑𝑟(𝑡)

𝑑𝑡
= 𝐽(𝑡, 𝑡)𝐻(̆�̆�(𝑡)

− ∫ �̆�(𝑡)𝐿(𝑡, 𝜏)�̆��̆�(𝜏)𝑑𝜏)
𝑡

0

 

=  𝐽(𝑡, 𝑡)𝐻(̆�̆�(𝑡) − �̆�(𝑡)𝑚(𝑡)), 
𝑟(0) = 0. 

(A-11) 

Here, we introduced the function 𝑚(𝑡) given by 

 𝑚(𝑡) = ∫ 𝐿(𝑡, 𝜏)�̆��̆�(𝜏)𝑑𝜏)
𝑡

0
. (A-12) 

Differentiating (A-5) with respect to 𝑡, we have 
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𝜕𝐿(𝑡, 𝑠)

𝜕𝑡
𝑅

= −𝐿(𝑡, 𝑡)�̆�𝐾�̆�(𝑡, 𝑠)�̆�
𝑇

− ∫
𝜕𝐿(𝑡, 𝜏)

𝜕𝑡
�̆�𝐾�̆�(𝜏, 𝑠)�̆�

𝑇𝑑𝜏
𝑡

0

. 

(A-13) 

From (A-5) and (A-13), we obtain 

 

𝜕𝐿(𝑡, 𝑠)

𝜕𝑡
= −𝐿(𝑡, 𝑡)�̆��̆�(𝑡)𝐿(𝑡, 𝑠). 

(A-14) 

Differentiating (A-12) with respect to 𝑡, we have 

 

𝑑𝑚(𝑡)

𝑑𝑡
= 𝐿(𝑡, 𝑡)�̆��̆�(𝑡) +

∫
𝜕𝐿(𝑡,𝜏)

𝜕𝑡
�̆��̆�(𝜏)𝑑𝜏)

𝑡

0
. 

(A-15) 

Substituting (A-14) into (A-15), we obtain 

 

𝑑𝑚(𝑡)

𝑑𝑡
= 𝐿(𝑡, 𝑡)𝐻(̆�̆�(𝑡) − �̆�(𝑡)𝑚(𝑡)), 

𝑚(0) = 0. 
(A-16) 

From (8) and (A-3), the filtering estimate 𝑥(𝑡)  is 

written as 

 𝑥(𝑡) = 𝛼(𝑡)∫ 𝐽(𝑡, 𝑠)�̆�(𝑠)𝑑𝑠
𝑡

0

. (A-17) 

Differentiating (A-17) with respect to 𝑡, using (A-3) 

and (A-6) with 
𝑑𝛼(𝑡)

𝑑𝑡
= 𝐴𝛼(𝑡) from (13), and 

introducing  

 
�̆̂�(𝑡) = �̆�(𝑡)∫ 𝐿(𝑡, 𝑠)�̆�(𝑠)𝑑𝑠

𝑡

0

, (A-18) 

we have 

 

𝑑𝑥(𝑡)

𝑑𝑡

=
𝑑𝛼(𝑡)

𝑑𝑡
∫ 𝐽(𝑡, 𝑠)�̆�(𝑠)𝑑𝑠

𝑡

0

+ 𝛼(𝑡)∫
𝜕𝐽(𝑡, 𝑠)

𝜕𝑡
�̆�(𝑠)𝑑𝑠

𝑡

0

+ 𝛼(𝑡)𝐽(𝑡, 𝑡)�̆�(𝑡) 

= 𝐴𝑥(𝑡) + ℎ(𝑡, 𝑡) (�̆�(𝑡) − �̆��̆̂�(𝑡)) , 

𝑥(0) = 0.  

(A-19) 

From (A-3) and (A-9), ℎ(𝑡, 𝑡) is given by 

 

ℎ(𝑡, 𝑡)

= (𝛼(𝑡)𝛽𝑇(𝑡)

− 𝛼(𝑡)𝑟(𝑡)�̆�𝑇(𝑡)�̆�𝑇)𝑅−1. 
(A-20) 

Using (13) and introducing a function 𝑆(𝑡) =
𝛼(𝑡)𝑟(𝑡)�̆�𝑇(𝑡), ℎ(𝑡, 𝑡) is written as 

 ℎ(𝑡, 𝑡) = (𝐾𝑥�̆�(𝑡, 𝑠) − 𝑆(𝑡)�̆�𝑇)𝑅−1. (A-21) 

Let ℎ̆(𝑡, 𝑠) be given by 

 
ℎ̆(𝑡, 𝑠) = �̆�(𝑡)𝐿(𝑡, 𝑠). (A-22) 

From (5) and (14), it is clear that 

 
𝑑�̆�(𝑡)

𝑑𝑡
= �̆��̆�(𝑡). (A-23) 

Differentiating (A-18) with respect to 𝑡and using 

(A-14), we obtain 

 

𝑑�̆̂�(𝑡)

𝑑𝑡

= �̆��̆̂�(𝑡) + �̆�(𝑡)∫
𝜕𝐿(𝑡, 𝑠)

𝜕𝑡
�̆�(𝑠)𝑑𝑠

𝑡

0

 

+�̆�(𝑡)𝐿(𝑡, 𝑡)�̆�(𝑡) 

= �̆��̆̂�(𝑡) + ℎ̆(𝑡, 𝑡) (�̆�(𝑡) − �̆��̂̆�(𝑡)) , 

�̆̂�(0) = 0.  

(A-24) 

Here, ℎ̆(𝑡, 𝑡) is given by 

 
ℎ̆(𝑡, 𝑡) = �̆�(𝑡)𝐿(𝑡, 𝑡). (A-25) 

Differentiating 𝑆(𝑡) with respect to 𝑡, we have 

 

𝑑𝑆(𝑡)

𝑑𝑡
=

𝑑𝛼(𝑡)

𝑑𝑡
𝑟(𝑡)�̆�𝑇(𝑡) +

𝛼(𝑡)
𝑑𝑟(𝑡)

𝑑𝑡
�̆�𝑇(𝑡) + 𝛼(𝑡)𝑟(𝑡)

𝑑�̆�𝑇(𝑡)

𝑑𝑡
. 

(A-26) 

From, (13), (14), (A-3), and (A-11), (A-26) is 

rewritten as 

 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝐴𝑆(𝑡) + 𝑆(𝑡)�̆�𝑇 +

ℎ(𝑡, 𝑡)𝐻(̆𝐾�̆�(𝑡, 𝑡) − 𝑆0(𝑡)). 
(A-27) 

Here,  

 𝑆0(𝑡) = �̆�(𝑡)𝑚(𝑡)�̆�𝑇(𝑡). (A-28) 

Differentiating (A-28) with respect to 𝑡, using (A-

16), and introducing 

 ℎ0(𝑡, 𝑡) = �̆�(𝑡)𝐿(𝑡, 𝑡), (A-29) 
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we obtain 

 

𝑑𝑆0(𝑡)

𝑑𝑡
= �̆�𝑆0(𝑡) + 𝑆0(𝑡)�̆�

𝑇

+ �̆�(𝑡)𝐿(𝑡, 𝑡)𝐻(̆�̆�(𝑡)

− �̆�(𝑡)𝑚(𝑡))�̆�𝑇(𝑡) 

= �̆�𝑆0(𝑡) + 𝑆0(𝑡)�̆�
𝑇

+ ℎ0(𝑡, 𝑡)𝐻(̆𝐾�̆�(𝑡, 𝑡)
− 𝑆0(𝑡)), 

𝑆0(0) = 0. 

(A-30) 

From (A-5), 𝐿(𝑡, 𝑡) satisfies 

 

𝐿(𝑡, 𝑡)𝑅
= �̆�𝑇(𝑡)�̆�𝑇

− ∫ 𝐿(𝑡, 𝜏)�̆�𝐾�̆�(𝜏, 𝑡)�̆�
𝑇𝑑𝜏

𝑡

0

. 
(A-31) 

From (14) and (A-12), (A-31) is rewritten as 

 𝐿(𝑡, 𝑡)𝑅 = �̆�𝑇(𝑡)�̆�𝑇 − 𝑚(𝑡)�̆�𝑇(𝑡)�̆�𝑇. (A-32) 

Hence, we obtain an expression for ℎ0(𝑡, 𝑡) as 

 ℎ0(𝑡, 𝑡) = (𝐾�̆�(𝑡, 𝑡) − 𝑆0(𝑡))�̆�
𝑇�̆�−1. (A-33) 

(Q.E.D.)  
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