
Bandlimited signals have played a fundamental role in the

digital world in the last decades. The Whittaker-Shannon

sampling theorem is the fundamental bridge between analog

and digital signal processings/communications, which has

brought significant interest in both signal processing and

mathematics communities. The sampling theorem is about the

reconstruction of a bandlimited signal from its evenly spaced

samples and an exact reconstruction is possible if the samples

are sampled from the analog signal with a sampling rate not

lower than the Nyquist rate.

Another family of bandlimited signal reconstructions is to

reconstuct a bandlimited signal from its given segment. It is

called bandlimited signal extrapolation and has applications

in, for example, CT imaging, where only limited observation

angles are available. Bandlimited signal extrapolation has also

attracted significant interest in the past, see, for example, [2]-

[9].

In this paper, we introduce a subspace of bandlimited

signals, which is called BT-limited signal space. It consists

of all bandlimited signals such that the non-zero parts of

their Fourier transforms are pieces of bandlimited signals,

which are called BT-limited signals. Note that for a general

bandlimited signal, although its Fourier transform has finite

support, the non-zero spectrum may not be smooth, while the

non-zero spectrum is smooth for a BT-limited signal. It was

found in [9] that BT-limited signals can be characterized by

using prolate spheroidal wavefunctions [1]. In this paper, a

more intuitive and elementary proof for the characterization

is given, which may help to better understand BT-limited

signals. Some new properties about and applying BT-limited

signals are also presented. Interestingly, although there is no

any error estimate existed for a general bandlimited signal

extrapolation from inaccurate data, an analytic error estimate

in the whole time domain was obtained in [9] for a BT-limited

signal extrapolation.

The remainder of this paper is organized as follows. In

Section II, prolate spheroidal wavefunctions are briefly intro-

duced. In Section III, BT-limited signals are introduced and

characterized. In Section IV, a BT-limited signal extrapolation

with analytic error estimate is described. In Section V, some
simulations are presented to verify the theoretical extrapolation

result for BT-limited signals. In Section VI, more properties

on BT-limited signals are presented. In Section VII, this paper

is concluded.

All signals considered in this paper are assumed to have fi-

nite energies. A signal f(t) is called bandlimited of bandwidth

Ω (or Ω bandlimited), if its Fourier transform f̂(ω) vanishes

when |ω| > Ω. Let BLΩ denote the space of all Ω bandlimited

signals. Let T > 0 be a constant and K be the following

operator defined on L2[−T, T ]:

(Kf)(t) =

∫ T

−T

sinΩ(t− s)

π(t− s)
f(s)ds, for f ∈ L2[−T, T ].

(1)

Let φk and λk , k = 0, 1, 2, ..., be the eigenfunctions and the

corresponding eigenvalues of the operator K with

∫ T

−T

φj(t)φk(t)dt = λkδ(j − k), (2)

where δ(n) is 1 when n = 0 and 0 otherwise, and 1 > λ0 >
λ1 > · · · > 0 with λk → 0 as k → ∞.

From (1), for k = 0, 1, 2, ...,

φk(t) =
1

λk

∫ T

−T

sinΩ(t− τ)

π(t− τ)
φk(τ)dτ, for t ∈ [−T, T ],

(3)

which means that φk(t) can be extended from t ∈ [−T, T ] to

t ∈ (−∞,∞). Then,

∫ ∞

−∞

φj(t)φk(t)dt = δ(j − k)

and {φk(t)}∞k=0 form an orthonormal basis for space BLΩ and

every Ω bandlimited signal f can be expanded as

f(t) =

∞
∑

k=0

akφk(t) (4)

for some constants ak with

∞
∑

k=0

|ak|2 = ‖f‖2 < ∞.

The extended eigenfunctions φk are called prolate spheroidal

wavefunctions [1].
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We next define a subspace of Ω bandlimited signals. An Ω
bandlimited signal is called BT-limited if the non-zero part of

its Fourier transform is a piece of a T bandlimited signal. In

other words, let f ∈ BLΩ and its Fourier transform be f̂ . If

there exists g ∈ BLT and f̂(ω) = g(ω) for ω ∈ [−Ω,Ω], then

f is called BT-limited. The subspace of all BT-limited signals

in BLΩ is denoted as BL0
Ω and called BT-limited signal space.

From the above definition, by taking Fourier transform and

inverse Fourier transfrom, it is not hard to see that f(t) ∈ BL0
Ω

if and only if there exists q(t) ∈ L2[−T, T ] such that

f(t) =

∫ T

−T

sinΩ(t− s)

π(t− s)
q(s)ds, for t ∈ (−∞,∞). (5)

Thus, from (3), we know that every prolate spheroidal wave-

function φk is BT-limited, φk ∈ BL0
Ω, so is any linear

combination of finite many prolate spheroidal wavefunctions.

For a general Ω bandlimited signal, although its Fourier

transform has finite suppport, the non-zero part of the Fourier

transform is only in L2[−Ω,Ω] and may not be smooth. How-

ever, a BT-limited signal is not only smooth (entire function of

exponential type [10]) in time domain but also has the same

smoothness for the non-zero part in frequency domain. To

characterize BL0
Ω, the following result was obtained in [9].

Theorem 1: Let f ∈ BLΩ with the expansion (4). Then,

f ∈ BL0
Ω if and only if

∞
∑

k=0

|ak|2
λk

< ∞. (6)

The proof given in [9] is based on a result on operator

theory. Below, we provide an elementary and intuitive proof of

Theorem 1, which may help to understand BT-limited signals

better.

Proof:

We first prove the “if” part. Let f(t) be an Ω bandlimited

signal with the expansion (4) and the property (6) hold. Let

q(t) =
∞
∑

k=0

ak
λk

φk(t). (7)

From (2) and (6), we have
∫ T

−T

|q(t)|2dt =
∞
∑

k=0

|a|2k
λk

< ∞.

Thus, q(t) ∈ L2[−T, T ]. Furthermore, from (1), we have

(Kq)(t) =
∞
∑

k=0

akφk(t) = f(t), for t ∈ (−∞,∞),

which is (5) and therefore, f(t) ∈ BL0
Ω. This proves the

sufficiency.

We next prove the “only if” part. If f(t) ∈ BL0
Ω, then f(t)

has the form (5) for some q(t) ∈ L2[−T, T ]. In the meantime,

since f(t) is Ω bandlimited, let f(t) have the expansion (4).

Since {φk(t)}∞k=0 form an orthogonal basis for L2[−T, T ],
[1], and (2), there exist a sequence of constants {bk}∞k=0 of

finite energy, i.e.,
∞
∑

k=0

|bk|2 < ∞, (8)

such that

q(t) =

∞
∑

k=0

bk
φk(t)√
λk

, for t ∈ [−T, T ].

Thus, from (5) and (1) , we have

f(t) = (Kq)(t) =

∞
∑

k=0

bk
√

λkφk(t), for t ∈ (−∞,∞).

Therefore, comparing with (4), we obtain ak = bk
√
λk for

k = 0, 1, 2, .... From (8), we then have

∞
∑

k=0

|ak|2
λk

=

∞
∑

k=0

|bk|2 < ∞,

which proves (6), i.e., the necessity is proved. q.e.d.

The above result characterizes all BT-limited signals. Since

any linear combinations of finite many prolate spheroidal

wavefunctions are BT-limited, all BT-limited signals are dense

in a bandlimited signal space, i.e., any bandlimited signal can

be approximated by BT-limited signals.

Since {φk}∞k=0 form an orthonormal basis for space BLΩ,

[1], for any finite energy sequence {ak}∞k=0, i.e.,

∞
∑

k=0

|ak|2 < ∞,

we know
∞
∑

k=0

akφk(t) ∈ BLΩ.

On the other hand, from (2),

∞
∑

k=0

ak
φk(t)√
λk

=

∞
∑

k=0

ak√
λk

φk(t) ∈ L2[−T, T ].

Since λk → 0 as k → ∞, we may have

∞
∑

k=0

|ak|2
λk

= ∞.

Thus, in general

∞
∑

k=0

ak
φk(t)√
λk

/∈ L2(−∞,∞), or equivalently, /∈ BLΩ.

However, if

∞
∑

k=0

ak
φk(t)√
λk

∈ L2(−∞,∞), or equivalently, ∈ BLΩ,

then, (6) holds, and from Theorem 1, we obtain

∞
∑

k=0

ak
φk(t)√
λk

∈ BL0
Ω.

For a general Ω bandlimited signal f ∈ BLΩ with expansion

(4) where {ak}∞k=0 is a general sequence of finite energy, let

fn(t) =
n
∑

k=0

akφk(t). (9)

3. BT-limited Signal Space 
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From (1) and (3),

fn(t) = K

(

n
∑

k=0

ak
λk

φk(t)

)

.

Let

qn(t) =

n
∑

k=0

ak
λk

φk(t).

Clearly, we have fn(t) = (Kqn)(t) ∈ BL0
Ω. However, if f is

not BT-limited, i.e., f /∈ BL0
Ω, then, from (2) and Theorem 1,

∫ T

−T

|qn(t)|2dt =
n
∑

k=0

|ak|2
λk

→ ∞, as n → ∞.

This means that qn(t) does not converge in L2[−T, T ], al-

though fn(t) converges to f(t) in L2(−∞,∞), as n → ∞,

otherwise f would be BT-limited.

Since Ω bandlimited signal space BLΩ and L2[−Ω,Ω] are

isomorphic by using (inverse) Fourier transform, for any signal

g ∈ L2[−Ω,Ω], let it be the Fourier transform f̂ of f ∈ BLΩ,

i.e., g = f̂ on [−Ω,Ω]. As we can see above, fn approaches

f in L2(−∞,∞), then f̂n approaches g = f̂ in L2[−Ω,Ω].
Since f̂n = DΩq̂n and q̂n is T bandlimited as we can see above

as well, g can be approximated by a T bandlimited signal q̂n
restricted in [−Ω,Ω] in L2[−Ω,Ω], where DΩ stands for the

truncation operator from (−∞,∞) to [−Ω,Ω]. Because T and

Ω are both arbitrary, the above analysis proves the following

corollary.

Corollary 1: Any finite piece signal on [a, b] can be approx-

imated in L2[a, b] by a bandlimited signal restricted in [a, b]
of bandwidth T , where −∞ < a < b < ∞ and T > 0 are

arbitrary.

Note that the above result does not hold for infinite length

signals. Also, as a comparison, the Weierstrass theorem says

that any finite piece continuous signal can be approximated

by polynomials, which may be thought of as a different

perspective of using smooth/simple signals to approximate

complicated signals.

Bandlimited signal extrapolation had been studied exten-

sively in the 1970s and 1980s, see, for example, [2]- [9]. It

is to extrapolate a bandlimited signal f from a given piece

of its values, for example, to extrapolate f(t) for t outside

[−T, T ] when f(t) for t ∈ [−T, T ] is given. It is possible in

theory since f is bandlimited and thus it is an entire function

[10]. Any entire function is completely determined by its any

segment. However, in practice, a given piece signal f(t) for

t ∈ [−T, T ] may contain error/noise and in this case, the

extrapolation problem becomes a well-known ill-posed inverse

problem. Any error in a given segment may cause an arbitrary

large error in an extrapolation in general.

However, when f is BT-limited, an extrapolation method

was proposed in [9] and an analytic error estimate for the

extrapolation over the whole time domain was obtained. It

can be described as follows.
Let fǫ(t) be an observation of f(t) for t ∈ [−T, T ] with

the maximal error magnitude ǫ, i.e., |fǫ(t) − f(t)| ≤ ǫ for

t ∈ [−T, T ]. Let qǫ be the following minimum norm solution
(MNS) in space L2[−T, T ]:

∫ T

−T

|qǫ(t)|
2
dt = min

q(t)∈L2[−T,T ]

{
∫ T

−T

|q(t)|2dt :

∣

∣

∣

∣

∫ T

−T

sinΩ(t− s)

π(t− s)
q(s)ds− fǫ(t)

∣

∣

∣

∣

≤ 2ǫ, for t ∈ [−T, T ]

}

. (10)

Let

f̃(t) =

∫ T

−T

sinΩ(t− s)

π(t− s)
qǫ(s)ds. (11)

One can see that the above f̃(t) is obtained from the given

observation segement fǫ(t) of f(t) on [−T, T ] and is called

an extrapolation of f(t). Also, from (5), we have f̃(t) ∈ BL0
Ω.

For the above extrapolation of f(t), the following result was

obtained in [9].

Theorem 2: If f is BT-limited, i.e., f ∈ BL0
Ω, and f̃ is

defined in (11), then

|f̃(t)− f(t)| ≤ Cǫ1/3, for all t ∈ (−∞,∞), (12)

for some constant C that is independent of ǫ and t.

This result tells that when signal f is BT-limited, i.e.,

not only it is bandlimited but also the non-zero part of its

Fourier transform is a piece of a bandlimited signal, the above

extrapolation (10)-(11) is robust and has an error estimate (12)

for time t. To the author’s best knowledge, no any other error

estimate for a bandlimited signal extrapolation from inaccurate

data on the whole time domain exists in the literature.

In practice, a given observation fǫ(t) for t ∈ [−T, T ]
is usually discrete in time. A discretization of the above

extrapolation (10)-(11) with a proved convergence was also

given in [9].

More general subspaces BLγ
Ω for 0 ≤ γ < 1/2 in

bandlimited signal space BLΩ than the above BL0
Ω were

introduced with the corresponding extrapolation, error estimate

and discretization in [9]. It was shown in [9] that, if f(t) is

Ω bandlimited with the expansion (4) and, for 0 ≤ γ < 1/2,

the following inequality holds

∞
∑

k=0

|ak|2

λ
1−2γ/3
k

< ∞, (13)

then, f(t) ∈ BLγ
Ω. Clearly, (13) returns to (6) in Theorem 1

when γ = 0, although when γ 6= 0, the physical meaning of

signals in subspace BLγ
Ω is not as clear as signals in subspace

BL0
Ω studied in this paper. For more details, we refer the reader

to [9].

Another comment we want to make here is that, for a

general Ω bandlimited signal f , although it may not be

BT-limited, function fn defined in (9) is BT-limited and

approaches f in L2(−∞,∞) as n becomes large. Therefore,

for a general Ω bandlimited signal f , from its given segment

f̃ with errors, we can still apply the MNS extrapolation (10)-

(11). In this case, the analytic error estimate in Theorem 2

may not hold. However, interestingly, it was shown in [9]

that the discretization of the above MNS extrapolation and

its convergence to the analog solution still hold.

4. BT-limited Signal Extrapolation 
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We next show some simulation results to verify the above

MNS extrapolation for BT-limited signals. For simplicity, in

this simulation we use Ω = π and T = 1. A BT-limited signal

f(t) is generated by randomly generating q(t) ∈ L2[−T, T ] in

(5). Its noisy observation fǫ(t) is obtained by adding a random

error with uniform distribution to f(t) so that the maximum

error magnitude not above ǫ.
We sample a noisy analog BT-limited signal fǫ(t) in [−1, 1]

with sampling rate 100 Hz, i.e., 201 samples of fǫ(t) in [−1, 1]
are used in the MNS in (10)-(11). In Fig. 1, the case of ǫ =
0.0125 is simulated, where Fig. 1(a) shows the true data of a

BT-limited signal f(t) and its noisy data fǫ(t) on [−1, 1], and

Fig. 1(b) shows the true signal f(t) and its extrapolation f̃(t)
in (11) using the noisy data fǫ(t) shown in Fig. 1(a). Fig. 2

shows the results when ǫ = 0.0031, where one can see that the

error in the extrapolated signal is clearly reduced, comparing

to that in Fig. 1.

Fig. 3 shows the curve (dashed) of the maximum error

magnitude between the true and the extrapolated signals, i.e.,

maxt |f(t)− f̃(t)|, vs. the maximum error magnitude ǫ in the

noisy data over [−1, 1], and the curve (dashdot) of the ratio

vs. ǫ:

R(ǫ) =
maxt |f(t)− f̃(t)|

ǫ1/3
.

The curves are obtained by using 20 independent trials. From

this figure, one can see that the ratio R(ǫ) is less than a

constant as ǫ gets smaller, which verifies the result (12) in

Theorem 2. Note that in Fig. 3, the signal magnitudes are

similar to those in Figs. 1 and 2.

The above definition of a BT-limited signal can be easily

generalized as follows. Let BL[A,B] denote the space of all

finite energy signals f(t) whose Fourier transforms are sup-

ported in the interval [A,B], i.e., f̂(ω) = 0 when ω /∈ [A,B].
For real numbers A,B, a, b with −∞ < A < B < ∞
and −∞ < a < b < ∞, if signal f(t) ∈ BL[A,B] and

f̂(ω) = g(ω) when ω ∈ [A,B] for some g(ω) ∈ BL[a,b],

then signal f(t) is called BT-limited. The signal space of all

the above BT-limited signals is denoted as BLA,B,a,b. Clearly,

when A = −Ω, B = Ω, a = −T , and b = T , the above

definition for a BT-limited signal returns to that in Section III

and BLA,B,a,b = BL0
Ω.

Let Ω = (B − A)/2 and T = (b − a)/2, by some shifts

in frequency and time domains, the representation for a BT-

limited signal in (5) becomes as follows: f ∈ BLA,B,a,b if

and only if

f(t) = ej(A+Ω)t

∫ T

−T

sinΩ(t+ a+ T − s)

π(t+ a+ T − s)
q(s)ds (14)

for any t ∈ (−∞,∞), for some q(t) ∈ L2[−T, T ].
Since any bandlimited signal is an entire function when

t is extended to the complex plane [10], it cannot be 0 in

any segment of time domain unless it is all 0 valued. This

implies that a bandlimited signal f whose Fourier transform

is supported in two separate bands, for example, f̂(ω) 6= 0

for Ai < ω < Bi, i = 1, 2, and f̂(ω) = 0 for other ω, where

−∞ < A1 < B1 < A2 < B2 < ∞, then, signal f is not

BT-limited, i.e., f /∈ BLA1,B2,a,b for any −∞ < a < b <
∞, although in this case, signal f could be a sum of two

BT-limited signals whose Fourier transforms are supported in

[A1, B1] and [A2, B2], respectively, such that, the non-zero

supports of the two Fourier transforms are the pieces of two

bandlimited signals.

Theorem 3: For two non-zero BT-limited signals fi ∈
BLAi,Bi,ai,bi with −∞ < Ai < Bi < ∞ and −∞ < ai <
bi < ∞ for i = 1, 2, their linear combination f = α1f1+α2f2
with two non-zero complex coefficients α1 and α2 is BT-

limited if and only if A1 = A2 and B1 = B2.

Proof:

The “if” part is easy to see by setting A = A1 = A2,

B = B1 = B2, a = min{a1, a2}, and b = max{b1, b2}.

Then, f ∈ BLA,B,a,b, i.e., f is BT-limited.

We next prove the “only if” part. Without loss of gen-

erality, we assume A1 < A2 and f is BT-limited. Then,

f ∈ BLA1,max{B1,B2},a,b for some real numbers a, b with

−∞ < a < b < ∞. From the above definition of BT-limited

signals, there exist bandlimited signals gi ∈ BLai,bi such

that f̂i(ω) = gi(ω) for ω ∈ [Ai, Bi], i = 1, 2, and there

exists a bandlimited signal g ∈ BLa,b such that f̂(ω) = g(ω)
for ω ∈ [A1,max{B1, B2}]. On the other hand, we have

f̂ = α1f̂1+α2f̂2. This means that f̂(ω) = α1f̂1(ω) = g(ω) =
α1g1(ω) for ω ∈ [A1,min{A2, B1}]. Since all g, g1, g2 are

bandlimited and therefore, entire functions, we must have

f̂(ω) = α1f̂1(ω) = g(ω) = α1g1(ω) for all ω. In other words,

f̂(ω) = α1f̂1(ω)+α2f̂2(ω) = α1f̂1(ω) for all ω. This implies

f̂2(ω) = 0 for all ω, i.e., f2 is the 0 signal, which contradicts

with the non-zero signal assumption. This proves the necessity.

q.e.d.

In general, for p BT-limited signals fi ∈ BLAi,Bi,ai,bi , with

−∞ < Ai < Bi < ∞ and −∞ < ai < bi < ∞, i =
1, 2, ..., p, their non-zero linear combination f =

∑p
i=1 αifi

for non-zero complex coefficients αi is not BT-limited, unless

Ai = Bi for all i = 1, 2, ..., p. It is easy to see that if Ai = Bi

for all i = 1, 2, ..., p, then the above linear combination f
is indeed BT-limited and f ∈ BLA,B,a,b, where A = Ai,

B = Bi, a = min{a1, a2, ..., ap} and b = max{b1, b2, ..., bp}.

Although the above linear combination f of p BT-limited

signals is generally not BT-limited, from (14), we have

f(t) =

p
∑

i=1

αie
j(Ai+Ωi)t

∫ Ti

−Ti

sinΩi(t+ ai + Ti − s)

π(t+ ai + Ti − s)
qi(s)ds

(15)

for any t ∈ (−∞,∞), where Ωi = (Bi − Ai)/2, Ti = (bi −
ai)/2, and qi ∈ L2[−Ti, Ti] for i = 1, 2, ..., p.

In this paper, BT-limited signal space was introduced and

characterized. It is a subspace of bandlimited signals where the

non-zero parts of their Fourier transforms are also pieces of

bandlimited signals. Some new properties about and applying

BT-limited signals were also presented. For BT-limited signals,

an extrapolation from inaccurate data with an analytic error

estimate in the whole time domain exists. Some simulations

5. Simulations 
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were presented to verify the theoretical extrapolation results

for BT-limited signals.
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Fig. 1. BT-limited signal extrapolation from noisy data with the maximum
error magnitude ǫ = 0.0125: (a) given noisy data on [−1, 1] and (b)
extrapolated signal using the MNS method.

References

WSEAS TRANSACTIONS on SIGNAL PROCESSING 
DOI: 10.37394/232014.2023.19.2 Xiang-Gen Xia

E-ISSN: 2224-3488 17 Volume 19, 2023

Contribution of Individual Authors to the 
Creation of a Scientific Article (Ghostwriting 
Policy) 
The author contributed in the present research, at all 

stages from the formulation of the problem to the 

final findings and solution. 

    

Sources of Funding for Research Presented in a 
Scientific Article or Scientific Article Itself 
No funding was received for conducting this study. 

  
Conflict of Interest
The author has no conflict of interest to declare that 

is relevant to the content of this article.  

 
Creative Commons Attribution License 4.0 
(Attribution 4.0 International, CC BY 4.0) 
This article is published under the terms of the 

Creative Commons Attribution License 4.0 

https://creativecommons.org/licenses/by/4.0/deed.en

_US 



-1 -0.5 0 0.5 1
-0.1

-0.05

0

0.05

0.1

0.15
=0.0031

true signal

given noisy signal

(a)

-6 -4 -2 0 2 4 6
-0.1

-0.05

0

0.05

0.1

0.15
=0.0031

true signal

extrapolated signal

(b)

Fig. 2. BT-limited signal extrapolation from noisy data with the maximum
error magnitude ǫ = 0.0031: (a) given noisy data on [−1, 1] and (b)
extrapolated signal using the MNS method.
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