TABLE II
BLOOD SUGAR LEVEL RATES IN (MG/DL)/DAY DETECTED IN “DATA-01”
AND “DATA-29” BY DIFFERENT FILTERS
Data set H2-OFIR OFIR KF ML-FIR UFIR
“data-01” 0.089 0.058 0.103 0.039 0.129
“data-29” 0.451 0.449 0.557 0.271 0.418
To provide accurate monitoring of glucose level in diabetic
patients under timing jitter caused by human factors, we
have developed the robust a posteriori H2-OFIR filter and
compared its performance to the a posteriori OFIR filter.
It turned out that under the maximum observed fractional
daily jitter in glucose measurements of 4%, the accuracy
improvement by the robust filter is less than 4%, which is
small. In this case, the jitter can be ignored and the standard
filters used. However, more frequent measurements result in
larger fractional jitter that require robust estimates.
This work was supported by the Consejo Nacional de
Ciencia y Tecnolog´ıa (CONACyT) of Mexico Project A1-S-
10287, Funding CB2017-2018.
[1] P. V. Balakrishnan, “On the problem of time jitter in sampling,” IRE
Trans. Inform. Theory, vol. 8, no. 3, pp. 226–236, 1962.
[2] E. S¨ackinger, Analysis and design of transimpedance amplifiers for
optical receivers. Wiley, New York, 2017.
[3] Jitter Specifications for Timing Signals: Renesas Electr. Corp. Applica-
tion Note AN-840. Renesas Electr. Corp., 2019.
[4] A. M. Raoufi, X. Tang, Z. Jing, X. Zhang, Q. Xu, and C. Zhou, “Blood
glucose monitoring and its determinants in diabetic patients: a cross-
sectional study in Shandong, China,” Diabetes Ther., vol. 9, no. 5, pp.
2055–2066, 2018.
[5] A. D. Association, “Classification and Diagnosis of Diabetes: Standards
of medical care in diabetes,” Diabetes Ther., vol. 44, pp. S15–S33, 2021.
[6] M. M. Kahn, Diabetes Data Set: UCI Machine Learning Repository
https://archive.ics.uci.edu/ml/datasets/diabetes, 1994.
[7] D. Wilson, “Convolution and Hankel operator norms for linear systems,”
IEEE Trans. Autom. Contr., vol. 34, no. 1, pp. 94–97, 1989.
[8] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control.
Prentice-Hall, Upper Saddle River, NJ, 1996.
[9] P. L. Rawicz, P. R. Kalata, K. M. Murphy, and T. A. Chmielewski,
“Explicit formiula for two state Kalman, H2and H∞Target tracking,”
IEEE Trans. Aero. Electr. Syst., vol. 39, no. 1, pp. 53–69, 2003.
[10] N. Narasimhamurthi, “Estimating the parameters of a sinusoid sampled
by a clock with accumulated jitter,” in IEEE Instrum. Meas. Techn. Conf.
IEEE, Ottawa, Canada, May 1997, 1997, pp. 1132–1135.
[11] N. C. Georghiades and D. L. Snyder, “The expectation maximization
algorithm for symbol unsynchronized sequence detection,” IEEE Trans.
Commun., vol. 39, no. 1, pp. 54–61, 1991.
[12] F. Eng and F. Gustafsson, “Identification with stochastic sampling time
jitter,” Automatica, vol. 44, no. 3, pp. 637–646, 2008.
[13] X. G. Guo and G. Yang, “Insensitive h∞filtering for fast-sampled linear
systems with respect to sampling time jitter,” in 24th Chinese Contr. Dec.
Conf. (CCDC). Taiyuan, China, May 2012, 2012, pp. 4202–4207.
[14] L. Xie, Y. C. Soh, C. Du, and Y. Zou, “Robust H2estimation and
control,” J. Contr. Theory Appl., vol. 2, pp. 20–26, 2004.
[15] L. Xie, “On robust H2estimation,” Acta Automat. Sinica, vol. 31, no. 1,
pp. 1–12, 2005.
[16] M. Souza, A. R. Fioravanti, and J. C. Geromel, “H2sampled-data
filtering of linear systems,” IEEE Trans. Signal Process., vol. 62, no. 18,
pp. 4839–4846, 2014.
[17] B. Hassibi, A. H. Sayed, and T. Kailath, Indefinite-quadratic estimation
and control: a unified approach to H2and H∞theories. SIAM,
Philadelphia, 1999.
[18] K. Z. Liu and T. Sato, “Lmi solution to singular h2suboptimal control
problems,” in 14th World Congress of IFAC. Beijing, China, July 1999,
1999, pp. 3011–3016.
[19] Z. Tan, Y. C. Soh, and L. Xie, “Envelope-constrained H2FIR filter
design,” Circ. Syst. Signal Process., vol. 18, no. 6, pp. 539–551, 1999.
[20] B. S. Chen and J. C. Hung, “Fixed-order H2and H∞optimal
deconvolution filter designs,” Signal Process., vol. 80, no. 2, pp. 311–
331, 2000.
[21] S. Wang, L. Xie, and C. Zhang, “H2optimal inverse of periodic FIR
digital filters,” IEEE Trans. Signal Process., vol. 48, no. 9, pp. 2696–
2700, 2000.
[22] ——, “Mixed H2/H∞deconvolution of uncertain periodic FIR chan-
nels,” Signal Process., vol. 81, no. 10, pp. 2089–2103, 2001.
[23] W. H. Kwon and S. Han, Receding horizon control: model predictive
control for state models. Springer, London, 2005.
[24] Y. S. Lee, S. H. Han, and W. H. Kwon, “H2/H∞FIR for discrete-
time state space models,” Int. J. Contr. Autom. Syst., vol. 4, no. 5, pp.
645–652, 2006.
[25] C. K. Ahn, S. Zhao, Y. S. Shmaliy, and H. Li, “On the ℓ2−ℓ∞and
H∞performance of the continuous-time deadbeat H2FIR filter,” IEEE
Trans. Circ. Syst. II Express Briefs, vol. 65, no. 11, pp. 1798–1802, 2018.
[26] Y. S. Shmaliy, “Linear optimal FIR estimation of discrete time-invariant
state-space models,” IEEE Trans. Signal Process., vol. 58, no. 6, pp.
3086–3096, 2010.
[27] Y. S. Shmaliy and O. Ibarra-Manzano, “Time-variant linear optimal
finite impulse response estimator for discrete state-space models,” Int.
J. Adapt. Contr. Signal Process., vol. 26, no. 2, pp. 95–104, 2012.
[28] S. Zhao and Y. S. Shmaliy, “Unified maximum likelihood form for bias
constrained FIR filters,” IEEE Signal Process. Lett., vol. 23, no. 12, pp.
1848–1852, 2016.
[29] Y. S. Shmaliy, “An iterative Kalman-like algorithm ignoring noise and
initial conditions,” IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2465–
2473, 2011.
[30] Y. S. Shmaliy, S. Zhao, and C. K. Ahn, “Unbiased FIR filtering:
an iterative alternative to Kalman filtering ignoring noise and initial
conditions,” IEEE Contr. Syst. Mag., vol. 37, no. 5, pp. 70–89, 2017.
[31] J. Ortega-Contreras, E. Pale-Ramon, Y. S. Shmaliy, and Y. Xu, “A novel
approach to H2FIR prediction under disturbances and measurement
errors,” IEEE Signal Process. Lett., vol. 28, pp. 150–154, 2021.
[32] S. Zhao, Y. S. Shmaliy, and F. Liu, “Optimal FIR filter for discrete-time
LTV systems and fast iterative algorithm,” IEEE Trans. Circ. Syst. II,
Express Briefs, vol. 68, no. 4, pp. 1527–1531, 2021.
[33] Y. S. Shmaliy and L. Morales-Mendoza, “FIR smoothing of discrete-
time polynomial models in state space,” IEEE Trans. Signal Process.,
vol. 58, no. 5, pp. 2544–2555, 2010.
7. Conclusions
Acknowledgements
References
WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2022.18.16
Eli G. Pale-Ramon, Jorge A. Ortega-Contreras,
Karen J. Uribe-Murcia, Yuriy S. Shmaliy