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Abstract: - In this paper, a new method to solve the signal-channel blind source separation (SCBSS) problem 
has been proposed. The method is based on combining the Adaptive Mode Separation-Based Wavelet 
Transform (AMSWT) and the ICA-based single channel separation. First, the amplitude spectrum of the 
instantaneous mixture signal is obtained via the Fourier transform. Then, the AMSWT is introduced to 
adaptively extract spectral intrinsic components (SIC) by applying the variational scaling and wavelet 
functions. The AMSWT is applied to every mode to obtain the time-frequency distribution. Then the time-
frequency distribution of the mixed signal is exploited. The ICA-based single-channel separation has been 
applied on spectral rows corresponding to different time intervals. Finally, these components are grouped using 
the 훽-distance of Gaussian distribution 퐷 . Objective measure of separation quality has been performed using 
the scale-invariant (SI) parameters and compared with the existing method to solve SCBSS problem. 
Experimental results show that the proposed method has better separation performance than the existed 
methods, and the proposed method present a powerful method to solve de SCBSS problem. 
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1 Introduction 
Blind signal separation (BSS) consists to separate 
source signal from mixed signals without any 
information. BSS have wide range of applications 
such as medical imaging and engineering [1-4], 
image processing and speech recognition [5, 6], and 
speech signal processing [7, 8], communication 
systems [9], astrophysics [10], automatic 
transcription or speech and musical instrument 
identification [11], mechanical fault detection [12,  
13].  
 In the literature, many approaches have 
been proposed to solve the BSS problem. The most 
popular is the independent component analysis 
method (ICA). In [14] an algorithm based on phase 
space reconstruction was proposed. In [15], an 
algorithm composed of pseudo-multiple input 
multiple output observation structure and 
independent component analysis (ICA) was 
proposed. In [16], an improved empirical mode 
decomposition method for blind separation of 
single-channel vibration signal mixtures was 
proposed. The ICA is characterized by simplicity 
and results quality.  ICA technique is based on 
linear transformation to find components from 
multidimensional mixed data.  The ICA is 
performed on the hypothesis that the source signals 

are statistically independent. The founded 
components are statistically independent too.  
 A single channel source separation methods 
overview is presented in [17]. Methods based on 
spectral representation of the observed signal are 
usually known as spectral decomposition-based 
methods. Spectral decomposition-based methods 
have been introduced by many authors. In [18] 
nonnegative matrix factorization (NMF) method has 
been applied on the Short Time Fourier Transform 
(STFT) representation of a single-channel observed 
signal, but the method requires the use of an 
additional training data. In [19], wavelet transforms 
and a combination of empirical mode decomposition 
(EMD) and ICA has been proposed, but the wavelet 
transforms require some predefined basis functions 
to represent a signal. The EMD and its improved 
algorithms are empirical, and there is no complete 
mathematical theory basis [20]. In [21] the bark 
scale aligned wavelet packet decomposition has 
been introduced, after the Fourier transform, the 
Gaussian mixture model (GMM) has been used in 
separation step. In [22] a combination of various 
single channel separation methods, a spectral 
decomposition based techniques and model based 
methods has been dissected.  
 In [23] a new Adaptive Mode Separation-
Based Wavelet Transform (AMSWT) has been 
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proposed to seismic time–frequency analysis. The 
novel time-frequency analysis approach is inspired 
by the adaptive wavelet bank configuration to 
empirical wavelet transform (EWT) [24-26] and the 
spectral mode separation thought from variational 
mode decomposition (VMD) [27]). The AMSWT 
method consists to adaptively extract spectral 
intrinsic components by solving a recursive 
optimization problem. To obtain the spectral 
boundaries for wavelets bank configuration, the 
limited support of every spectral mode is 
introduced. Then, the obtained spectral boundaries 
for wavelets bank configuration built to highlight 
the spectral information.  The AMSWT method is a 
fully adaptive approach without requiring prior 
information.  
 In [28] a new method to solve the SCBSS 
problem is proposed. The method is applied on the 
time-frequency representation of a single-channel 
observed signal. The ICA-based single-channel 
separation has been applied on spectral rows 
corresponding to different time intervals. The 훽-
distance of Gaussian distribution 퐷  is used to 
measure the distance between time-frequency 
domain components of the mixed signal obtained by 
ICA, and finally, these components are grouped. 
The grouping algorithm of the components return to 
solve the optimization problem by minimizing the 
negentropy of reconstructed constituent signals. 
 In this paper a new method has been 
proposed to solve the SCBSS problem. The method 
is based on combining the AMSWT [23] and the 
ICA-based single channel separation method [28].  
The time-frequency representation of a signal is 
considered as a multichannel observed signal and 
can be separated by ICA.  After separation, the 
statistically independent time-frequency 
components are then grouped. The grouping using 
the 훽-distance of Gaussian distribution 퐷  
 The performance of the proposed method is 
tested on real speech sounds chosen from available 
databases and compared to the results obtained via 
EMD based single-channel separation, the wavelets 
based-single channel separation introduced in [19] 
and the single-channel separation audio signals 
based on variational mode decomposition (VMD). 
The quality of the obtained separation results was 
evaluated using the scale-invariant (SI) parameters 
such as SI-SDR, SI-SAR, SI-SIR, which are 
particularly recommended for single-channel 
separation evaluation [29, 30]. 
 The remaining content is composed of the 
following parts: the second section gives the SCBSS 
problem formulation; the third section introduces 
adaptive mode separation-based wavelet transform; 

the fourth section shows the ICA-based single 
channel separation method; The fifth section present 
the main steps of the proposed algorithm with the 
application of this algorithm in the simulation 
experiments and the comparison results with other 
algorithms; finally, conclusions and discussions are 
given in the fifth section. 
 
2 SCBSS Problem Formulation 
A general BSS problem can be mathematically 
defined as follows:  Let 퐬(푡) = [푠 (푡), . . , 푠 (푡)]  be 
a vector of N independent sources at the discrete 
time instant t. The vector 퐱(푡) =
[푥 (푡), . . , 푥 (푡)] of the M observed instantaneous 
mixtures is modeled as follow: 

퐱(푡) = 퐀퐬(푡) (1) 
where 퐀	is the (푀 × 푁)	mixing matrix.  
 In the literature, the main BSS 
classifications are defined such as: linear and 
nonlinear BSS; instantaneous and convolutive BSS; 
over complete and underdetermined BSS. For the 
last classification, when the number of observed 
signals 푀 is more than the number of independent 
sources 푁, this refers to over complete BSS. On the 
other hand, when the number of observed signals 푀 
is smaller than the number of independent sources 
푁, this becomes to underdetermined BSS.  
 In general case and for many practical 
applications only one-channel recording is available. 
This special case of instantaneous underdetermined 
source separation problem termed as single channel 
source separation is discussed in many papers. For 
this special case, the conventional source separation 
methods are not suitable. 
The SCSS research area where the problem can be 
simply treated as one observation instantaneous 
mixed with several unknown sources: 

푥(푡) = 푎 푠 (푡) (2) 

where 푖 = 1, . . , 푁 denotes number of sources and 
the goal is to estimate the sources 푠 (푡) when only 
the observation signal 푥(푡) is available. In 
frequency domain, by applying the short time 
Fourier transform (STFT). The mixture defined in 
equation (2) becomes: 

푋(푓) = 푎 푆 (푓) (3) 

where 푓 denote the frequency. 푋(푓) design the 
Fourier transform of the mixture signal 푥(푡) and   
푆(푓) is a (푁푥1) vector whose elements 푆 (푓) are 
the Fourier transforms of the source signals 푠 (푡). 
Since the separation of the signal is performed 
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frame by frame, the mixing model of each frame can 
be written as : 

푋(푓,푚) = 푨	푺(푓,푚) (4) 
where m denotes the frame index. 
 In [31] the original EMD description, a 
mode is defined as a signal whose number of local 
extrema and zero-crossings differ at most by one. In 
most lately related works, the definition is changed 
into so-called Intrinsic Mode Functions (IMF), 
based on modulation criteria [31, 20]. 
 
3 Adaptive Mode Separation-Based 
Wavelet Transform  
The wavelet 휓(푡) is a function localized jointly in 
time and frequency and with a zero mean. A mother 
wavelet 휓 , (푡) defined as follow 

휓 , (푡) =
1
√푏

휓(
푡 − 푎
푏

) (5) 

Where 푎 and 푏 denote the translation and dilatation 
parameters respectively. 
The wavelet transform consists to perform the inner 
product between the family of wavelets  휓 , (푡) and 
the signal 푠(푡). 
푊 = 〈푠(푡), 휓 , (푡)	〉

= 푠(푡)
1
√푏

휓(
푡 − 푎
푏

) (6) 

 
 The AMSWT perform the time-frequency 
analysis by the variational scaling and wavelet 
functions to every mode. So, the method is based on 
the ADMM [31] solver and then defines a bank of 
variational scaling functions and wavelets based on 
the established spectral boundaries. 
 Therefore, the approximate coefficients and 
detailed coefficients are obtained by the inner 
product of the analyzed signal s with the variational 
scaling function, and by the inner product of the 
analyzed signal s with variational wavelets 
respectively and expressed by the following 
equations 

푊(0, 푡) = 〈푠, ∅ 〉 = 푠(휏)∅ (휏 − 푡)푑휏 (7) 

 
and  

푊(푘, 푡) = 〈푠, 휓 〉 = 푠(휏)휓 (휏 − 푡)푑휏 (8) 

 
In [23] the intrinsic modes 푢(푡) have 
distinguishable features in the frequency domain 
under the amplitude-modulated frequency-
modulated (AM-FM) assumption, using the 
alternate direction method of multiplier (ADMM) 
solver, the spectral modes can be adaptively 

obtained, following how intrinsic mode functions 
(IMF) are obtained, to estimate compact modes: 

min
,

휕 훿(푡) +
푗
휋푡

∗ 푢 (푡) 푒

푠. 푡.		 푢 = 푠(푡)
 (9) 

 
Where 푠(푡) is the signal to be decomposed under 
the constraint that over all modes should be the 
input signal. 훿(. ) is a Dirac impulse.  훿(푡) + ∗
푢 (푡) denotes the original data and its Hilbert 
transform. 푢 ,  휔  and 푘 denote the modes and their 
central frequencies and the mode number 
respectively. The spectral segmentation boundary 
number can be empirically determinate using on the 
following equation:  

퐾 = 푚푖푛{푛 ∈ ℤ |푛 ≥ 2휌 ln푁} (10) 
 
where 푁 presents the signal length and 휌 is the 
scaling exponent determined by the detrended 
fluctuation analysis (DFA) [ 32]. 
 According to [23] the equation is solved using a 
quadratic penalty term and the parameter 휆 that 
denotes the Lagrangian multiplier for rendering the 
problem unconstrained 
 
퐿(푢 , 휔 , 휆	) = 휂 ∑ 훿 [ 훿(푡) + ∗

푢 (푡)]푒 + 〈휆, 푠 − ∑ 푢 〉 +
‖푠 − ∑ 푢 ‖ . 

(11) 

 
therefore 푢  is determined recursively as 
 

푢 (휔) =
푠̂(휔) − ∑ 푢 (휔) + 	

1 + 2휂(휔 − 휔 )
 (12) 

 
where 푠̂(휔), 푢 (휔) and  휆	(휔) denote the Fourier 
transform of the input signal 푠(푡), the mode 
function 푢 (푡) and 휆(푡) respectively. 휂 denotes the 
balancing parameter of the data-fidelity constraint. 
The center frequencies 휔   are updated as the 
center of gravity of the corresponding mode’s power 
spectrum using the following equation  

휔 =
∫ 휔 푢 (휔) 푑휔

∫ 푢 (휔) 푑휔
 (13) 

 
Therefore, Instead of using a predefined wavelet 
bank, we build adaptive wavelets banks using the 
spectral modes and associated center frequencies 
represent the intrinsic components. 
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 In [23] authors defined the boundaries between 
each mode using the mode bandwidth and central 
frequencies, Whereas, in the literature, some authors 
are just used the average between the two central 
frequencies as the spectral boundary, which does not 
consider the spectral distribution. 
We consider the 푘푡ℎ	mode with the mean frequency 
휔  and a spectral bandwidth 훽 , then the boundary 
훀  between 푘푡ℎ the and the 푘 + 1 mode is given by 
the following equation  

훀 =
휔 + +휔 −

2
 (14) 

 
we take 훀 = 0 and 훀 = 휋. 
For the variational scaling functions and wavelets 
based on the spectral boundaries: the authors use the 
idea used in the construction of both Littlewood–
Paley and Meyer’s wavelets [33]. ∅  and 휓  are 
respectively defined by the following equation, with  
훾 is the parameter that ensures no overlap between 
the two consecutive transitions. 
∅

=

⎩
⎨

⎧
1,																																																							휔 ≤ (1 − 훾

cos
휋
2
훼(훾, 훀 ) , (1 − 훾)훀 ≤ 휔 ≤ (1 +

0																																								otherwise																	

(15
) 

 
and  
휓

=

⎩
⎪⎪
⎨

⎪⎪
⎧

1,																															(1 + 훾)훀 ≤ 휔 ≤ (1 −

cos
휋
2
훼(훾, 훀 ) , (1 − 휆)훀 ≤ 휔 ≤ (

sin
휋
2
훼(훾, 훀 ) , (1 − 휆)훀 ≤ 휔 ≤ (

											0																								otherwise														

(1
6) 

 
Where 훼(훾, 훀 ) = 훽{

훀
[|휔| − (1 − 훾)훀 ]}] 

and 훽(푥) is an arbitrary function defined as follow: 

훽(푥) =
0,																																																푥 ≤ 0
1,																																																푥 > 1
훽(푥) + 훽(1 − 푥) = 1,			0 < 푥 < 1

 (17) 

 
4 ICA-Based  Single Channel 
Separation Method 
 
In [28] the authors propose a new method to solve 
the SCBSS problem. The method is applied on the 
time-frequency representation of a single-channel 
observed signal. The time-frequency representation 
is a non-linear transformation, the use of non-linear 
ICA would be appropriate, but However, as 
mentioned in [28, 34] under certain conditions 

nonlinear BSS problem can be solved using linear 
ICA.   
 Let 푥(푡) denote the signal in time domain, 
using the Short Time Fourier Transform (STFT), the 
signal is transformed in the frequency domain. The 
transformation is performed frame by frame and 푚 
is the STFT time frame number. The STFT is the 
푚x푛 complex matrix of time frequency 
representation, this matrix contain 푚-rows 
instantaneous signal spectra,  
 Let 푧 	 where 푖 = 1, . . , 푚 spectral 
components obtained via the time-frequency 
representation of a single channel signal. The 
obtained 푧   are statistically independent. In this 
step, the rows of the TFDmix matrix are treated as 
individual channels in a multichannel signal. Then 
the ICA is applied on this multichannel signal.  

 The ith row of 푍 denoted 푧  can be written as 
푇퐹퐷 = 푎 푧  an ith time frequency component of a 
mixed one-channel signal. The relation between Z 
where 푧 = [푧 ]  푖 = 1, . . , 푚 and TFDmix is given as 
the following equation 
푇퐹퐷 = 퐴. 푍 = 푎 푧 = 푇퐹퐷  (18) 

where A	is the (푀 × 푁)	mixing matrix whose 
elements 푎  ,where, 푎  is an ith column of 퐴.  
The 푧  present the spectral bases. The columns of 퐴 
describing time variation of 푧 are called time bases 
and denoted by 푎 . The matrix 푇퐹퐷  denote the 
product of the time basis 푎  and the spectral basis 푧   
is called ith time-frequency component. 
 The grouping of 푇퐹퐷  bases is performed 
into subgroups by the grouping of time bases 푎  and 
frequency bases 푧  as the following equation: 

푇퐹퐷 = 푇퐹퐷

= 푇퐹퐷

+ 푇퐹퐷 +⋯

+ 푇퐹퐷  

(19) 

 
Where 푗 , . . , 푗  are 푝 index sets obtained by 
grouping 푇퐹퐷  bases. 
 In [28], to reduce computational 
complexity, authors used only the 푇퐹퐷  bases 
which have a specified variance of the mixed signal. 
The grouping of bases consists to collecting 
elements into clusters. The clustering is based on the 
maximization of negentropy of separated 
components. The ICA-based single-channel 
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separation methods primarily use component 
grouping based on similarity in time or frequency 
domain. In [28] authors suggest the use of a time-
frequency structure to measure the similarity 
features in both time and spectral domain. 

 
5 Grouping Process  
The grouping process is performed by clustering the 
ith time-frequency distribution 푇퐹퐷푖 bases, or the 
distance between 푇퐹퐷푖 bases, using the 훽-distance 
of Gaussian distribution 퐷훽  [28]. The generalized 
Gaussian distribution is expressed as following:  
푝(푦|휇, 휎, 훽)

=
휔(훽)
휎

푒푥푝 −푐(훽)
푦 − 휇
휎

/( )
 (20) 

where 휇 denote the expected value.	훽 describes 
the type of a random variable y, i.e., its deviation 
from normal distribution where  −1 ≤ 훽 ≤ 0.  휎  
present the standard deviation of a random variable 
푦.  The parameters 휔(훽) and 푐(훽) are given by the 

following expression:  휔(훽) =
( )

/

( ) ( )
/   

and  	푐(훽) =
( )

( )

/( )

 where Γ is the 

Gamma-Euler function. 

퐷 = 훽 , − 훽 (푇퐹퐷 , )  (21) 
 the 훽  parameter is estimated by a posteriori 

determination of the maximum of the 훽, where , the 
a posteriori distribution of the 훽 parameter is given 
as [32, 35]: 푝(훽|푦) ∝ 푝(푦|훽)푝(훽), where 푝(푦|훽) 
denotes a data likelihood [32]  and is  given as the 
following equation 

푝(푦|훽)

=
휔(훽)
휎

푒푥푝 −푐(훽)
푦 − 휇
휎

/( )
 (24) 

 

where 푝(훽) present the a priori distribution of 
the 훽 parameter [18, article de khedamy bih]. 

The statistically independent constituent signals 
have the maximum negentropy [10,50]. So, the 
grouping or the   푇퐹퐷  bases consists in maximizing 
negentropy (negative entropy) of reconstructed 
constituent signals 푇퐹퐷 ,  by finding of 
reconstructed constituent signals  푇퐹퐷 , =
∑ 푇퐹퐷  with the maximum negentropy, the 푇퐹퐷  
bases can be grouped. Let 휈 is the normalized 

Gaussian random variable (휇 = 0, 휎 = 1) and 
퐺(. )	is a nonlinear function of the random variable 
usually having the form  퐺(푦) = log cos ℎ	(푎푦) , 

푎 ∈ (1,2) or  퐺(푦) = −푒( ). The negentropy 
function 퐽(푦) is given by the following 
equationexpression [35]: 퐽(푦)~ 퐸 퐺(푦) −
퐸 퐺(휈) . The negentropy function 퐽(푦) 
approximation has numerous advantages such as 
conceptual simplicity and rapid calculation rate 
[35]. As a result, it is very often used as a cost 
function in algorithms for solving ICA problems 
[28]. 

6 Results and Discussion   
To evaluate the performance of the proposed 
approach, simulations are performed. The proposed 
method has been applied on speech datasets selected 
from TIMIT [36] and NOIZEUS [37] databases. 
The instantaneous mixture is simulated by the 
recordings of three sentences 푠1(t), 푠2(t)		and 
푠3(t)	. The signals are pronounced by male and 
female speakers and were recorded at the sampling 
frequency 퐹푠	. The instantaneous mixture is defined 
by the following equation:  
 
푥(푡) = 푎 	푠 (t) + 푎 	푠 (t) + 푎 	푠 (t)	 (22) 

where 푎 	, 푎  and 푎  are constants parameters. The 
proposed method operates in the time-frequency 
domain, and is summarized by the following steps 
for each frame: 

1. Compute the Short Time Fourier Transform 
(STFT) of the observed signal 푥(푡) 

2. Apply the variational scaling and wavelet 
functions to every mode to obtain the time-
frequency distribution using equation (7) and (8). 

3. The input data for ICA is a spectrogram. The ICA 
is applied on this multichannel signal (applied on 
spectral rows corresponding to different time 
intervals) 

4. The 훽-distance of Gaussian distribution 퐷  is 
used to measure the distance between time-
frequency domain components of the mixed signal 
obtained by ICA. 

5. Solve the optimization problem by minimizing 
the negentropy of reconstructed constituent signals. 

6. Reconstruct the appearance of the particular 
source in the original signal. 
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The time-frequency is considered as a random 

variable, its distribution is given in parametric 

terms. Therefore, it is poss



 

Figure 1. Flowchart of the proposed method 

Thereafter, as an illustration example, the proposed 
method is applied to separate an instantaneous 
mixture defined by equation (22). The Fig.2 (a) 
shows the three speech signals representation in 
time domain. First, the observed single-channel 
presented in Fig.2 (b) was transformed to the 
frequency domain using the STFT.   The Fig.2 (c) 
presents the STFT of a frame of the observed 
mixture. Then, for each frame, the AMSWT method 
is introduced to obtain optimal spectral mode 
separation; we apply the variational scaling and 
wavelet functions to every mode to obtain the time-
frequency distribution using equation (7) and (8) as 
illustrated by Fig. 2 (d). 

Once the T-F distribution is obtained, the 
spectrogram which is considered as a multichannel 
observed signal is used as the input data for ICA-
based single channel separation. Then, as mentioned 
in step 4 of the algorithm, the 훽-distance of 
Gaussian distribution 퐷  is used to measure the 
distance between time-frequency domain 
components. Solving the optimization problem as 
mentioned in step 5. For our example and for a 
mode, the estimated spectral components are shown 
in Fig. 2(e). For this frame, collecting elements into 
clusters, the estimates frame of the signal 푠 (푡)is 
illustrated in Fig.2(f). The estimated signals are 
illustrated in Fig.2(g). As can be seen, the estimated 
signals were similar to the original signal showed in 
figure Fig.2 (a) 

 

풔ퟏ(퐭) 

풔ퟐ(퐭) 

풔ퟑ(퐭) 

(a)  Original sources time-Domain représentation.  

Figure 2. illustration example 

 (b) Observed signal time-domain representation. 

 (c) FFT of the frame of the observed signal. 

Figure 2. continued 
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(d) Ttime-frequency distribution of one arbiter 
chosen mode 

Figure 2. continued 

Objective measure of separation quality has been 
performed. The performances of the proposed 
method are compared with existing methods in the 
literature such as the EMD signal-channel 
separation [19], the wavelets signal-channel 
separation presented in [19], and the single-channel 
separation audio signals based on variational mode 
decomposition (VMD). 

 
(a) 

 
(b) 

 
© 

(e) The time-frequency distribution of one arbiter 
chosen mode. 

 

(f) The time-frequency distribution of one arbiter 
chosen mode 

Estimated source 푠̂ (푡) 

Estimated source 푠̂ (푡) 

Estimated source 푠̂ (푡) 

(g) The time-frequency distribution of one arbiter 
chosen mode  

Figure 2. continued 

In [29, 30] a new method has been proposed, the 
method is a simpler scale-invariant alternative for 
single-channel separation evaluation by the 
introduction a new parameters. These parameters 
are called scale-invariant (SI) such as SI-SDR, SI-
SAR, SI-SIR, and they are particularly 
recommended single-channel separation evaluation. 
These parameters are defined by the usage of a 
single coefficient 훼 to account for scaling 
discrepancies. Let 푠(푡) is the original sources, and 
푠̂(푡) is the estimated source expressed as	푠̂ =
푒 + 푒  where 푒  can be decomposed as  
푒 = 푒 + 푒  , where 푠  are the 
source signals, and  푒   denotes the 
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interferences from other sources, and  푒  
includes all other artifacts introduced by the 
separation algorithm.  The 푆퐼 − 푆퐷푅 is given as the 
following equation : 푆퐼 − 푆퐷푅 = | |

| ̂|
 where 

훼 = argmin |훼푠 − 푠̂| .  The optimal scaling factor 
for the target is obtained as    훼 = ̂

‖ ‖  , and the 
scaled reference is defined as 푒 = 훼푠. The 
performance criteria are given by the following 
equation: 

푆퐼 − 푆퐷푅 = 10푙표푔
푒
‖푒 ‖  

푆퐼 − 푆퐷푅 = 10푙표푔
‖훼푠‖

‖훼푠 − 푠̂‖
 

(23) 

The scale-invariant signal to interference ratio (SI-
SIR) is given by the following equation: 

푆퐼 − 푆퐼푅 = 10푙표푔
푒

푒
 (24) 

and the scale-invariant signal to artifacts ratio (SI-
SAR) is defined as follows: 

푆퐼 − 푆퐴푅 = 10푙표푔
푒

푒
 (25) 

Another performance measure has been evaluated; 
the measure is expressed in terms of the relative root 
mean squared error (푅푅푀푆퐸) given by the 
following equation  

푅푅푀푆퐸 =
푅푀푆 푠 (푡) − 푠 (푡)

푅푀푆 푠 (푡)
100[%] (26) 

where 푠 (푡) denote the signal we want to extract and  
푠 (푡) is the estimate of the signal. (In our case 
푖 = 1, . . ,3). The speech dataset is corrupted at a 
signal-to-noise ratio SNR=5 dB, then the SI-SIR, 
SI- SAR and SI-SDR are evaluated. The obtained 
results are showed in the Fig.3.   A set of 4 noisy 
mixtures are simulated by corrupting the clean 
mixture at a signal-to-noise ratio (SNR) ranging 
from 5 dB to 20 dB with a step of 5 dB, then the 
RRMSE is evaluated. The Fig.4 shows the obtained 
results. To discuss the relation between the frame 
length and the 훽-distance of Gaussian distribution 
퐷 , the mean of the mean 훽-distance of Gaussian 
distribution 퐷  has been evaluated for different 
frame length (512, 1024, 2048, 4096 frame length), 

the obtained results are showed in Fig.5.  As shown, 
the proposed method presents a better   separation 
quality then the exiting methods expressed by the 
scale-invariant SI-SDR, SI-SAR, SI-SIR parameters 
values. On the other hand, the relative roots mean 
squared error (푅푅푀푆퐸) of the proposed method is 
better than the 푅푅푀푆퐸 of the existing methods for 
different SNR values. The mean 훽-distance of 
Gaussian distribution 퐷  for different frame length 
shows that the combination of the AMSWT method 
and the ICA-based single channel separation method 
allows having better results and better separation 
compared to existing methods. So, the proposed 
method allows having better separation results then 
the exiting methods in the literature. The use of the 
AMSWT allow to generate a superior time–
frequency resolution because the wavelet bank is 
adaptively built on the intrinsic spectral modes; and 
the use of a time-frequency structure allows 
measuring the similarity features in both time and 
spectral domain also the 훽-distance of Gaussian 
distribution is a distance measure based on the 
knowledge of the statistical nature of spectra of 
original constituent signals of the mixed signal. 

 

Figure 3. Comparison between the proposed 
method and the EMD based single-channel 
separation and the wavelets based-single channel 
separation and the single-channel separation audio 
signals based on variational mode decomposition 
(VMD) in term of SI-SIR, SI-SAR, SI-SDR for 
SNR=5 dB. 

 

 
Proposed method
EMD based single-channel separation
Wavelets based-single channel separation
VMD based single-channel separation

SI-SIR SI-SDR SI-SAR
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Figure 4. Comparison of algorithms 
performances for different SNR values 

 

Figure 5. Comparison of the mean 훽-distance of 
Gaussian distribution 퐷  for different frame length. 

7 Conclusion 
A new method to solve the signal-channel blind 
source separation problem has been proposed. The 
method is based on combining two powerful 
methods such as the Adaptive Mode Separation-
Based Wavelet Transform (AMSWT) and the ICA-
based single channel separation. A new objective 
measure of separation quality has been introduced to 
evaluate the performance of the proposed method. 
The evaluation parameters are called scale-invariant 
(SI) such as SI-SDR, SI-SAR, SI-SIR. Simulation 
results showed the good performance of the 
proposed method compared to the exiting method.   
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