
In a multimedia application image is often corrupted by
impulsive noise due the errors in the transmission channel.
Impulsive noise, called “salt and pepper”, is caused by camera
sensors, faulty hardware memory locations, or because errors
occurred during communication channels transmitting images,
affecting randomly a fraction of the total number of pixels,
leaving other pixels unchanged. It is important to eliminate
this type of noise in the images before they can apply other
subsequent processing methods such as contour detection,
object recognition or image segmentation. Many denoising al-
gorithms exists almost all based on median filtering. However,
the median filter may cause blurred in the reconstructed image.
To overcome this phenomena a noised pixel detector is applied
before median filtering. In such way the edges in the image
will be preserved. The noised pixels detector is repeatedly
applied over the image in order to achieve better results.[1]
Unfortunately, this additional phase added to the classical
median filter increases the computation time and it is possible
that the application not run in real time. Moreover, many
image denoising algorithms have a second phase that computes
median value adaptively using the results from the first phase.

Fig. 1. The image denoising algorithm

The Figure 1 illustrates an image denoising algorithm with two
phases. For videoclips, the algorithm is applied each frame.

In real-time systems, there are specific deadlines to be met.
In particular, for a video processing application, deadlines are
determined by the number of frames per second. If processing
time exceeds the deadline then the following methods may
be used to maintain system functionality: reserving of addi-
tional resources, tasks skip, adaptation of the task activation
period and an adaptation of task execution time. In embedded
systems, with limited resources, additional resources reserving
can not be a viable option. More, the activation period is fixed
and it not be modified without a severe degradation in perfor-
mance. For example, a videoclip can not play at a different
(larger) frame per second rate, different from the original rate.
In such systems only the task skipping and execution time
adaptation may lead to deadline meeting while preserving the
functionality. The videoclip processing should be divided into
two task category: mandatory tasks and additional tasks.[6]
The mandatory task ensures a basic quality of the videoclip
and the additional tasks improves the quality. In case that the
deadline may be exceeded some of additional tasks (or all
of them) will be skipped. The execution time adaptation is as
similar methods. In this situation, the videoclip processing may
be divided into several tasks consists of iterative sequences.
The image processing performance increases with the number
of iterations of each task. In this paper the execution time
adaptation is used. The scheduling algorithm should be aware
about the remaining execution time of each task before it
reaches its deadline. If the remaining time is less than a
threshold the scheduling algorithm notify the task to modify

2. The QoS Scheduling Algorithm

1. Introduction

QoS Scheduling Algorithm for Videoclips Denoising

SORIN ZOICAN
POLITEHNICA University of Bucharest, ROMANIA

 Abstract: This article presents a general frame-work for scheduling videoclips denoising processes ensuring the
quality of service (QoS). In general, a denoising algorithm has two phases which are run sequentially: the first
one determines the noisy pixels in the videoclip frames and the second applies a median filtering over the each
frame considering the only good pixels. In all such denoising algorithms, the first phase is run for multiple times
depend on the noise power. The second phase also may be executed more than one time but this depends on the
specific algorithm. The issue in such applications is the denoising process may not terminate within its deadline.
The proposed solution adapts the execution time in such way so the deadline to be respected by determining the
remaining time to the deadline before running each phase and reducing the number of runs in each phase in order
to not exceed the deadline. The goals of the article are the following: presents the QoS scheduling algorithm and
proposes an implementation solution of based on Blackfin microcomputer with support of Visual DSP kernel
(VDK). The article is organized in 5 sections: a briefly introduction to set up the general context of quality of
services in videoclips denoising applications and to present the original video processing algorithm, two
sections that present the proposed solution and its VDK implementation, the performance evaluation and the
conclusions.

Key Words: QoS scheduling algorithm, deadline, Blackfin implementation

Received: November 26, 2020. Revised: April 2, 2021. Accepted: April 24, 2021. Published: April 30, 2021.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2021.17.5 Sorin Zoican

E-ISSN: 2224-3488 41 Volume 17, 2021

Fig. 2. The denoising algorithm with QoS

Fig. 3. A running example

the execution parameters in phase 1 and in phase 2 so that
the execution time to be reduced and the deadline to be not
exceeded. The scheduling algorithm is illustrated in the Figure
2. After each iteration in phase 1 and phase 2, the remaining
time to the deadline is evaluated and the computations for the
current phase may be interrupted. A running example is shown
in Figure 3. Using this scheduling algorithm, each frame will
be processed as well is possible and therephore the quality of
service (QoS) is ensured.

The detailed algorithm is: In order to meet the time
constraint, two thresholds are tested after each iteration in
Phase 1 and Phase 2.In this manner the quality of service
is assured and the videoclip is played in the best conditions.
Without testing the deadlines the quality of videoclip will be
dramatically degraded due the fact that some very noisy frames
will be not processed. The above presented algorithm was
implemented on Blackfin digital signal processors family[9],
[3] with Visual DSP Kernel (VDK) [4]support that provides
critical kernel features: preemptive scheduler (time slicing and
cooperative scheduling), thread creation, semaphores, interrupt
management, inter thread messaging, events, and memory
management. The image processing algorithm may be im-
plemented easily using VDK functionality: each phase in
algorithm will be separately coded in a dedicated task and a
time measurement mechanism will be defined using a periodic
semaphore. The following VDK primitives will be involved to
measure the current execution time: MakePeriodic() and Get-
SemaphoreValue(). A semaphore is defined and it is declared
as periodic semaphore by calling MakePeriodic primitive (the
semaphore is posted every tick). In the processing image task,

Algorithm 1 The noise removal algorithm with QoS
Initial data
Corrupted image:I = {I(i, j)|i = 0, ..N − 1, j = 0, ...,M − 1
Noise matrix: N = {N(i, j)|i = 0, ..N − 1, j = 0, ...,M − 1
Current value good pixel count:C = 0
Previous value of good pixel count:C1 = 0
Noisy pixels counter in current window: S = 0
Scanning window length: L = 3
Maximum scanning window length: Lmax = 5
Reconstructed image: J = {J(i, j)|i = 0, ..N − 1, j =
0, ...,M − 1
Phase 1
For i = 0..N − 1 and j = 0..M − 1
1. Update the current window, centered of the current pixel
p = I(i, j), W = {I(i + k1, j + k2)}, k1, k2 ∈ {−L,−L +
1, .., 0, .., L− 1, L}
2. Compute minimum and maximum element in the current
window: wmin = min(W − {p}),wmax = max(W − {p})
3. Compute the noise matrix elements and good pixel counter:
If (p ∈ [wmin, wmax]) then (N(i, j) = 0 andC = C +
1) elseN(i, j) = 1
End For
If (remaining time < threshold 1) then
If (C < C1andL ≤ Lmax) then (C = C1 andL = L +
1Repeat Phase 1)
else goto Phase 2
Phase 2
For i = 0..N − 1 and j = 0..M − 1
4. L = 1, S = 0
5. Update the current window, centered of the current pixel
p = I(i, j),W = {I(i + k1, j + k2)}, k1, k2 ∈ {−L,−L +
1, .., 0, .., L− 1, L}
6. Count the noisy pixels in the current window: If (N(i +
k1, j + k2) = 1) then (S = S + 1), k1, k2 ∈ {−L,−L +
1, .., 0, .., L− 1, L}
7. Test the noisy pixel count:
If (remaining time < threshold 2) then
If (S < S1 or L < Lmax) then goto 5 else goto 8
else gotoEndPhase 2
8. Compute median value and set current pixel in reconstructed
image: J(i, j) = median({W∗}), W∗ = W|N(i + k1, j +
k2) = 0, k1, k2 ∈ {−L,−L+ 1, .., 0, .., L− 1, L}
End For
End Phase 2

the GetSemaphoreValue is called and the value returned is
used as a local execution time. If this value is greater than
thresholds discussed above, the proper actions will be taken
(the processing parameters for Phase 1 and Phase 2 will
be modified in order to deadline to be not exceeded). The
following threads have been defined: Main, P1 and P2. The
Main thread creates P1 thread and set the periodic semaphore
then it is destroyed. The P1 thread creates P2 thread , read the
periodic semaphore value and executes an iteration of Phase
1 of algorithm. Before continuing with other iteration in this

3. The Implementation

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2021.17.5 Sorin Zoican

E-ISSN: 2224-3488 42 Volume 17, 2021

Fig. 4. Tasks execution and periodic semaphore in VDK

phase, P1 thread read again the periodic semaphore value
and calculates the time interval to deadline. If this interval
is greater enough, a new iteration of Phase 1 is running,
else the P1 task exits and P2 task will be executed. The
P2 task performs similar operations as P1 but it implements
the Phase 2 of the algorithm, instead Phase 1 as P1 task.
An identical mechanism to measure the time interval to the
deadline is used as in P1 task. Figure 4 illustrates how periodic
semaphore is involved in time measuring. The main issue
here is to achieve a real time implementation. The proposed
algorithm controls the execution of Phase 1 and Phase 2 to
reduce the number of iterations of each of them with respect
of the deadlines. If the frame processing is complex, (if the
impulsive noise has high power or the frame size is large)
then the QoS scheduling algorithm will reduce the execution
time so the tasks can complete within their deadline. However,
at least one iteration of each phase must be completed. In
certain situation that may take a large execution time, therefore
special methods to optimize the tasks execution should be
involved. These methods will be discuss below for achieving
a real time implementation using the digital signal processing
Blackfin microcomputer family[3]. The Blackfin processor has
a dual multiply and accumulate (MAC) signal processing
engine, an orthogonal instruction set and single instruction
multiply data (SIMD) instructions. Issuing parallel instructions
and using vector operations may be used to obtain a real
time functioning. The Blackfin processor does permit up to
three instructions to be issued in parallel: one 32-bit DSP
instruction and two 16-bit instructions (load/store, DSP load).
A powerful feature of Blackfin processors is the existence
of instructions that manipulate video pixels. Such instructions
perform 8-bit pack and unpack, quad 8-bit subtract operation
that can be used to compute minimum and maximum values in
four windows simultaneously. Also, four values in the noise

Fig. 5. The image processing flowchart

matrixN, are updated in parallel. Using assembly language
implement the iterative instruction as a hardware loops that
save processor cycles. Additionally, dual-core Blackfin pro-
cessors, (BF561 and BF60x) may be involved. Each dual-core
Blackfin processor has two cores, each with its own internal
memory. There is a common memory shared between the two
cores, and both cores share access to external memory. Each
core functions independently. The frame processing task is
designed as dual-core application that allows for splitting the
main code on the two cores and for all of the shared memory
areas to be used efficiently by both cores. Common routines
and data will be placed in shared memory without the need
for explicit positioning. Two successive input frames may be
processed in the two cores of the processor, as illustrated in
the figure 5. In figure 5, T is the frame rate and Tc represents
the computation time for the current frame. Each core in
the Blackfin processor has its own interrupts system. The
input frames are acquired from a serial port that generates
a common interrupt for both cores (indicated in the figure 5
as IRQ core A and IRQ core B). Each core implements the
frame processing algorithm in its own main program (denoted
as Main core A and Main core B) if an appropriate flag
(flag A or flag B) is set to 1. These flags are set in the interrupt
service routines for core A or core B. The main programs
process the odd or the even input frames only. A necessarily
functioning condition is Tc < 2·T . (the flowchart for core B is
not shown, it is similar to flowchart of core A). Two counters,
nAand nBwere defined to determine the even and odd frames.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2021.17.5 Sorin Zoican

E-ISSN: 2224-3488 43 Volume 17, 2021

Fig. 6. The MSE of restored image

Fig. 7. The execution time (320 x 240 image size)

This section evaluates the performance achieved using the
proposed scheduling algorithm. Noise removal algorithm with
QoS scheduling was implemented using the Blackfin BF561
microcomputer and run with different values of impulsive
noise and maximum size of the scanning window. The above
presented techniques for code optimizing were involved. The
maximum size of the window was considered because even
if the noise has high power, the algorithm must end after a
maximum number of iterations. In this way, the execution
time will be calculated in the worst case.The image processing
performance and the execution time were evaluated. The
figures 6 and 7 illustrate the mean squared error MSE =
10log10{

∑i=N−1
i=0

∑j=M−1
j=0 [I(i, j) − J(i, j)]2}/(N · M) of

restored images and the execution time for various windows
length and various noise powers. One can observe, from
Figure 6, that for low levels of impulsive noise error does
not vary significantly depending on the maximum size of the
window W. In contrast, if impulsive noise is relatively high
(60% -70%), the error decreases relatively (up to 6 dB) if
the window size increases. Execution time increases when
impulsive noise is high because the number of iterations in
Phase 1 and Phase 2 will increase. One can observe that the
improvement is small if the number of iterations is increased
over a specific limit. Figure 7 illustrates that the execution

TABLE I
EXECUTION TIME IN FPS FOR VARIOUS GRAY SCALE IMAGE SIZES

Image size FPS

Lmax = 1 Lmax = 2 Lmax = 3

176× 144 266 95 48

320× 240 87 31 16

480× 320 43 15 8

640× 480 21 7 4

960× 540 13 4 2

time is decreased very much but the noise reduction is very
similar. The execution time is greater than for median filtering,
but the noise removal is better for the new median filter. [8],
[2] The results in Figure 7 support the idea that reducing the
number of iterations in Phase 1 and Phase 2 leads to a small
degradation in performance for noise removal algorithm but
significantly reduce computation time which allows tasks to
fulfill deadlines. Table 1 illustrates the average execution time,
in frames per seconds, for various image sizes. In this table the
maximum size of the scanning window, Lmaxis considered as
parameter. The average time represents the arithmetic mean of
the execution time for noise levels ranging from 10% to 90%.
One can observe that the new median filtering can be used for
color image size about 320 × 240, if the admitted frame per
second is minimum 25. For this limit there are a possibility
to obtain a real time functioning for the minimum scanning
window.

This work proposed a scheduling algorithm for image
processing tasks which have two computations steps both of
them depending of noise power. Each phase is running for
multiple times in order to efficiently eliminate the noise. The
scheduling algorithm trades off between the quality of the
restored image and the constraint to meet the deadlines. A real
time implementation using digital signal processing Blackfin
microcomputers from Analog Devices is possible for medium
color image sizes. The paper presents a framework for real-
time implementation of such image processing algorithms that
ensure a reasonable quality of videoclips in systems prone to
impulsive noise but meeting deadlines.

This work has benefited the support of FP7 project ALI-
CANTE—FP7—ICT—2009—4 no. 248652.

[1] Manohar Annappa Koli , “Robust Algorithm for Impulse Noise Reduction
”, International Journal on Computer Science and Engineering (IJCSE),
Vol. 02, No. 07, 2010, 2375-2377

[2] Sorin Zoican,” Adaptive algorithm for impulse noise suppression from
still images and its real time implementation”, Telecommunication in
Modern Satellite Cable and Broadcasting Services (TELSIKS 2011), 5-8
Oct. 2011 Nis, Serbia, pp. 337-340

[3] Analog Devices, Inc., Blackfin Processor Programming Reference, 2012
[4] Analog Devices, Inc., VisualDSP 5.0 Kernel (VDK) Users Guide , 2011

References

Acknowledgment

5. Conclusion 4. The Performance Evaluation

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2021.17.5 Sorin Zoican

E-ISSN: 2224-3488 44 Volume 17, 2021

[5] Analog Devices, Inc.,VisualDSP++ 5.0 Blackfin C/C++ Compiler and
Library Manual, 2011

[6] Real Time Systems, Architecture, Scheduling and Application, Seyed
Morteza Babamir, editor, Ed. Intech 2012, ISBN 978-953-51-0510-7

[7] Embedded Systems and Wireless Technology, Raul Aquino Santos and
Arthur Edwards Block, editors, CRC Press, 2012, ISBN 978-1-57808-
803-4

[8] Zhou Wang and David Zhang, “Progressive Switching Median Filter for
the Removal of Impulse Noise from Highly Corrupted Images”, IEEE
Transactions On Circuits And Systems—II: Analog And Digital Signal
Processing, vol. 46, no. 1, Jan. 1999, pp. 78-80

[9] Woon-Seng Gan Sen M. Kuo, ”Embedded Signal Processing with the
Micro Signal Architecture”, John Wiley & Sons, Inc, 2007, ISBN: 978-
0-471-73841-1

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2021.17.5 Sorin Zoican

E-ISSN: 2224-3488 45 Volume 17, 2021

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

