
Real Time Distributed Controller For Delta Robots

ALI SHARIDA, IYAD HASHLAMON
Mechanical Engineering Department

Palestine Polytechnic University
Hebron, PALESTINE

156049@ppu.edu.ps, iyad@ppu.edu

Abstract: - This paper investigates a real time distributed controller for a 3 DOF delta robot using low-cost
educational simple microcontrollers. The parallel computing technique is used were the computational load is
divided among several microcontrollers networked to each other to implement control methods. More
specifically, the computation is distributed among four microcontrollers (MCU’s) which are connected to each
other using CAN bus protocol. The main MCU is used to compute the control law. Each of the remaining
MCU’s is connected to one actuator and its attached encoder to form an Intelligent sensor-actuator system
(ISAS). At each sample time, the ISAS broadcast a message using the CAN bus to the main MCU containing
the information about the motor position. Then according to the control law, ISAS receives the corresponding
controller value that has to be applied to the motor. All required periodic, aperiodic and sporadic tasks, were
implemented and will be handled by these MCU’s. Using this design, the computation time of control law can
be minimized and implemented using ARDUINO microcontrollers. More, this method increases the flexibility
of the system for additional equipment and control by adding more nodes to the network. The results show the
applicability of the proposed distributed controller, it can track different types of control signals with
acceleration up to 9.8 m/s^2 (1g).
 Key-Words: - Real Time Control, Distributed Control, Delta Robot.
Received: January 5, 2020. Revised: May 29, 2020. Accepted: June 11, 2020. Published: June 29, 2020.

1 Introduction
Delta robots are widely used in applications

that require very fast motion and accuracy, such as
picking and placing [1, 2]. The main advantage of
these robots is the ability to produce high
acceleration at the end effector. Furthermore, as the
mass of the overall system is relatively low, these
robots can achieve a high load capacity. Therefore,
this robot attracted many researchers to develop
kinematic and dynamic models and controllers [3-
7].
However, delta robots control contains multiple
computational tasks that should be completed in
terms of modeling, planning and control [8], these
tasks require relatively long computational time. So,
it is very important to use a method to minimize
computational time in such applications.
Furthermore, the robot is equipped by 3 actuators
and 3 encoders, 1 encoder per actuator. Then, the
microcontroller should deal with 6 (2 channels for
each encoder) channels that generate digital pulses
with high frequency. Thus, hardware problems
appear low cost educational microcontrollers are
used for delta robots. In general, the frequency of
these pulses is very high due to the high speed
motion. Missing any of these pulses results in an
incremental error of measuring the angular position
of the actuated joints which is accumulated with
time.

The comparative study in [9] illustrates the
processing time of the fundamental three approaches
of modeling Delta robot “Principle of Virtual
Work, the Newton-Euler Formulation, and the
Lagrangian Formulation). Although the results
were: Principle of Virtual Work requires 0.73 sec,
Newton-Euler Formulation requires 1 sec, and
Lagrangian Formulation requires 0.37 sec, these
processing times are high for real time systems
when model-based control approaches are used and
the model is tuned online adaptively. The challenge
becomes harder when the control law and the
reading from the sensors are considered.
To overcome the aforementioned challenges,
distributed control approaches were used. In these
approaches, several microcontrollers (MCU’s) are
used, each controller is assigned its own job(s). The
microcontrollers communicate with each other using
a communication protocol to form an overall real
time Network Control System NCS.
Many protocols can be used to establish a real time
network, such as I2C [10], SPI [11] and CAN
protocol [12]. Among them, CAN protocol has
many advantages including very simple physical
construction, it supports auto retransmission of lost
massages and supports different error detection
capabilities. Therefore, it is considered the most
suitable communication method for real time
applications.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 99 Volume 16, 2020

A distributed controller is reported in [13],
where the controller is designed to control a slave
robot from a master arm using SPI protocol. In [14],
the researcher implemented an embedded controller
for 5 DOF manipulator using SPI protocol using a
simple PID controller. Although SPI is a very
simple protocol and depends on the principle of
master and slave communication, any fault in the
master MCU will lead to shut down all network.
Furthermore, SPI communication requires more
signal lines than other communication protocols,
which increase the complexity of the network.
To solve this problem, the principle of parallel
computing should be employed [15], where the
tasks of data acquisition and computing control law
are distributed on multiple controllers. This ensures
that the frequency of the controller is greater than
the frequency of controlled system, provides the
advantage of minimizing computational time and
increases the flexibility of adding new tasks (nodes)
or editing the existing ones.

In [16] a distributed CAN-Based
Architecture for hardware control and sensor data
integration was proposed for a mobile robot
platform. However, the algorithm was implemented
for general purpose computers. In the same context,
in [17], a CAN bus based distributed controller was
designed to control a mobile robot for picking and
placing. It employed the principle of parallel
processing to perform the functions of obstacle
avoidance, driving, path planning and inspection.
This paper proposes a real time control for the 3-
DOF delta robot. It uses four Microcontroller Units
(MCU), each one consists of a microcontroller and a
Controller Area Network bus (CAN bus) receiver-
transmitter. One MCU is used to compute the
control law. The other three MCU’s are connected
to the actuated joints through an electronic
interfacing module, each one of the three MCU’s
along with the actuator and sensory system forms an
intelligent sensor-actuator-system ISAS.
Each ISAS is connected to one actuator and one
sensor. Further, it can communicate with other
ISAS’s and the controller MCU through CAN bus
communication protocol. The ISAS reads the
actuator position through an encoder, forms the
necessary signal processing and prepares the ready
measured data in a massage and broadcasts it to the
CAN bus. This massage will be received by the
beneficiary MCU, and in the same way for all
ISAS’s.
The controller MCU computes the required control
law and broadcasts it on the CAN bus. Each ISAS
will receive its own massage and skip the others.
Then each ISAS analyses the massage and applies

the required signal on the actuator. This approach
enhances flexibility to the system for changing the
control approach and adding other jobs by adding
new nodes to the network containing the desired
tasks and jobs, these additional nodes can be used
for applications such as vision control. Adding a
new node will not change the physical structure of
the distributed controller, since each ISAS and the
main MCU controller will remain the same, the
added node will be used to supply the controller
with required information related to the new
function. Further, distributing the computational
load among 4 MCU’s minimizes the sampling time
which in turn increases the stability and accuracy of
the system. The work is simulated using MATLAB
with the TrueTime toolbox [18] and implemented
practically using ARDUINO microcontroller. The
overall block diagram of this approach is shown in
Fig.1.

Figure 1. Real time network structure.

2 Real time system design

The design of real time Network Control system
(NCS) starts by assigning the tasks with their timing
constraints. For this system there are three motors to
be actuated and controlled. In order to perform the
control law, the following data is required: the
reference signal or trajectory that the end effector
must track, the forward kinematics model to
transform the joint space variables to the task space
variables, inverse kinematic model to transform the
task space variables to joint space variables, the
robot dynamic and inverse dynamic model to
compute the control signal, a controller, and some
computations in addition to sending and receiving
data through the CAN bus as shown in table 1. The
control process is divided into 12 different tasks as
follows:

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 100 Volume 16, 2020

Task 1: it is responsible to compute the angular
position and velocity of each actuator from the
signal measured from an encoder attached to the
actuator. This task is sporadic as the position should
be correctly computed within its time limits, any
delay in this task will cause drifting in position
computation, which will lead to instability of the
entire system.

Task 2: it is responsible to read the desired inputs
from the user. This task is aperiodic task, as the user
will not apply these inputs periodically.
Furthermore, there is no matter if these inputs were
used to compute control law in the next cycle.

Task 3: it is a periodic task, it has the jobs which
perform the forward kinematics. This task depends
on the results from Task 1. It takes the measured
angles as inputs, and then it computes the related
position of the end effector. This task should be
executed on each program cycle, so it is a periodic
task (Task 4 to 9 are periodic for the same reason).

Task 4: In this task, the inverse kinematics is
computed, which will be used later to generate the
required feedback variables for the controller.

Task 5: Jacobian matrix performs a
transformation of the velocities from joint space to
work space. This task is responsible to compute this
matrix in order to compute the velocity of the end
effector.

Task 6: In this task, the inverse of Jacobian will
be computed, in order to get the required angular
velocities of the actuators that required to control
the end effector.

Tasks 7 and 8: These tasks are responsible of
computing the required actuators torques to control
the motion of the end effector.

Task 9: In this task, a trajectory is designed
based on the received reference signal to ensure that
the motion of the end effector is smooth.

Tasks 10 and 11: These tasks are responsible of
sharing data among the MCU’s. They are an on
change based tasks, which will be enabled when the
current position or the computed torque is changed.
They should be executed directly when their flags
are enabled to ensure that the control law will be
computed correctly on any change of links
kinematics.

Task 12: This is an aperiodic task, it computes
the related voltage of the resulted torque signal. It
will be executed when the computed torque is
changed. It will apply torque signal to the actuator
by computing the equivalent voltage and applying it
to the actuator.

Table 1. Tasks time constraints.

Task Name Type Execution
Time (ms)

Period= dead line
Time (ms)

Compute system states Sporadic 0.1 8.5

Read reference signal Aperiodic 0.3 8.5

Forward Kinematics Periodic 0.9 8.5

Inverse Kinematics Periodic 0.4 8.5

Jacobian Periodic 0.6 8.5

Inverse Jacobian Periodic 0.9 8.5

Dynamics Periodic 0.8 8.5

Inverse Dynamics Periodic 1.1 8.5

Trajectory Periodic 0.2 8.5

Data transmission (CAN
bus) Sporadic 0.6 8.5

Data reception (CAN
bus) Sporadic 0.7 8.5

Apply outputs Aperiodic 0.1 8.5

Total execution time 6.7 ms

The scheduling of the tasks is based on their type
and timing. The periodic tasks were scheduled using
the fixed priority algorithm Rate monotonic (RM).
Whereas the aperiodic and sporadic tasks were
scheduled by the principle of servers. In real time
systems multiple servers can be used to handle the
non-periodic tasks such as Bandwidth-preserving,
periodic and sporadic servers [19]. In this project
the non-periodic tasks were classified into two
types; Event based tasks that were executed using
sporadic server and on change based tasks that were
executed using periodic server.

An Event based task enables a flag when it is
released. This flag can be assumed to be a global
flag that can be noticed in any part of the algorithm
and can directly pre-empt the current executing task
and jumps to a service routine. This type of tasks
will be executed directly when its flag is on, and the
microcontroller will interrupt any executing task in
this case. Any event based task was assumed to be

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 101 Volume 16, 2020

non-pre-emptible and will continue executing until
it is finished. For example, task 1 represents an
event based task, as each encoder is connected to
microcontroller’s external interrupt. This interrupt
will be enabled directly when the encoder generates
any signal.

An on change based task contains a flag that will
be turned on when the task is released. However,
this flag should be tested periodically to determine
readiness the task with its resources. Accordingly,
the algorithm decides if an interrupt is required or
not. These tasks have higher priority than the
periodic tasks but less than the event based tasks.
This type was handled using Periodic Server
algorithm which creates a periodic server that is
responsible of checking the flag of the task. If the
task is released, it will be executed, while if it is not
released, the server will be pre-empted until the next
period.

3 Schedulability test
The timing constraints are used the

schedulability test. Namely the execution time and
deadline of each task. The execution time of each
task was computed experimentally using
oscilloscope, each task was implemented
individually, a hardware flag was turned on at the
beginning of the execution and turned off at its end,
then the HIGH-interval was captured. The worst
case execution time (WCET) is considered as the
time required to complete all the tasks if they were
released at the same instant and their recourses are
available without violating their constraints .
According to table 1, the WCET is 6.7 ms. To avoid
processor over loading, the period was adjusted to
8.5 ms, this time was assumed to be the deadline for
all tasks in the current cycle, and the released time
for the next cycle. Each periodic task is released at
the beginning of the period, these tasks should be
executed before the deadline which presents the end
of current period.

In this project, the sampling time was selected to
be 8.5 ms. As the controller is distributed, all tasks
will be executed before the deadline, as the worst
case execution time occurs at the computation of
control law which requires 6.5 ms, it is schedulable
based on RM utilization factor test, as the utilization
factor is about 76%. RM algorithm is used here
because it is schedulable for identical parallel
Microcontrollers, where the execution time is the
same for a task if it is schedulable for identical
parallel Microcontrollers, where the execution time

is the same for a task if it is executed on any
processor [20]. Moreover, Fig. 2 shows that RM can
produce a feasible schedule for the system at
WCET. The shown schedule depends on the
parameters listed in Table 1. At the beginning of the
period (at t=0), all periodic tasks are released at the
same time, while the deadline of all tasks is located
at the end of the current period.

Figure 2. Tasks scheduling based on RM.

4 Data handling and frames creation

The previous tasks were distributed on 4
MCUs, each MCU represents a single node on the
network as shown in Fig. 3. The periodic tasks that
are required to compute the control law were
implemented on the controller MCU. Therefore, this
node will not deal with the outputs or inputs to the
actuators. At each program cycle, it will create a
CAN message frame at the end of this cycle, this
frame contains 6 bytes of data, each element of
torque vector  is presented using 2 bytes, the 1st
Byte represents the direction of the torque, the other
one represents the absolute value of the torque
element as shown in Fig. 4. For the other nodes,
each one is connected to a single actuator and its
digital sensor. The digital encoder consists of 2
digital channels, these channels will continuously
change their values as the actuator is running.
Therefore, each MCU should enable the external
interrupt to compute the equivalent actuator’s joint

position  and velocity  states. Whenever one of
the states is changed, the MCU will directly create a
CAN message with data length of 4 bytes as shown
in Fig. 5.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 102 Volume 16, 2020

Figure 3. System network.

Figure 4. Control law data frame.

Figure 5. States data frame

5 Real time distributed control

algorithm (RTDCA)

The last step of implementing the proposed
approach is to develop an algorithm that satisfies the
scheduling requirements proposed previously. The
algorithm was developed using C programming
language as it provides the least computational time
compared with other programming languages
(except assembly language). RTDCA consists of 2
parts, the first one is the high level processing and
control stage, it is executed by the main controller.
The second part is composed of computing the
angular position and velocity of the actuated joints
and applying control signal on the actuators. It is
executed by the other three ISAS’s.

The tasks of the former part are executed
periodically at each program cycle. However, it
contains aperiodic and sporadic tasks. As any of the
sporadic interrupts is enabled, the algorithm will
pre-empt the running task and start executing the
sporadic one. For the aperiodic tasks, they were
handled by the mean of periodic non preserving
scheduling servers, such that, the aperiodic task will
be checked periodically. If it is released, it will be
executed, else, it will be pre-empted until the next
cycle, these steps were illustrated in the flowchart in
Fig.6.

Main controller Pseudo code:

1. Enable interrupts (timer 0 interrupt and external

interrupt).
2. Initialize variables, Initialize CAN-BUS.
3. Check interrupt flag

 If interrupt flag is HIGH
- Pre-empt current task, and execute the

sporadic task.
 Else
- Continue.

4. Compute position kinematics.
5. Compute velocity kinematics.
6. Compute next position.
7. Compute error.
8. Compute control law.
9. Create and decode CAN frame.
10. Transmit frame.
11. Check CAN-BUS for received frames.

 If there is new frame
- Receive frame.
- Decode frame.
- Update states.
 Else
- Continue.

12. Go to step 4.

 In the later part, each of the other three ISAS’s
checks periodically if there is a new frame. If yes, it
will receive the new frame then decodes the
message to extract the control law output. Then it
computes the control torque equivalent voltage in
order to apply it to the driver. Each MCU has a
hardware ID which is formed at the initialization
level, this ID consists of 2 binary bits represented
by 2 fixed hardware digital inputs. The ID of the
first MCU is (01)B. The second and third MCU’s
are assigned to ID’s (10)B and (11)B respectively. If
the acquired states by the encoder are changed, the
MCU will directly create CAN frame which consists
of its ID and the values of the states as described
previously. These steps are described in the
flowchart in Fig.7 along with the following Pseudo
code:

1. Enable interrupts (timer 0 interrupt).
2. Initialize variables, initialize CAN-BUS.
3. Check CAN-BUS for received frames.

o If there is new frame
- Receive frame.
- Decode frame.
- Compute required voltage.
- Apply voltage on actuator

through the driver.
o Else

- Continue.
4. Read actuator states

o If new states do no equal previous
states
- Encode new states.
- Create CAN frame.
- Assign MCU’s ID to the frame.
- Transmit frame.

o Else
- Continue.

5. Update states.
6. Go to step 4.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 103 Volume 16, 2020

Figure 6. Main controller algorithm.

Figure 7. Symmetrical ISAS algorithm.

6 Results

The system was implemented and simulated
using MATLAB, the design of the controller MCU
and ISAS 1 are shown in Fig.8, and 9 respectively.
The controller MCU receives angles frame from
other MCU’s, each frame contains data that
represent the amplitude and the direction of the
angular position along with the ID of the transmitter
MCU. Also it receives the desired position as a
vector of the desired coordinates [X ; Y ; Z]. This
signal is the reference signal. After that, MCU
controller computes the required actuator’s torque
and creates a frame of torque data to broadcasts it
through CAN bus.

Figure 8. controller MCU design.

The other 3 MCU’s are symmetrical, each one is
physically connected to an actuator and a position
incremental encoder. The measured state  and
pseudo measured state  will be transmitted to the
controller MCU by a frame that contains joint’s
information and the ID’s of the receiver and
transmitter (1:2 means that the MCU with ID 2 will
transmit frame to MCU with ID 1). The simulation
is carried on using the TrueTime toolbox.

Figure 9. ISAS 1 design.

The algorithm was implemented on a hardware
delta robot shown in Fig.10.a with parameters
shown in Fig.10.b listed in Table 2.

The system was controlled using PD inverse
dynamics (computed torque) algorithm as described
in [21], the control law can be written in the form,

() (,) ()M K e K e C G
d d p

           
  

 (1)

Where is 3 1 control vector, ()M  is 3 3
mas matrix,

d
 is 3 1 desired angular acceleration,

e is angular speed tracking error, e is position
tracking error, (,)C   is 3 3 coriolus matrix, ()G 

is 3 1 gravity vector, ,  and  are the angular
acceleration, velocity and position of the actuated
joints, and ,K K

p d
 are controller gains,

50 0 0
0 50 0
0 0 50

K K
p d

 
 

 
 
  

 (2)

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 104 Volume 16, 2020

 As shown in Fig. 11, the response of the robot
tracks the reference signal [0.1; -0.1; 0.5]. The
results show that the response of the robot is stable
and can achieve its tasks in the desired manner
using the specified trajectory time. While Fig.12
shows the required torque on each actuated joint to
move the end effector from its initial to final
position [0.1; -0.1; 0.5] as was planned. Finally,
Fig.13 shows tracking error on each axis which
converges to zero during 0.5s.

Table 2. Delta robot parameters

Parameter Value

f 0.1 m

e 0.055 m

aL 0.18 m

bL 0.435 m

Mass of moving platform 0.196 kg

Mass of elbow 0.024 kg

Mass of the forearm 0.055 kg

Mass of upper arm 0.190 kg

Motor inertia 381.6 10

Motor gear ratio constant 0.01

Figure 10.a. Delta robot

prototype
Figure 10.b. Robot
kinematic diagram

Figure 11. Robot response for (0.1, -0.1, 0.5)
reference signal.

Figure 12. Actuated joints torque.

Figure13. Tracking error.

Moreover, a spiral reference signal was applied
as shown in Fig.14, the result shows that the
distributed controller can track not only a step
constant input, but also a spiral reference signal,
where the desired position changes continuously
with time.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 105 Volume 16, 2020

Figure 14. Tracking spiral signal.

7 Conclusion

 In this project, a real time distributed controller
was implemented for delta robots. The main
contribution of this paper is the design of a real time
flexible distributed control network using CAN Bus
protocol. This distributed controller minimizes the
sampling time and makes it more stable and
applicable for low cost microcontrollers such as
ARDUINO and PIC. More, the proposed distributed
controller is very flexible due to the ability to add
additional nodes for future features and new
functions. This design was able to handle and
execute all periodic, aperiodic and sporadic tasks
efficiently without any missing in their deadlines.
The response of the robot was stable and rapid.
Using this approach, the computation time was
minimized as it was distributed on 4 MCU’s. This
design can be applied for any type of manipulators.
Furthermore, this approach allows sampling time to
be reduced to 6.5 ms, while the sampling time was
adjusted to 8.5 ms to avoid processor overloading.

References

[1] J. Brinker, N. Funk, P. Ingenlath, Y.

Takeda, B. Corves, Comparative study
of serial-parallel delta robots with full
orientation capabilities, IEEE Robotics

Automation Letters, 2 (2017) 920-926.
[2] M. Rachedi, B. Hemici, M. Bouri,

Design of an H∞ controller for the Delta
robot: experimental results, Advanced

Robotics, 29 (2015) 1165-1181.
[3] P. Bai, J. Mei, T. Huang, D.G.

Chetwynd, Kinematic calibration of

Delta robot using distance
measurements, Journal of Mechanical

Engineering Science, 230 (2016) 414-
424.

[4] Y.-L. Kuo, P.-Y. Huang, Experimental
and simulation studies of motion control
of a Delta robot using a model-based
approach, International Journal of

Advanced Robotic Systems, 14 (2017).
[5] C. Wang, Y. Fang, S. Guo, Multi-

objective optimization of a parallel
ankle rehabilitation robot using
modified differential evolution
algorithm, Chinese Journal of

Mechanical Engineering, 28 (2015)
702-715.

[6] H.-Q. Zhang, H.-R. Fang, B.-S. Jiang,
S.-G. Wang, Dynamic performance
evaluation of a redundantly actuated and
over-constrained parallel manipulator,
International Journal of Automation

Computing, 16 (2019) 274-285.
[7] O. Ibrahim, W. Khalil, Inverse and

direct dynamic models of hybrid robots,
Mechanism machine theory

45 (2010) 627-640.
[8] B. Siciliano, L. Sciavicco, L. Villani, G.

Oriolo, Robotics: modelling, planning
and control, Springer Publishing
Company, 2010.

[9] J. Brinker, B. Corves, M. Wahle, A
comparative study of inverse dynamics
based on clavel’s delta robot, in:
Proceedings of the 14th World Congress

in Mechanism and Machine Science. ,
Taipei, Taiwan, 2015, pp. 25-30.

[10] J. Sastry, J.V. Ganesh, J.S. Bhanu, I2C
based networking for implementing
heterogeneous microcontroller based
distributed embedded systems, Indian

Journal of Science and Technology, 8
(2015) 1-10.

[11] J.J.R. Raj, S. Rahman, S.J.E.s. Anand,
a.i.j. technology, 8051 microcontroller
to FPGA and ADC interface design for
high speed parallel processing systems–
Application in ultrasound scanners,
Engineering science technology, an

international journal, 19 (2016) 1416-
1423.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 106 Volume 16, 2020

[12] A. Ashiebi, A. Khalil, J. Wang,
Networked control of parallel DC/DC
converters over CAN bus, in: IEEE

International Conference on Power

System Technology (POWERCON),
IEEE, 2016, pp. 1-6.

[13] I. Jaziri, L. Chaarabi, K. Jelassi, A
remote DC motor control using
Embedded Linux and FPGA, in: 7th

International Conference on Modelling,

Identification and Control (ICMIC),
IEEE, 2015, pp. 1-5.

[14] C. Urrea, J. Kern, Development of an
electronic controller applied to a
robotized manipulator, Computers

Electrical Engineering, 56 (2016) 648-
658.

[15] D. Henrich, J. Karl, H. Wörn, A review
of parallel processing approaches to
robot kinematics and jacobian,
Technische Universität Kaiserslautern,
(1997).

[16] D.P. Losada, J.L. Fernández, E. Paz,
R.J.S. Sanz, Distributed and modular
CAN-based architecture for hardware
control and sensor data integration,
Sensors, 17 (2017) 1-17.

[17] R. Chen, B. Liu, M. Pan, H. Zhou,
Design of Distributed Control System
for the Pick-up Robot Based on CAN
Bus, in: IEEE International Conference

on Mechatronics and Automation

(ICMA), IEEE, Tianjin, China, 2019, pp.
102-107.

[18] A. Cervin, D. Henriksson, B. Lincoln, J.
Eker, K.-E. Arzen, How does control
timing affect performance? Analysis and
simulation of timing using Jitterbug and
TrueTime, IEEE control systems

magazine, 23 (2003) 16-30.
[19] F. Liu, A. Narayanan, Q. Bai, Real-time

systems, Prentice Hall PTR, United
States, 2000.

[20] J.G. S.K Baruah, Rate-monotonic
scheduling on uniform multiprocessors,
IEEE Transactions on Computers, 52
(2003) 966-970.

[21] F.L. Lewis, D.M. Dawson, C.T.
Abdallah, Robot manipulator control:
theory and practice, CRC Press, 2003.

WSEAS TRANSACTIONS on SIGNAL PROCESSING
DOI: 10.37394/232014.2020.16.12 Ali Sharida, Iyad Hashlamon

E-ISSN: 2224-3488 107 Volume 16, 2020

