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Abstract: - This paper investigates a real time distributed controller for a 3 DOF delta robot using low-cost 
educational simple microcontrollers. The parallel computing technique is used were the computational load is 
divided among several microcontrollers networked to each other to implement control methods. More 
specifically, the computation is distributed among four microcontrollers (MCU’s) which are connected to each 
other using CAN bus protocol. The main MCU is used to compute the control law.  Each of the remaining 
MCU’s is connected to one actuator and its attached encoder to form an Intelligent sensor-actuator system 
(ISAS). At each sample time, the ISAS broadcast a message using the CAN bus to the main MCU containing 
the information about the motor position. Then according to the control law, ISAS receives the corresponding 
controller value that has to be applied to the motor. All required periodic, aperiodic and sporadic tasks, were 
implemented and will be handled by these MCU’s. Using this design, the computation time of control law can 
be minimized and implemented using ARDUINO microcontrollers. More, this method increases the flexibility 
of the system for additional equipment and control by adding more nodes to the network. The results show the 
applicability of the proposed distributed controller, it can track different types of control signals with 
acceleration up to 9.8 m/s^2 (1g). 
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1 Introduction 
Delta robots are widely used in applications 

that require very fast motion and accuracy, such as 
picking and placing [1, 2]. The main advantage of 
these robots is the ability to produce high 
acceleration at the end effector. Furthermore, as the 
mass of the overall system is relatively low, these 
robots can achieve a high load capacity. Therefore, 
this robot attracted many researchers to develop 
kinematic and dynamic models and controllers [3-
7]. 
However, delta robots control contains multiple 
computational tasks that should be completed in 
terms of modeling, planning and control [8], these 
tasks require relatively long computational time. So, 
it is very important to use a method to minimize 
computational time in such applications. 
Furthermore, the robot is equipped by 3 actuators 
and 3 encoders, 1 encoder per actuator. Then, the 
microcontroller should deal with 6 (2 channels for 
each encoder) channels that generate digital pulses 
with high frequency. Thus, hardware problems 
appear low cost educational microcontrollers are 
used for delta robots. In general, the frequency of 
these pulses is very high due to the high speed 
motion. Missing any of these pulses results in an 
incremental error of measuring the angular position 
of the actuated joints which is accumulated with 
time.  

The comparative study in [9] illustrates the 
processing time of the fundamental three approaches 
of modeling Delta robot “Principle of  Virtual 
Work, the Newton-Euler Formulation, and the 
Lagrangian Formulation). Although the results 
were: Principle of Virtual Work requires 0.73 sec, 
Newton-Euler Formulation requires 1 sec, and 
Lagrangian Formulation requires 0.37 sec, these 
processing times are high for real time systems 
when model-based control approaches are used and 
the model is tuned online adaptively. The challenge 
becomes harder when the control law and the 
reading from the sensors are considered.  
To overcome the aforementioned challenges, 
distributed control approaches were used. In these 
approaches, several microcontrollers (MCU’s) are 
used, each controller is assigned its own job(s). The 
microcontrollers communicate with each other using 
a communication protocol to form an overall real 
time Network Control System NCS.   
Many protocols can be used to establish a real time 
network, such as I2C [10], SPI [11] and CAN 
protocol [12]. Among them, CAN protocol has 
many advantages including very simple physical 
construction, it supports auto retransmission of lost 
massages and supports different error detection 
capabilities. Therefore, it is considered the most 
suitable communication method for real time 
applications.    
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A distributed controller is reported in [13], 
where the controller is designed to control a slave 
robot from a master arm using SPI protocol. In [14], 
the researcher implemented an embedded controller 
for 5 DOF manipulator using SPI protocol using a 
simple PID controller. Although SPI is a very 
simple protocol and depends on the principle of 
master and slave communication, any fault in the 
master MCU will lead to shut down all network. 
Furthermore, SPI communication requires more 
signal lines than other communication protocols, 
which increase the complexity of the network.  
To solve this problem, the principle of parallel 
computing should be employed [15], where the 
tasks of data acquisition and computing control law 
are distributed on multiple controllers. This ensures 
that the frequency of the controller is greater than 
the frequency of controlled system, provides the 
advantage of minimizing computational time and 
increases the flexibility of adding new tasks (nodes) 
or editing the existing ones.  

In [16] a distributed CAN-Based 
Architecture for hardware control and sensor data 
integration was proposed for a mobile robot 
platform. However, the algorithm was implemented 
for general purpose computers. In the same context, 
in [17], a CAN bus based distributed controller was 
designed to control a mobile robot for picking and 
placing. It employed the principle of parallel 
processing to perform the functions of obstacle 
avoidance, driving, path planning and inspection.  
This paper proposes a real time control for the 3-
DOF delta robot. It uses four Microcontroller Units 
(MCU), each one consists of a microcontroller and a 
Controller Area Network bus (CAN bus) receiver-
transmitter. One MCU is used to compute the 
control law. The other three MCU’s  are connected 
to the actuated joints through an electronic 
interfacing module, each one of the three MCU’s 
along with the actuator and sensory system forms an 
intelligent sensor-actuator-system ISAS.  
Each ISAS is connected to one actuator and one 
sensor. Further, it can communicate with other 
ISAS’s and the controller MCU through CAN bus 
communication protocol. The ISAS reads the 
actuator position through an encoder, forms the 
necessary signal processing and prepares the ready 
measured data in a massage and broadcasts it to the 
CAN bus. This massage will be received by the 
beneficiary MCU, and in the same way for all 
ISAS’s.  
The controller MCU computes the required control 
law and broadcasts it on the CAN bus. Each ISAS 
will receive its own massage and skip the others. 
Then each ISAS analyses the massage and applies 

the required signal on the actuator.  This approach 
enhances flexibility to the system for changing the 
control approach and adding other jobs by adding 
new nodes to the network containing the desired 
tasks and jobs, these additional nodes can be used 
for applications such as vision control. Adding a 
new node will not change the physical structure of 
the distributed controller, since each ISAS and the 
main MCU controller will remain the same, the 
added node will be used to supply the controller 
with required information related to the new 
function. Further, distributing the computational 
load among 4 MCU’s minimizes the sampling time 
which in turn increases the stability and accuracy of 
the system. The work is simulated using MATLAB 
with the TrueTime toolbox [18] and implemented 
practically using ARDUINO microcontroller. The 
overall block diagram of this approach is shown in 
Fig.1. 

 

Figure 1. Real time network structure. 
 

2 Real time system design 

The design of real time Network Control system 
(NCS) starts by assigning the tasks with their timing 
constraints. For this system there are three motors to 
be actuated and controlled. In order to perform the 
control law, the following data is required: the 
reference signal or trajectory that the end effector 
must track, the forward kinematics model to 
transform the joint space variables to the task space 
variables, inverse kinematic model to transform the 
task space variables to joint space variables, the 
robot dynamic and inverse dynamic model to 
compute the control signal, a controller, and some 
computations in addition to sending and receiving 
data through the CAN bus as shown in table 1. The 
control process is divided into 12 different tasks as 
follows:  
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Task 1: it is responsible to compute the angular 
position and velocity of each actuator from the 
signal measured from an encoder attached to the 
actuator. This task is sporadic as the position should 
be correctly computed within its time limits, any 
delay in this task will cause drifting in position 
computation, which will lead to instability of the 
entire system. 

Task 2: it is responsible to read the desired inputs 
from the user. This task is aperiodic task, as the user 
will not apply these inputs periodically. 
Furthermore, there is no matter if these inputs were 
used to compute control law in the next cycle. 

Task 3: it is a periodic task, it has the jobs which 
perform the forward kinematics. This task depends 
on the results from Task 1. It takes the measured 
angles as inputs, and then it computes the related 
position of the end effector. This task should be 
executed on each program cycle, so it is a periodic 
task (Task 4 to 9 are periodic for the same reason). 

Task 4: In this task, the inverse kinematics is 
computed, which will be used later to generate the 
required feedback variables for the controller. 

Task 5: Jacobian matrix performs a 
transformation of the velocities from joint space to 
work space. This task is responsible to compute this 
matrix in order to compute the velocity of the end 
effector. 

Task 6: In this task, the inverse of Jacobian will 
be computed, in order to get the required angular 
velocities of the actuators that required to control 
the end effector.  

Tasks 7 and 8: These tasks are responsible of 
computing the required actuators torques to control 
the motion of the end effector. 

Task 9:  In this task, a trajectory is designed 
based on the received reference signal to ensure that 
the motion of the end effector is smooth. 

Tasks 10 and 11: These tasks are responsible of 
sharing data among the MCU’s. They are an on 
change based tasks, which will be enabled when the 
current position or the computed torque is changed. 
They should be executed directly when their flags 
are enabled to ensure that the control law will be 
computed correctly on any change of links 
kinematics. 

Task 12: This is an aperiodic task, it computes 
the related voltage of the resulted torque signal. It 
will be executed when the computed torque is 
changed. It will apply torque signal to the actuator 
by computing the equivalent voltage and applying it 
to the actuator. 

Table 1. Tasks time constraints. 

Task Name Type Execution 
Time (ms) 

Period= dead line 
Time (ms) 

Compute system states Sporadic 0.1 8.5 

Read reference signal Aperiodic 0.3 8.5 

Forward Kinematics Periodic 0.9 8.5 

Inverse Kinematics Periodic 0.4 8.5 

Jacobian Periodic 0.6 8.5 

Inverse Jacobian Periodic 0.9 8.5 

Dynamics Periodic 0.8 8.5 

Inverse Dynamics Periodic 1.1 8.5 

Trajectory Periodic 0.2 8.5 

Data transmission (CAN 
bus) Sporadic 0.6 8.5 

Data reception (CAN 
bus) Sporadic 0.7 8.5 

Apply outputs Aperiodic 0.1 8.5 

Total execution time 6.7 ms 

The scheduling of the tasks is based on their type 
and timing. The periodic tasks were scheduled using 
the fixed priority algorithm Rate monotonic (RM). 
Whereas the aperiodic and sporadic tasks were 
scheduled by the principle of servers. In real time 
systems multiple servers can be used to handle the 
non-periodic tasks such as Bandwidth-preserving, 
periodic and sporadic servers [19]. In this project 
the non-periodic tasks were classified into two 
types; Event based tasks that were executed using 
sporadic server and on change based tasks that were 
executed using periodic server.  

An Event based task enables a flag when it is 
released. This flag can be assumed to be a global 
flag that can be noticed in any part of the algorithm 
and can directly pre-empt the current executing task 
and jumps to a service routine. This type of tasks 
will be executed directly when its flag is on, and the 
microcontroller will interrupt any executing task in 
this case. Any event based task was assumed to be 
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non-pre-emptible and will continue executing until 
it is finished. For example, task 1 represents an 
event based task, as each encoder is connected to 
microcontroller’s external interrupt. This interrupt 
will be enabled directly when the encoder generates 
any signal. 

An on change based task contains a flag that will 
be turned on when the task is released. However, 
this flag should be tested periodically to determine 
readiness the task with its resources. Accordingly, 
the algorithm decides if an interrupt is required or 
not. These tasks have higher priority than the 
periodic tasks but less than the event based tasks. 
This type was handled using Periodic Server 
algorithm which creates a periodic server that is 
responsible of checking the flag of the task. If the 
task is released, it will be executed, while if it is not 
released, the server will be pre-empted until the next 
period. 
 
 

3 Schedulability test 
The timing constraints are used the 

schedulability test. Namely the execution time and 
deadline of each task. The execution time of each 
task was computed experimentally using 
oscilloscope, each task was implemented 
individually, a hardware flag was turned on at the 
beginning of the execution and turned off at its end, 
then the HIGH-interval was captured. The worst 
case execution time (WCET) is considered as the 
time required to complete all the tasks if they were 
released at the same instant and their recourses are 
available without violating their constraints . 
According to table 1, the WCET is 6.7 ms. To avoid 
processor over loading, the period was adjusted to 
8.5 ms, this time was assumed to be the deadline for 
all tasks in the current cycle, and the released time 
for the next cycle. Each periodic task is released at 
the beginning of the period, these tasks should be 
executed before the deadline which presents the end 
of current period. 

In this project, the sampling time was selected to 
be 8.5 ms. As the controller is distributed, all tasks 
will be executed before the deadline, as the worst 
case execution time occurs at the computation of 
control law which requires 6.5 ms, it is schedulable 
based on RM utilization factor test, as the utilization 
factor is about 76%. RM algorithm is used here 
because it is schedulable for identical parallel 
Microcontrollers, where the execution time is the 
same for a task if it is schedulable for identical 
parallel Microcontrollers, where the execution time 

is the same for a task if it is executed on any 
processor [20]. Moreover, Fig. 2 shows that RM can 
produce a feasible schedule for the system at 
WCET. The shown schedule depends on the 
parameters listed in Table 1. At the beginning of the 
period (at t=0), all periodic tasks are released at the 
same time, while the deadline of all tasks is located 
at the end of the current period. 

 

Figure 2. Tasks scheduling based on RM. 
 

 
4 Data handling and frames creation 

The previous tasks were distributed on 4 
MCUs, each MCU represents a single node on the 
network as shown in Fig. 3.  The periodic tasks that 
are required to compute the control law were 
implemented on the controller MCU. Therefore, this 
node will not deal with the outputs or inputs to the 
actuators. At each program cycle, it will create a 
CAN message frame at the end of this cycle, this 
frame contains 6 bytes of data, each element of 
torque vector    is presented using 2 bytes, the 1st 
Byte represents the direction of the torque, the other 
one represents the absolute value of the torque 
element as shown in Fig. 4. For the other nodes, 
each one is connected to a single actuator and its 
digital sensor. The digital encoder consists of 2 
digital channels, these channels will continuously 
change their values as the actuator is running. 
Therefore, each MCU should enable the external 
interrupt to compute the equivalent actuator’s joint 

position   and velocity   states. Whenever one of 
the states is changed, the MCU will directly create a 
CAN message with data length of 4 bytes as shown 
in Fig. 5. 
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Figure 3. System network. 

 

Figure 4. Control law data frame. 

 

Figure 5. States data frame 
 

5 Real time distributed control 

algorithm (RTDCA) 

The last step of implementing the proposed 
approach is to develop an algorithm that satisfies the 
scheduling requirements proposed previously. The 
algorithm was developed using C programming 
language as it provides the least computational time 
compared with other programming languages 
(except assembly language).   RTDCA consists of 2 
parts, the first one is the high level processing and 
control stage, it is executed by the main controller. 
The second part is composed of computing the 
angular position and velocity of the actuated joints 
and applying control signal on the actuators. It is 
executed by the other three ISAS’s.  

The tasks of the former part are executed 
periodically at each program cycle. However, it 
contains aperiodic and sporadic tasks. As any of the 
sporadic interrupts is enabled, the algorithm will 
pre-empt the running task and start executing the 
sporadic one. For the aperiodic tasks, they were 
handled by the mean of periodic non preserving 
scheduling servers, such that, the aperiodic task will 
be checked periodically. If it is released, it will be 
executed, else, it will be pre-empted until the next 
cycle, these steps were illustrated in the flowchart in 
Fig.6.  

Main controller Pseudo code: 

 
1. Enable interrupts (timer 0 interrupt and external 

interrupt). 
2. Initialize variables, Initialize CAN-BUS. 
3. Check interrupt flag  

 If interrupt flag is HIGH 
- Pre-empt current task, and execute the 

sporadic task. 
 Else 
- Continue. 

4. Compute position kinematics. 
5. Compute velocity kinematics. 
6. Compute next position. 
7. Compute error. 
8. Compute control law. 
9. Create and decode CAN frame. 
10. Transmit frame. 
11. Check CAN-BUS for received frames. 

 If there is new frame 
- Receive frame. 
- Decode frame. 
- Update states. 
 Else  
- Continue. 

12. Go to step 4. 

 In the later part, each of the other three ISAS’s 
checks periodically if there is a new frame. If yes, it 
will receive the new frame then decodes the 
message to extract the control law output. Then it 
computes the control torque equivalent voltage in 
order to apply it to the driver. Each MCU has a 
hardware ID which is formed at the initialization 
level, this ID consists of  2 binary bits represented 
by 2 fixed hardware digital inputs. The ID of the 
first MCU is (01)B. The second and third MCU’s 
are assigned to ID’s (10)B and (11)B respectively. If 
the acquired states by the encoder are changed, the 
MCU will directly create CAN frame which consists 
of its ID and the values of the states as described 
previously. These steps are described in the 
flowchart in Fig.7 along with the following Pseudo 
code: 

 
1. Enable interrupts (timer 0 interrupt). 
2. Initialize variables, initialize CAN-BUS. 
3. Check CAN-BUS for received frames. 

o If there is new frame 
- Receive frame. 
- Decode frame. 
- Compute required voltage. 
- Apply voltage on actuator 

through the driver. 
o Else  

- Continue. 
4. Read actuator states 

o If new states do no equal previous 
states 
- Encode new states. 
- Create CAN frame. 
- Assign MCU’s ID to the frame. 
- Transmit frame. 

o Else 
- Continue. 

5. Update states. 
6. Go to step 4. 
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Figure 6. Main controller algorithm. 

 

Figure 7. Symmetrical ISAS algorithm. 

 

6 Results 

The system was implemented and simulated 
using MATLAB, the design of the controller MCU 
and ISAS 1 are shown in Fig.8, and 9 respectively. 
The controller MCU receives angles frame from 
other MCU’s, each frame contains data that 
represent the amplitude and the direction of the 
angular position along with the ID of the transmitter 
MCU. Also it receives the desired position as a 
vector of the desired coordinates [X ; Y ; Z]. This 
signal is the reference signal. After that, MCU 
controller computes the required actuator’s torque 
and creates a frame of torque data to broadcasts it 
through CAN bus.  

 

 

Figure 8. controller MCU design. 

The other 3 MCU’s are symmetrical, each one is 
physically connected to an actuator and a position 
incremental encoder. The measured state   and 
pseudo measured state   will be transmitted to the 
controller MCU by a frame that contains joint’s 
information and the ID’s of the receiver and 
transmitter (1:2 means that the MCU with ID 2 will 
transmit frame to MCU with ID 1). The simulation 
is carried on using the TrueTime toolbox. 

 

Figure 9. ISAS 1 design. 

The algorithm was implemented on a hardware 
delta robot shown in Fig.10.a with parameters 
shown in Fig.10.b listed in Table 2.  

The system was controlled using PD inverse 
dynamics (computed torque) algorithm as described 
in [21], the control law can be written in the form, 

( ) ( , ) ( )M K e K e C G
d d p

           
  

      (1) 

Where is 3 1  control vector, ( )M  is 3 3  
mas matrix, 

d
  is 3 1 desired angular acceleration, 

e  is angular speed tracking error, e  is position 
tracking error, ( , )C   is 3 3 coriolus matrix, ( )G 

is 3 1 gravity vector, ,   and   are the angular 
acceleration, velocity and position of the actuated 
joints, and ,K K

p d
 are controller gains, 

50 0 0
0 50 0
0 0 50

K K
p d

 
 

 
 
  

                (2) 
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  As shown in Fig. 11, the response of the robot 
tracks the reference signal [0.1; -0.1; 0.5]. The 
results show that the response of the robot is stable 
and can achieve its tasks in the desired manner 
using the specified trajectory time. While Fig.12 
shows the required torque on each actuated joint to 
move the end effector from its initial to final 
position [0.1; -0.1; 0.5] as was planned. Finally, 
Fig.13 shows tracking error on each axis which 
converges to zero during 0.5s.  

Table 2. Delta robot parameters 

Parameter Value 

f 0.1 m 

e 0.055 m 

aL  0.18 m 

bL  0.435 m 

Mass of moving platform 0.196 kg 

Mass of elbow 0.024 kg 

Mass of the forearm 0.055 kg 

Mass of upper arm 0.190 kg 

Motor inertia 381.6 10  

Motor gear ratio constant 0.01 
 
 

  
Figure 10.a. Delta robot 

prototype 
Figure 10.b. Robot 
kinematic diagram 

 
              

 

Figure 11. Robot response for (0.1, -0.1, 0.5) 
reference signal. 

 

Figure 12. Actuated joints torque. 

 

Figure13. Tracking error. 

Moreover, a spiral reference signal was applied 
as shown in Fig.14, the result shows that the 
distributed controller can track not only a step 
constant input, but also a spiral reference signal, 
where the desired position changes continuously 
with time. 
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Figure 14. Tracking spiral signal. 

 

7 Conclusion 

     In this project, a real time distributed controller 
was implemented for delta robots.  The main 
contribution of this paper is the design of a real time 
flexible distributed control network using CAN Bus 
protocol. This distributed controller minimizes the 
sampling time and makes it more stable and 
applicable for low cost microcontrollers such as 
ARDUINO and PIC. More, the proposed distributed 
controller is very flexible due to the ability to add 
additional nodes for future features and new 
functions. This design was able to handle and 
execute all periodic, aperiodic and sporadic tasks 
efficiently without any missing in their deadlines. 
The response of the robot was stable and rapid. 
Using this approach, the computation time was 
minimized as it was distributed on 4 MCU’s. This 
design can be applied for any type of manipulators. 
Furthermore, this approach allows sampling time to 
be reduced to 6.5 ms, while the sampling time was 
adjusted to 8.5 ms to avoid processor overloading. 
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