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Abstract: In this article, a delay/Doppler/propagation factor acquisition method for global positioning system
(GPS) signal is proposed. Utilising the Fourier transform (FFT) of the autocorrelation function (ACF) for the
received signal, together with some mathematical simplifications, a closed form solution is derived to estimate the
delay/Doppler/propagation factor for the received signal. Unlike previous related estimation methods for this case,
the proposed method has the advantage of not requiring any searching over the different parameters to perform the
estimation. Simulation results for the proposed method are presented in this article to assess its performance.

Key–Words: GPS; Acquisition; autocorrelation function; Signal Processing.

1 Introduction
Positioning in global positioning system (GPS) re-
quires estimating distances between different satel-
lites and the GPS device. These distances are deduced
from estimating the signal’s flight time from the GPS
satellite to the GPS device and consequently finding
the time delays from different satellites. Due to the
movement of the satellites in their orbits and the possi-
bility of the movement of the GPS device on the earth
surface, the received signal will suffer from Doppler
shift, which will introduce errors in the delays estima-
tion. Thus, it is imperative to account for the Doppler
shift to produce acceptable performance.

Many methods were proposed in the literature
to estimate the delay and Doppler shift [1, 2, 3, 4,
5]. The method presented in [1] uses fractional fast
Fourier transform (FFT) to estimate the delay and
Doppler shift. The method in [2] presents thresh-
olds on the counter for the searching process to es-
timate the parameters. In [3], the authors use block
searches with large-scale FFT to perform the estima-
tion. The method presented in [4] is FFT-based ac-
quisition method which utilises circular/linear convo-
lution methods for the parameters estimation. In [5],
the authors investigate using partial differential post-
correlation processing techniques to perform parame-
ter estimation. All the previously mentioned methods
require searching process to perform the estimation.
In this article however, a closed form estimator for de-
lay and Doppler shift is presented for GPS signals in
addition to the propagation factor.

The rest of this article is organised as follows:
Section II presents the system model. Section III ex-
plains the proposed estimator. Simulations are shown

in Section IV to assess the proposed method perfor-
mance. Finally, conclusions are presented in Section
V.

2 System Model
For an asynchronous code division multiple access
(CDMA) system that employs BPSK modulation, let
the number of involved satellites be L. The data bit
duration is T and the chip duration is Tc = T/N ,
where N is the number of chips per bit. The PN
spreading waveforms are assumed to be of period
NTc and each chip has the waveform denoted by
P̌Tc(t). The transmitted baseband signal of the kth
user over the mth bit interval, šl(t), is formed by mod-
ulating the mth data bit, dl,m, with the spreading code
waveform, čl(t), as

šl(t) = dl,mčl(t− (m− 1)T ) (1)

for (m − 1)T ≤ t < mT where dl,m ∈ takes one of
the values {-1,+1} with equal probabilities and čl(t) is
the transmitted spreading code sequence, which takes
the form of

čl(t) =
N−1∑
n=0

al,nP̌Tc(t− nTc) (2)

where al,n ∈ {−1, 1} is the nth chip of the lth satel-
lite spreading code. The chip waveform signal P̌Tc(t)
is assumed to have a square root raised-cosine pulse
shape.

At the receiver, the signal is processed by a
matched filter producing sl(t)

sl(t) = šl(t) ⋆ P̌Tc(t) = dl,mcl(t− (m− 1)T ) (3)
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for (m − 1)T ≤ t < mT , where ⋆ denotes convolu-
tion, cl(t) is defined as

cl(t) =
N−1∑
n=0

al,nPTc(t− nTc) (4)

and PTc(t) is a raised-cosine pulse.
The filtered received signal is

r(t) =
L∑
l=1

βlsl (t− δl(t)) e
j2πfd,lt + n(t) (5)

where βl and fd,l are the propagation factor and
Doppler shift for the lth satellite signal, respec-
tively. Also, n(t) is an additive white Gaussian noise
(AWGN) with zero mean and variance of σ2

n, and δl(t)
is the delay of the lth satellite signal. The received
signal is then sampled with a sampling frequency of
1/Ts, where Ts = Tc/Q and Q is an integer that rep-
resents the over sampling gain. The sampled received
signal takes the form

r(iTs) =
L∑
l=1

βlsl (iTs − δl(iTs)) e
j2πfd,liTs + n(iTs)

(6)
where δl(iTs) is the discrete version of the delay δl(t).
For simplicity, the variable Ts will be dropped in the
term iTs.

3 Acquisition of Delay/Doppler/
Propagation Factor

The received signal, r(i), is correlated at the receiver
with a specific code to retrieve the transmitted bits.
So, considering the xth code for the xth satellite, then,

z(i) = r(i) ∗ cx(i)

=
L∑
l=1

βldl,mλl,x(i− δl(i))e
j2πfd,li + nz(i)

(7)

where the operator ∗ denotes the correlation operator,
λl,x = cl(i) ∗ cx(i) is the corsscorrelation function,
and nz(i) is AWGN which results from the convolu-
tion of n(i) with cx(i).

For sake of simplicity, assume that a specific
satellite (the xth satellite) is considered as the satellite
of interest. Also, assume that other satellite received
signals in z(i) are interfering signals, i.e.,

z(i) = βxdx,mλx,x(i− δx(i))e
j2πfd,xi

+
L∑

l = 1
l ≠ x

βldl,mλl,x(i− δl(i))e
j2πfd,li + nz(i)

(8)

where λx,x(i) is the autocorrelation function (ACF)
for the xth satellite.

Since λl,x(i) for l ̸= x takes a small value, the
second term in (8) can be neglected. Therefore,

z(i) = βxdx,mλx,x(i− δx(i))e
j2πfd,xi+nz(i). (9)

Considering the fact that λx,x(i − δx(i)) is signifi-
cantly larger than nz(i) term for sufficiently large N ,
the noise term can be safely neglected leading to the
noise free version of z(i), denoted as z̄(i), expressed
as

z̄(i) = βxdx,mλx,x(i− δx(i))e
j2πfd,xi. (10)

Now, to estimate the Doppler shift for the xth satellite
received signal, fd,x, we first eliminate the effect of
dx,m on the phase of z(i) by computing the square of
z̄(i), and noting that d2x,m = 1 we have

z̄2(i) = β2
xλ

2
x,x(i− δx(i))e

j4πfd,xi. (11)

Then to exclude the effect of βx, defining the ratio

µ(i) =
z̄2(i)

z̄2(i− 1)

=
λ2
x,x(i− δx(i))e

j4πfd,xi

λ2
x,x(i− 1− δx(i− 1))ej4πfd,x(i−1)

. (12)

Since λx,x(i − δx(i)) is an ACF it has real val-
ues and so does λ2

x,x(i − δx(i)). Consequently,
̸ λ2

x,x(i− δx(i)) = 0o. Thus, it is clear that

̸ µ(i) = 4πfd,x . (13)

Hence, the estimated Doppler shift for the lth satellite
signal, fd,x, is

f̂d,x =
̸ µ(i)

4π
. (14)

Clearly, the Doppler shift is estimated without the
need for any searching technique.

Consequently, the Doppler shift effect on z̄(i) can
be simply compensated as follows

ū(i) = z̄(i)e−j2πfd,xi = βxdx,mλx,x(i− δx(i)).
(15)

We proceed to estimate the phase of the propagation
factor βx = αxe

jϕx . Starting with ϕx estimate, we
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proceed as before and consider the phase of ū2(i),
which is

̸ ū2(i) = ̸ {β2
xd

2
x,mλ2

x,x(i− δx(i))} = ̸ {β2
x} .

(16)
Leading to the simple estimate

ϕ̂x =
̸ ū2(i)

2
. (17)

To estimate the delay and αx, we compute the FFT of
ū(i), which is

Ū(ejω) = βxdx,mΛx,x(e
jω)e−jωδx (18)

where Λx,x(e
jω) is the FFT of λx,x(i) (which is

known by the receiver, because the receiver knows the
code cx(i) beforehand). Dividing both sides of (18)
by Λx,x(e

jω), then

V (ejω) =
Ū(ejω)

Λx,x(ejω)
= βxdx,me−jωδx . (19)

Having done that, αx is estimated by

α̂x = |V (ejω)| = |βxdx,m| . (20)

Hence, β̂x = α̂xe
jϕ̂. To estimate the delay define

G(ejω) =
V (ejω)

βx
= dx,me−jωδx . (21)

and take its square (which is the hth sample of
G(ejω)) as follows:

G2
h(e

jωo) = e−j2hωoδx . (22)

Thus,

δ̂x =
− ̸ G2

h(e
jω)

2hωo
. (23)

Finally, in order to estimate the data bit dx,m for some
sample h we write

d̂x,m = sign
(
Gh(e

jω)ejhωoδ̂x
)

(24)

where sign(c) is the sign (or parity) of some argument
c.

4 Simulation results
Simulations for estimating the delay, Doppler shift,
propagation factor magnitude and phase for the de-
sired satellite signal were completed to assess the pro-
posed method performance. There are many CDMA

codes discussed in the literature one of which is Gold-
code. Gold-codes are generated using shift two poly-
nomials. In this paper Gold-codes are used to model
the CDMA code sequence with 31chips length and
generated using the polynomials x5 + x2 + 1 and
x5 + x4 + x3 + x2 + 1. The delay, Doppler shift,
propagation factor magnitude and phase of the desired
satellite signal were 2Tc, 5 Hz, 10 and π

4 radians, re-
spectively. Three values of over sampling gain Q were
considered (Q = 10, 15 and 20). The results for
the delay, Doppler shift, propagation factor magnitude
and phase root mean square estimation error were ob-
tained by averaging over 1000 independent simulation
runs.

Figs. (1), (2), (3) and (4) show the delay, Doppler
shift, propagation factor magnitude and phase root
mean square estimation error, respectively, versus dif-
ferent signal to noise ratios (SNR)s in dB using the
proposed method. The results indicate that the pro-
posed method managed to estimate the required pa-
rameters with high accuracy. Also, the figures indi-
cate that the performance is enhanced as the SNR and
over sampling gain (Q) are increased.

5 Conclusion
In this article, a delay/Doppler/propagation factor ac-
quisition method for global positioning system (GPS)
signal is proposed. The method provides a closed
form solution for the estimation of the required pa-
rameters. The method is based upon algebraic ma-
nipulation of FFT of the ACF for the received sig-
nal. Thus, the proposed method does not requiring any
searching procedure to perform the estimation. Sim-
ulation results for the proposed method are presented
in this article to assess its performance.
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Figure 1: Root mean square error (RMSE) for the
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Figure 2: Root mean square error (RMSE) for the
delay estimation in chip time (Tc) vs. SNR in dB.
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Figure 3: Root mean square error (RMSE) for the
propagation factor magnitude estimation vs. SNR
in dB.
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Figure 4: Root mean square error (RMSE) for the
propagation factor phase estimation in radians vs.
SNR in dB.
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