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Abstract: - Boundary effects are caused by incomplete data in the boundary regions when the analysis window 
gets closer to the edge of a signal. Various extension schemes have been developed to handle the boundaries of 
finite length signals to reduce the boundary effects. Zero padding, periodic extension and symmetric extension 
are some basic extension methods. However, it is well known that all of these solutions may have drawbacks. 
In this paper, we consider the problem of handling the boundary effects due to improper extension methods in 
the wavelet transform. An extension algorithm based on curve fitting with properties that make it more suitable 
for boundary effects reduction is presented here. This extension algorithm could preserve the time-varying 
characteristics of the signals and be effective to reduce distortions appearing at the boundary.  Then, an 
interpolation approach is used in the boundary effects region to further alleviate the distortions. Procedures for 
realization of these two algorithms and relative issues are presented. Several experimental tests conducted on 
synthetic signals exhibiting linear and nonlinear laws are shown that the proposed algorithms are confirmed to 
be efficient to alleviate the boundary effects in comparison to the existing extension methods. 
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1 Introduction 
Wavelet transform analysis has been presented as a 
time-frequency analysis and processing method for 
over the past two decades [1], [2]. But it has still 
received increased attention in recent years [3], [6], 
[7]. Wavelet transform analysis has been widely 
used for the purpose of denoising, data compression, 
feature recognition, system nonlinearities detection 
and so on [4]-[7]. 

The wavelet transform is calculated as shifting 
the wavelet function in time along the input signal 
and calculating the convolution of them. In most 
practical applications, the signals of interest have 
finite support. As the wavelet gets closer to the edge 
of the signal, computing the convolution requires 
the non-existent values beyond the boundary [8]-
[10]. This creates boundary effects caused by 
incomplete data in the boundary regions. Since the 
analysis wavelet extends into a region with no 
available data at both boundaries of the signal. Thus, 
the results of wavelet transform in these boundary 
effects regions have questionable accuracy. Actually, 
the particular impacts of boundary effects become 
increasingly significant for some systems that may 

possess longer period sequence and thus require 
higher frequency resolutions. 

To deal with boundary effects, the boundaries 
should be treated differently from the other parts of 
the signal. If not properly made, distortion would 
appear at the boundaries [3]. Two alternatives to 
deal with boundary effects can be found. The first 
one is to accept the loss of data and truncate those 
unfavorable results at boundaries after convolution 
between signal and wavelet. But simply neglect 
these regions in analysis yields to a considerable 
loss of data which is not allowed in many situations 
where the edges of the signal contain critical 
information. The other one is artificial the extension 
at boundaries before processing signals. In fact, 
there is another approach that employs the usual 
wavelet filters for the interior of the signal and 
constructs different boundary wavelets at the ends 
of the signal. This method has been shows to be 
merged into the class of signal extension [10]. 

Various extension schemes have been developed 
to deal with the boundaries of finite length signals 
[11]-[14]. Zero padding, periodic extension and 
symmetric extension are basic extension methods. It 
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is well known that each method has its 
disadvantages [3], [10]. Computing the wavelet 
transform of an extension signal is equivalent to 
using the corresponding boundary wavelets. The 
boundary wavelets corresponding to zero padding 
and periodic extension have no vanishing moments 
at the boundaries. Therefore, the transform values 
behave as if signal were discontinuous at the 
boundaries. They introduce a singularity in the 
signal. And boundary wavelets of symmetric 
extension have one vanishing moment and avoid the 
discontinuous at the boundaries. So it introduces a 
singularity in the first derivation. However, if the 
reflection is symmetric the wavelets must be 
symmetric to ensure no distortion in the transform 
values. It is well known that Haar is the only 
symmetric wavelet with a compact support that has 
been found so far. One goal of this paper is to seek 
an extension scheme that preserves the property of 
vanishing moments. 

In addition, these basic extension schemes are 
usual exploited to the application of data coding 
which focuses on the procedures of analysis and 
synthesis using filter banks [15]-[20]. However, 
when it comes to particular applications that put the 
emphasis on the ability to recognize coherent 
structure within a signal, the above mentioned 
methods don’t have the ability to recover those 
significant features. They only make simple 
assumptions about the signal’s characteristics 
outside the boundaries. Many signals of interested 
could not be easily included in the above three 
categories. So we need a new extension mode 
appropriate to the requirements of the application of 
non-stationary signals analysis. In this paper, a new 
extension mode based on curve fitting technique 
will be introduced for non-stationary signals 
analysis. This extension mode extends signal 
according to the time-varying characteristics of the 
signals inside of the boundaries so that distortions 
due to improper extensions could be reduced. 

It should be aware that features appearing near 
the boundaries of transform values will contain 
information from outside the support of the signal 
which is synthetic. In other word, the wavelet 
transform resulting at the boundaries will be 
affected by the adding data no matter whichever 
extension mode is employed. Therefore, we will 
consider the problem from a perspective way that is 
different from extension method to alleviate these 
effects. In the paper, we will employ an 
interpolation processing in the region of the 

boundary effects to reduce the distortions. We will 
show that improvement can be obtained by such 
processing. 

The paper is organized as follows. In the next 
section a brief review of the boundary effects in the 
basic extension methods is given. A general matrix 
formulation that is common to all signal extension 
methods is also included. In Section 3, we give 
depth analysis of the significant importance of 
smooth extension and present the design method for 
adaptive smooth extensions with properties that 
make it more suitable than other extension for non-
stationary signals analysis. In Section 4, we develop 
a new algorithm based on interpolation technique 
for further boundary effects reduction  along with 
some discuss on the implement of this technique. In 
Section 5, we present the method of testing and the 
results concerning the performance of performance 
of the proposed methods applied on both linear and 
nonlinear frequency modulation signals. The 
performance of proposed adaptive extension method 
based on curve fitting and interpolation is shown to 
be superior to all of the other methods. Section 6 
summarizes the results obtained throughout the 
paper. 
 
 
2 Boundary Effects in the Time-
frequency Signal Analysis using 
Wavelet Scalogram 
The need for a signal time-frequency analysis comes 
from the incomplete of either time domain or 
frequency domain analysis to fully describe the 
behavior of non-stationary signals. The time-
frequency representation of a signal for time-
frequency analysis provides information about how 
the frequency content varies with time, thus 
providing an ideal approach to examine, analyse and 
study non-stationary signals. Time-frequency 
representation is an image of a two dimensional 
time-frequency representation mapped from one 
signal. A number of methods have been developed 
to obtain the energy distribution function with 
respect to both the time and frequency. Wavelet 
transform is one of most notably tools. Wavelets 
have the great advantage of being able to isolate the 
fine details in a signal. Very small wavelets can be 
used to identify very fine details in a signal, while 
very large wavelets can identify coarse details. 
Wavelet theory is capable of revealing aspects of 
data that other signal analysis techniques fail to be 
present the aspects like trends, breakdown points, 
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and discontinuities in higher derivatives and self-
similarity.  

But as mentioned in the previous section, 
wavelet transform suffers from boundary effects like 
other signal analysis techniques which involve 
convolution operation. The boundary effects would 
lead to serious distortion at both boundaries of 
signal which makes it hard to distract the right 
information particularly on the start and the end of 
signals. Therefore, this section will first explore the 
effect of basic extension methods, which include 
zero padding, periodic extension and symmetric 
extension, on the wavelet transform in order to 
design a suited extension method that is able to 
minimize boundary effects.  

We start with a general formula of various 
extension modes. We denote vectors by bold lower 
case letters. Subscript (superscript) l , c and r  
represent left, central and right respectively. 
Matrices are denoted by bold upper case letters. We 
use subscript, such as M N× , to denote the size of 
a matrix. 

A finite signal with length N  is 
(n)s , 0,1,n N∈  . Then we can express this signal 

in another form as 
 
 Τ Τ Τ Τ[ , , ]l c r=s s s s  (1) 

 
where ls  and rs  are vectors consisting of the first 
and last M  components of the signal. cs is the 
central part. Denote the extension vector of (n)s  as 
 

 Τ Τ Τ Τ
, ,[ , , ]e e l e r=s s s s  (2) 

 
where similarly, ,e ls and ,e rs  are the left and right 
extension vectors of length M . We use subscript to 
denote the size of matrix. Generalized expression 
for signal extension methods is given by 
 

 (2 )e M N N+ ×=s H s  (3) 
 
where H  is the extension matrix. The basic 
extension methods are all linear extension. Hence (3) 
can be written in form 

 

l

e N
r

 
 =  
  

H
s I s

H
 (4) 

where NI is an N N×  identity matrix; lH  and rH  
are respective left and right extension matrices. 

For the zero padding extension, the extension 
matrix is 

 

 
M N

N

M N

×

×

 
 =  
  

0
H I

0
 (5) 

 
where M N×0  is an M N×  zero matrix. Since for the 
periodic extension , re l =s s  and ,e r l=s s  the 
extension matrices of the periodic extension are 
 

 
( )

( )

M N M M

N

M M N M

× −

× −

 
 =  
  

0 I
H I

I 0
 (6) 

 
Similar result is available for the extension 

matrix of the symmetric extension 
 

 
( )

( )

M M N M

N

M N M M

× −

× −

 
 =  
  

J 0
H J

0 J
 (7) 

 
where MJ ( or NJ ) is an exchange matrix where the 
1 elements reside on the counterdiagonal and all 
other elements are zero. 

In order to illustrate the boundary effects of 
various basic methods, we consider a linear 
frequency modulation signal s( )t  with constant 
amplitude and frequency varied with time from 0.1 
to 0.4(normalized frequency). The sampling 
frequency used is 100Hzsf = s with 300 data points. 
We perform different extension methods on the test 
data and extract the instantaneous frequency from 
wavelet transform of extension data.  The estimation 
error of the instantaneous frequency obtained from 
three basic extension methods is shown in Fig. 1. 
The symmetric extension performs better than zero 
and periodic methods. This is due to symmetric 
extension have one vanishing moment and zero 
padding and periodic extension have no vanishing 
moments. This paper is to seek an extension scheme 
that preserves the property of vanishing moments. 

Define the k moments of wavelet function as  
 

 ( )dk
km t t tψ

∞

−∞
= ∫  (8) 
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As a consequence of the Fourier transform 
properties, we can obtain 

 

 
0

d ( )( )
d

k
k

k km j
ω

ω
ω

−

=

Ψ
= −  (9) 
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Fig. 1. Comparison of boundary effects for linear FM signal 

of three basic methods. The values on the vertical axes are 
normalized to the adopted sample rate. 
 
where ( )ωΨ is the Fourier transform of ( )tψ . If 

( )ωΨ  has p order multiple zeros at 0ω = , that is  
 

 0 0 0
( ) ( ),  ( ) 0p

ω
ω ω ω ω

=
Ψ = Ψ Ψ ≠  (10) 

 
then we can find  
 

 ( )d 0,   0,1, 1k
km t t t k pψ

∞

−∞
= = = −∫ 

 (11) 

 
If a wavelet function ( )tψ satisfies(11), then we 

say this wavelet function has p  vanishing moments. 
Assume signal ( )s t is a polynomial of 

degree 1p − , which is given by 
 

 
1

0

( )
p

k
k

k
s t tα

−

=

= ∑  (12) 

 
where 0 1 1, , , pα α α − are constant coefficients. 
Additional, we assume ( )tψ  has p  vanishing 
moments. Equation (11) indicates that 
 

 ( ), ( ) 0s t tψ =  (13) 

In other words, the wavelet transform of ( )s t  is 
identical to zero. If ( )s t  can be expanded into a 
high-order polynomial of degree N with N p> , 
then the terms of the polynomial with degree lower 
than p contribute nothing to the wavelet transform 
which only reflects the terms with degree higher 
than p (high frequency component). Such a wavelet 
has the advantages to capture the high frequency 
component and breakpoints of signals. Therefore, 

( )tψ  is required to have an as high as possible 
vanishing moments so that ( )ωΨ  is smooth at 

0ω = to possess a satisfied band-pass property. 
 
 
3 Boundary Effects Reduction via 
Adaptive Smooth Extension 
It has been shown that every basic extension method 
has its own drawbacks. We should seek a method 
representing the feature of signal. Moreover, smooth 
extension is also critical to the reduction of 
boundary effects. 
 
 
3.1 Design of Adaptive Extension Method 
In the following, we will investigate a new 
extension mode which could characterize signal 
better. On the one hand, the signal used in previous 
section is comprised by many harmonic oscillations, 
and on the other hand, it is very common to use 
Fourier series to represent such harmonic 
oscillations. Thus, Fourier series can be consider as 
a new mode to extend signal to preserve the 
harmonic oscillations. 

The Fourier series model is given by 
 

 0
1

y( ) cos( ) cos( )
m

i i i i
i

t a a t b tω ω
=

= + +∑  (14) 

 
where 0a  is a constant term in the signal, both ia , ib  
and iω  are parameters that need to be estimated by 
the fit, m is the number of harmonics in the data. 

In summary, the following are the steps of the 
proposed adaptive algorithm for signal extension: 

1) Initialize the number of harmonics, for 
example, set 3m = . 

2) Main Iteration: Increment m  by 1, and apply 
these steps: 
• Perform data transformations to obtain a linear 

or simple model. 
• Find the above model parameters to minimize 

the summed square of residual defined as the 
difference between the real date value s  and the 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Hang Su, Jingsong Li

E-ISSN: 2224-3488 77 Issue 2, Volume 9, April 2013



fitted response value y , producing result ia , ib  
and iω . 

• Update the fitted response value y  using  ia , ib  
and iω . 

• If  2s y−  is smaller than some predetermined 
threshold, stop. Otherwise, apply iteration. 
3) Extend the producing Fourier series to define 

the data beyond the borders. 
 
 
3.2 Properties of Smooth Extension 
From the perspective of convolution operation, the 
wavelet transform of a signal could be interpreted as 
the output of a system whose unit impulse response 
is the scaled wavelet function 
 

 
1( )a

tt
aa

ψ ψ  =  
 

 (15) 

 
where a is scale. Let’s consider a low-pass(smooth) 
function ( )tθ . Set  
 

 (1) (2) 2 2( ) d ( )/d ,  ( ) d ( )/dt t t t t tψ θ ψ θ= =  (16) 
 
We use (1) ( )tψ  and (2) ( )tψ as the mother 

wavelets. Then computing the first derivative of a 
signal after smoothing is equivalent to processing 
this signal using the first derivative of the smooth 
function (1) ( )tψ . Similarly, computing the second 
derivative of a signal after smoothing is equivalent 
to processing this signal using the second derivative 
of the smooth function (2) ( )tψ . This result can be 
generalized to the higher order. Mathematically, a 
point of a function with zero first derivative 
corresponds to extreme value while zero second 
derivative corresponds to inflection point. Hence, 
the wavelet transform is able to reflect the extreme 
and inflection points of a signal if the wavelet is 
original from a smooth function. 

An improper extension maybe results in extra 
transient component referred to singular points 
which is defined as points with derivative on the 
right and the derivative on the left exist with 
different signs, that is, the points at which its 
derivative is discontinuous or not defined and 
finding the amplitudes of the jumps. In other words, 
singular point represents the extreme and inflection 
points present in the signal. It is easy to obtain that 
the singular points of signal are indicated by the 
amplitudes of its wavelet transform, i.e., zero- 

crossing points or maximum points of the transform. 
In the case of signal extension, an extreme point due 
to extension would lead to zero point or very small 
value in the wavelet transform at the corresponding 
location. More ordinary case is that extension 
introduces a step at the boundary leading to very 
large wavelet transform amplitude. For example, the 
result that wavelet transform of signal ( )s n  using 
function (1) ( )tψ is very large indicates the inflection 
point of ( )s n .  

An unsmooth extension at (0)s or ( )s N  leads to 
wavelet transform modulus maximum at the same 
points which is the reason of distortion.  Hence, we 
should select an extension mode that is as smooth as 
possible at the boundaries to avoid distortion.  
 
 
4 Boundary Effects Reduction via 
Interpolation 
Whichever extension method is employed to reduce 
the boundaries distortion phenomenon, the 
extension parts would definitely affect the analysis 
results which are determined by both original and 
extension signals. If the extension parts do not 
properly reflect the trend of the original signal, it 
will fail to produce satisfactory or perfect results. 
Nevertheless, it is well known that the signals in the 
application of time-frequency analysis are usually 
random and it is difficult to estimate the past and 
future of the signals based on the present data. 
Hence, this problem should be seen from a 
perspective that is broader than devising a 
convenient extension for the signal. Apart from the 
Fourier series extension method, an additional goal 
of this paper is to propose an approach to shorten 
the width of the boundary effect region defined in 
the above section. This approach is based on 
interpolation in the boundary effect region to reduce 
the boundary effects. 

Fig. 2 explains the principle of reduction of 
boundary effects using interpolation method. 
Without interpolation, the convolution is computed 
between wavelet and data with length N , from (0)s   
to ( 1)N −s . 

After interpolation, the convolution is still 
computed between wavelet and data. However, the 
end point of these data has become to ( 2 1)N −s  if 
N is odd. As shown in Fig. 2(b), the length of 
wavelet is the half of that before interpolation and 
becomes shorter compared to the original signal. 
Based on the discussion of Section 4, it is easy to 
show that the boundary effects region which is 
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decided by the length of wavelet also becomes 
shorter in consequence of the interpolation 
procedure. Therefore the boundary effects are 
alleviated by exploiting interpolation. 

In practical applications, we only require to 
employ interpolation in the boundary effects region 
to obtain good results without heavy computational 
burden. Interpolation can be considered as an 
expansion of the extension method towards the 
interior of signal. Compare with extension methods, 
it is easier and more accurate to estimate signal 
value between two points than predict the data from 
the view of probability. 

 
 

4.1 The Range of Interpolation 
Performing interpolation processing at  the 
boundaries could further reduce boundary effects.  
In the implement, we should consider the range of 
interpolation processing, that is, how long of the 

( )s t

t
( )s t

t  
(a) 

( )s t

t

t

( )tψ

 
(b) 

Fig. 2. Convolution between signal and wavelet: (a) before 
interpolation; (b) after interpolation. 
 
signal should be involved in the interpolation 
processing. A range which is too long or too short 
would yield an expensive computation or an 
inaccurate result. We first discuss the range of 

interpolation and then explore how to determine it in 
practice.  

Let us assume signal ( )s t has an singular point at 

0 0t = . It is obvious that the singular point at 

0 0t = will not impact the whole time-scale plane 
but only the neighborhood of 0t . We refer it as cone 
of influence of 0t . The range of interpolation 
depends on the cone of influence. For the sake of 
simplicity, suppose the wavelet that we use has a 
support [ , ]C C . Then the scaled wavelet ( )a tψ has 
support [ , ]t Ca t Ca− + . We define the cone of 
influence as the set of points containing in the 
support [ , ]t Ca t Ca− +  from the whole time-scale 
plane. Thus, the cone of influence of 0t is 

 
 0t t Ca− ≤  (17) 

In the cone of influence, the performance of wavelet 
transform is impacted by the singular point 
introduced by extension. We refer the cone of 
influence as the region of boundary effect where the 
interpolation processing should be performed. It is 
notice that the range of interpolation is proportional 
to the scale factor a . Fig. 3. illustrates the length of 
interpolation required at different scale on the time-
scale plane.  
 
 
4.2  The Implement of Interpolation 
Based on the previous discussion, algorithm for the 
interpolation processing for boundary effect 
reduction can be summarized as follows: 

1) Obtain the wavelet transform of the signal. 
2) We find the scale a corresponding to the 

maximum amplitude of the wavelet transform at 
0 0t = . 

3) The range of interpolation processing is 
determined by the scale a from the above step. Fig. 3 
shows different range of interpolation processing at 
different scale. 

0t

t

a

O

0t t Ca− ≤

0t t Ca− >
0t t Ca− >

 
Fig. 3. The range of interpolation processing at different scale. 
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5 Numerical Examples 
In order to validate the results given in Section 3 
and Section 5, we present the numerical examples of 
the proposed algorithms. The performance of the 
proposed methods has been assessed by means of 
tests on generic synthetic signals. The purpose of 
the test is to establish the measurement accuracy of 
the proposed methods as well as their advantages in 
boundary effects reduction over the basic methods. 
The test consists of two parts which involve the 
proposed extension method and interpolation 
preprocessing. Two signals exhibiting linear and 
nonlinear instantaneous frequency laws are used for 
evaluating the performance of the algorithms.  
 
 
5.1 Performance Assessment of Fourier 
Series Extension 
First consider the linear FM signal was presented in 
Section 2. Some results that illustrate the 
performance of the Fourier series extension in the 
instantaneous frequency estimation are shown in Fig. 4. 
For comparison purposes, the extension algorithm is 
compared with symmetric extension which is 
superior over the other two basic methods. It is 
apparent that the results provided by the Fourier 
series extension method are in better agreement with 
the theoretical values in Fig. 4(a). As we have done 
in the previous section, the error between theoretical 
and estimated wavelet ridge are shown in Fig. 4(b) 
to illustrate the effect of Fourier series extension. It 
can be observed that Fourier series extension has 
less singularity appearing at the boundary than 
symmetric extension. 
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Fig.  4. Comparison of boundary effects for linear FM signal of 
symmetric and Fourier series extension. (a) The right boundary 
of wavelet ridge. (b) Estimation error. The values on the vertical 
axes are normalized to the adopted sample rate. 
 

For the nonlinear case, we consider a logarithmic 
frequency modulated signal with same samples as 
the linear case and its IF is given by 

 

 1
( )

0
0

1
f ( )

t
tff

f
=  (18) 

 
We set 0 0.1f = , 1 0.4f = , 1 3t = . The total 

signal length and sample period used are 
300N = , 0.01T = s. 

The proposed algorithm is successfully applied 
on this nonlinear FM signal.  Fig. 5 illustrates the 
results provided by Fourier series extension and 
symmetric extension applied on the nonlinear FM 
signal. It can be seen that the results are similar to 
the results of linear FM signal. Fig. 5(b) shows that 
the Fourier series extension is indeed efficient to 
reduce boundary effects for complicated signals 
with time-varying IF laws. 
 
 
5.2 Performance Assessment of the 
Interpolation Method 
Several tests have been conducted in order to assess 
the capability of the proposed method interpolation 
preprocessing to further reduce the boundary effects. 
All the basic extension methods and the Fourier 
series extension will be considered in this section. 
The performance of the interpolation preprocessing 
is examined using the same two classes of signals. 
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(b) 
Fig. 5. Comparison of boundary effects for logarithmic FM 
signal of symmetric and Fourier series extension. (a) The right 
boundary of wavelet ridge. (b) Estimation error. The values on 
the vertical axes are normalized to the adopted sample rate. 
 

We plot the comparison results of symmetric 
extension and Fourier extension with and without 
interpolation processing on the linear FM signal and 
logarithmic FM signal in Fig. 6 and Fig. 7 
respectively. It can be clearly observed that the 
interpolation processing is indeed able to further 
reduce the distortion resulted from the boundary 
effects for both signals. 

To show the effect of the interpolation 
preprocessing, compression test results of the linear 
FM signal for different extension methods with and 
without interpolation processing are provided in 
Table 1. All of the values are calculated from true 
normalized frequency and estimating normalized 
frequency. In order to display the performance of 
boundary effects reduction, we only calculate the 

data from the boundary part. The number of data 
participating to the calculation is 50 points. 
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Fig. 6. Estimation error of wavelet ridge of linear FM signal 
with and without interpolation processing for (a) symmetric 
extension and (b) Fourier series extension. 
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Fig. 7. Estimation error of wavelet ridge of logarithmic FM 
signal with and without interpolation processing for (a) 
symmetric extension and (b) Fourier series extension. 
 

It can be concluded that the Fourier series 
extension with the interpolation processing provides 
the best performance among the four methods 
mentioned in this study. Furthermore, the 
interpolation processing is able to produce a better 
accuracy of the time-frequency characteristics 
estimate no matter which extension method is 
applied. 
 
Table 1. Performance comparison of extension methods 

with and without interpolation preprocessing. 
 

Method Bias Variance MSE1 

Zero 8.60×10-3 1.28×10-5 8.68×10-5 
Zero 
(interpolation) 3.14×10-3 9.05×10-6 2.07×10-5 

Periodic 8.68×10-3 1.21×10-5 8.76×10-5 
Periodic 
(interpolation) 3.53×10-3 7.94×10-6 2.04×10-5 

Symmetric 3.77×10-3 4.17×10-6 1.84×10-5 
Symmetric 
(interpolation) 1.41×10-3 1.05×10-6 3.04×10-6 

Fourier 9.24×10-4 4.87×10-7 1.34×10-6 
Fourier 
(interpolation) 3.37×10-4 5.61×10-8 1.69×10-7 

 
 

1 MSE is the mean square error. 

6 Conclusion 
In this paper, we have investigated the problem of 
dealing with the boundary effects that would arise in 
the application of time-frequency analysis. Basic 
methods including zero padding, periodic extension 
and symmetric extension were shown to provide 
unsatisfied performance to reduce the boundary 
effects. We derived a generalized expression for 
various extension methods. The relationship 
between smooth and the boundaries effect has been 
stressed. A smooth extension scheme using Fourier 
series to avoid distortion appearing at the 
boundaries was proposed. This extension technique 
possesses the property of preserving the harmonic 
oscillations of the time-vary signal that makes it 
more suitable than the other methods for the time-
frequency analysis application. A new algorithm 
based on interpolation technique was proposed from 
new perspectives to further reduce the boundary 
effects. It has been shown that the range of 
interpolation is determined by the scale factor 
maximized the amplitude of the wavelet transform 
at the boundaries. Some details on the procedures 
for implement of the proposed technique have been 
presented. By comparing the results of the analysis, 
it has been shown that the adaptive smooth 
extension with the interpolation processing provided 
the best performance in the study. Although we 
have restricted the analysis to the wavelet transform, 
the proposed methods can be applied on any time-
frequency distributions that involve convolution 
operation. 
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