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Abstract: - This paper presents a study on the application of Linear Parameter Varying Model Predictive 
Control (LPV-MPC) to the control of an Autonomous Underwater Vehicle (AUV). The study focuses on the 
development of an LPV-MPC-based control system that enables the AUV to follow given angular rate 
commands. The proposed control algorithm uses the mathematical model of the AUV. The paper also explains 
how to implement the proposed control algorithm and presents its results in a simulation environment. 
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1  Introduction 
Autonomous Underwater Vehicles (AUVs) have 
been used frequently in search and rescue, 
exploration, civil and military areas in recent years. 
These vehicles require highly good guidance, 
navigation, and control algorithms because they 
must do all duties successfully without human aid, 
[1]. 

To adapt autonomous underwater vehicles to 
complex and changing underwater conditions, it is 
necessary to develop reliable control algorithms. In 
recent years, Model Predictive Control (MPC) and 
other optimum control methods have been used in 
the control of AUVs, [2]. 

Using system dynamics, MPC has been used to 
provide navigation and hovering for autonomous 
underwater vehicles, [3]. A study [4] evaluated a 
group of MPC methods and found that they 
effectively meet the real-time control requirements 
of AUV dynamics. In [5], a double closed-loop 
control method was presented that divides the 
process into two stages. This method involves the 
outer-loop controller sending a desired speed 
command to the inner-loop speed controller. The 
inner-loop controller then determines the necessary 
control inputs to accurately track the trajectory in 
the closed-loop system. 

An effective way to solve this problem is 
nonlinear predictive control (NMPC) methods such 
as Linear Parameter-Varying Model Predictive 
Control (LPV-MPC). In [6], a control framework 
based on LPV-MPC for docking maneuvering of an 

autonomous underwater vehicle was presented. The 
LPV-MPC technique has been used in a variety of 
technical domains, such as automotive and aviation 
systems. In [7], drone dynamics are modeled using 
the LPV format. 

This modeling approach enables the application 
of basic MPC methods that are suitable for linear 
systems. In [8], LPV theory is used to model vehicle 
dynamics, and an LPV-MPC model is implemented 
which can be calculated online with lower 
computational cost. An offline optimal trajectory 
planner is also utilized to solve the optimal time 
problem, determining the best route within the 
constraints of the environment. In [9], a new 
controller is introduced for nonlinear missile 
autopilots based on model predictive control with 
constraints. The nonlinear model is reformulated 
into a state-dependent linear structure, serving as the 
internal model for prediction, and the constrained 
solution is determined by solving a quadratic 
programming problem online at each sampling 
instance. Furthermore, different controllers in [10], 
[11], [12] were developed for AUVs.  

The work [13] on robust adaptive MPC for 
systems with state-dependent disturbances is highly 
relevant, as it provides a framework for dealing with 
the uncertainties and disturbances AUVs face in 
underwater environments, ensuring constraint 
fulfillment and system stability. Simplifying 
complex AUV dynamics is also essential, the study 
[14] proposes a predictive control method that 
approximates higher-order systems with time-delay 
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models, helping to manage the computational 
complexity of real-time AUV control.  

Compared to traditional MPC methods, LPV-
MPC has several advantages. It takes into account 
how AUVs behave differently under different 
circumstances, such as speed changes or 
environmental disturbances. Since AUV has 
significant nonlinearities, this study proposes a 
linear parameter-varying model predictive control to 
regulate it. By adding a linear parameter-varying 
model, LPV-MPC extends the capabilities of 
conventional MPC. 

 
 

2   Nonlinear AUV Model 
The REMUS autonomous underwater vehicle [15] is 
used as the research platform for this study. Figure 1 
illustrates the Earth-fixed and body-fixed coordinate 
systems utilized for the REMUS AUV. Here, ϕ, θ, 
and ψ represent the roll, pitch, and yaw angles, 
respectively, and are defined as Euler angles. 
Additionally, (p, q, r) refer to the body angular rate 
vector, while the linear velocity of the AUV is 
denoted by (u, v, w). As shown in Figure 1, the 
forces and moments acting on the AUV are 
represented by the vector [𝑋, 𝑌, 𝑍, 𝐾,𝑀,𝑁]T. Using 
these definitions, the following vectors can be 
established to represent the equations of motion. 
 

𝒏1 = [
𝑥
𝑦
𝑧
] , 𝒏2 = [

𝜙
𝜃
𝜓

] , 𝒗1 = [
𝑢
𝑣
𝑤

] , 𝒗2 = [
𝑝
𝑞
𝑟
]         (1) 

 
where, 𝜼1 is the position vector consisting of North, 
East, and Down components. 𝜼2 is roll, pitch, and 
yaw angle vector, 𝒗1 and 𝒗2 are linear and angular 
velocities respectively. 

 

 
Fig. 1: Earth-fixed and body-fixed frames 
 
 

2.1  AUV Kinematics 
The transformation of translational velocities 
between body-fixed and Earth-fixed coordinate 
frames are given as follows: 

[
�̇�
�̇�
�̇�
] = 𝑱1(𝜼2) [

𝑢
𝑣
𝑤

]                                                         (2) 

where  
 

𝑱1(𝜼2) = [

𝑐𝜓𝑐𝜃 −𝑠𝜓𝑐𝜙 + 𝑐𝜓𝑠𝜃𝑠𝜙 𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑠𝜃𝑐𝜙
𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝜙 + 𝑠𝜓𝑠𝜃𝑠𝜙 −𝑐𝜓𝑠𝜙 + 𝑠𝜓𝑠𝜃𝑐𝜙
−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙

]                

(3) 
 
where 𝑐 and 𝑠 correspond cosine and sine 
respectively. Furthermore, the rotational velocities 
between the body-fixed and Earth-fixed coordinate 
frames can be expressed as follows: 
 

[

�̇�

�̇�
�̇�

] = 𝑱2(𝜼2) [
𝑝
𝑞
𝑟
]                                                        (4) 

 
where  
 

𝑱2(𝜼2) = [

1 sin𝜙tan𝜃 cos𝜙tan𝜃
0 cos𝜙 −sin𝜙

0
sin𝜙

cos𝜃

cos𝜙

cos𝜃

]                    (5) 

 
2.2 AUV Rigid Body Dynamics 
The equations of motion of the AUV model were 
taken from, [1]. The position vector of the center of 
gravity and buoyancy defined as follows: 
 

𝒓𝐺 = [

𝑥𝑔

𝑦𝑔

𝑧𝑔

] , 𝒓𝐵 = [

𝑥𝑏

𝑦𝑏

𝑧𝑏

]                                                   (6) 

 
Hence equations of motion can be written as 
follows, [16]:  
 
𝑀�̇� = 𝑓(𝜼, 𝒗) + 𝑔(𝒗)𝑼

�̇� = 𝐽(𝜼)𝒗
                                                (7) 

 
where  
 

𝑀 =

[
 
 
 
 
 
 
 
𝑚 − 𝑋�̇� 0 0 0 𝑚𝑧𝑔 −𝑚𝑦𝑔

0 (𝑚 − 𝑌�̇�) 0 −𝑚𝑧𝑔 0 (𝑚𝑥𝑔 − 𝑌�̇�)

0 0 (𝑚 − 𝑍�̇�) 𝑚𝑦𝑔 −(𝑚 + 𝑍�̇�) 0

0 −𝑚𝑧𝑔 𝑚𝑦𝑔 (𝐼𝑥 − 𝐾�̇�) −𝐼𝑥𝑦 −𝐼𝑥𝑧

𝑚𝑧𝑔 0 −(𝑚𝑥𝑔 + 𝑍�̇�) −𝐼𝑥𝑦 (𝐼𝑦 − 𝑀�̇�) −𝐼𝑦𝑧

−𝑚𝑦𝑔 (𝑚𝑥𝑔 − 𝑌�̇�) 0 −𝐼𝑥𝑦 −𝐼𝑦𝑧 (𝐼𝑧 − 𝑁�̇�) ]
 
 
 
 
 
 
 

   (8)

        
𝑓1(𝜂, 𝑣) = −𝑚(𝑤𝑞 − 𝑣𝑟 − 𝑥𝑔(𝑟2 + 𝑞2) + 𝑦𝑔𝑞𝑝 + 𝑧𝑔𝑟𝑝) + 𝑋𝐻𝑆

+ 𝑋𝑢|𝑢|𝑢|𝑢| + 𝑍𝑤𝑤𝑞 + 𝑍𝑞𝑞
2 − 𝑌�̇�𝑣𝑟 − 𝑌𝑟𝑟

2 
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𝑓2(𝜂, 𝑣) = −𝑚(𝑢𝑟 − 𝑝𝑤 + 𝑥𝑔𝑝𝑞 − 𝑦𝑔(𝑟2 + 𝑝2) + 𝑧𝑔𝑟𝑞) + 𝑌𝐻𝑆

+ 𝑌𝑣|𝑝|𝑣|𝑣| + 𝑌𝑟|𝑟|𝑟|𝑟| − 𝑍𝑤𝑤𝑝 − 𝑍𝑞𝑞𝑝 + 𝑌𝑢𝑟𝑢𝑟

+ 𝑌𝑢𝑣𝑢𝑣 
𝑓3(𝜂, 𝑣) = −𝑚 (𝑣𝑝 − 𝑞𝑢 + 𝑥𝑔𝑟𝑝 + 𝑦𝑔𝑟𝑞 − 𝑧𝑔(𝑞2 + 𝑝2)) + 𝑍𝐻𝑆

+ 𝑍𝑤|𝑤|𝑤|𝑤| + 𝑍𝑞|𝑞|𝑞|𝑞| + 𝑌�̇�𝑣𝑝 + 𝑌�̇�𝑟𝑝

+ 𝑍𝑢𝑞𝑢𝑞 + 𝑍𝑢𝑤𝑢𝑤 
𝑓4(𝜂, 𝑣) = −𝐼𝑥𝑦𝑝𝑟 + 𝐼𝑥𝑧𝑝𝑞 − 𝐼𝑦𝑧(𝑟

2 − 𝑞2) − (𝐼𝑧 − 𝐼𝑦)𝑟𝑞 −

                 𝑚 (𝑦𝑔(𝑣𝑝 − 𝑢𝑞) − 𝑧𝑔(𝑢𝑟 − 𝑤𝑝)) + 𝐾𝐻𝑆 + 𝐾𝑝|𝑝|𝑝|𝑝| +

                         (𝑍𝑤 − 𝑌𝑣)𝑤𝑣 + (𝑍𝑞 + 𝑌𝑟)𝑣𝑞 − (𝑌𝑟 + 𝑍𝑞)𝑟𝑤 +

(𝑁𝑟 − 𝑀𝑞)𝑟𝑞                                                                                                    
(9) 

𝑓5(𝜂, 𝑣) = 𝐼𝑥𝑦𝑞𝑟 − 𝐼𝑦𝑧𝑝𝑞 + 𝐼𝑥𝑧(𝑟
2 − 𝑝2) − (𝐼𝑥 − 𝐼𝑧)𝑝𝑟

− 𝑚(𝑧𝑔(𝑤𝑞 − 𝑣𝑟) − 𝑥𝑔(𝑣𝑝 − 𝑢𝑞)) + 𝑀𝐻𝑆

+ 𝑀𝑤|𝑤|𝑤|𝑤| + 𝑀𝑞|𝑞|𝑞|𝑞| + 𝑀𝑢𝑞𝑢𝑞 − 𝑌�̇�𝑣𝑝

+ 𝑀𝑢𝑤𝑢𝑤 + (𝐾�̇� − 𝑁�̇�)𝑟𝑝 
𝑓6(𝜂, 𝑣) = 𝐼𝑥𝑧𝑞𝑟 + 𝐼𝑦𝑧𝑟𝑝 + 𝐼𝑥𝑦(𝑝

2 + 𝑞2) + (𝐼𝑥 − 𝐼𝑦)𝑝𝑞

− 𝑚(𝑥𝑔(𝑢𝑟 − 𝑤𝑝) − 𝑦𝑔(𝑤𝑞 − 𝑣𝑟)) + 𝑁𝐻𝑆

+ 𝑁𝑣|𝑝|𝑣|𝑣| + 𝑁𝑟|𝑟|𝑟|𝑟| + 𝑁𝑢𝑣𝑢𝑣 + 𝑌�̇�𝑢𝑟 + 𝑍�̇�𝑤𝑝

+ (𝑀�̇� − 𝐾�̇�)𝑝𝑞 
 
 

𝑔(𝑣) =

[
 
 
 
 
 
 

0 0 1
𝑌𝑢𝑢𝛿𝑟

𝑢2 0 0

0 𝑍𝑢𝑢𝛿𝑠
𝑢2 0

0 0 −𝑅
0 𝑀𝑢𝑢𝛿𝑠

𝑢2 0

𝑁𝑢𝑢𝛿𝑟
𝑢2 0 0 ]

 
 
 
 
 
 

                (10)  

𝑈 = [

𝛿𝑟

𝛿𝑠

𝑋𝑝𝑟𝑜𝑝

] 

 
where, m is mass and 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 are moment of 
inertia values and 𝐼𝑥𝑦, 𝐼𝑥𝑧, 𝐼𝑦𝑧 are products of inertia.      
The terms on the right-hand side of the equations 
represent external forces, including hydrodynamic 
forces and moments, as well as gravitational and 
buoyancy forces and moments. These forces are 
dependent on the AUV's states. 𝛿𝑟 , 𝛿𝑠 and 𝑋𝑝𝑟𝑜𝑝 are 
rudder, stern deflections and propeller thrust force 
which are control input of AUV. Also, 𝐽 is 
augmented transformation matrix and 𝜼, 𝒗 are 
augmented state vectors and can be written as 
follows: 
 

𝐽(𝜼) = [
𝐽1(𝜼2) 03×3

03×3 𝐽2(𝜼2)
]

𝒗 = [𝒗1 𝒗2]𝑇

𝜼 = [𝜼1 𝜼2]𝑇

                                        (11)  

 
All coefficients that include the subscript of the 

state variables (𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟), such as 𝑋𝑢|𝑢|,𝑀𝑢𝑞, 
represent the hydrodynamic force and moment 
coefficients. The values of hydrodynamic forces and 
moment were taken from, [16].  
 
 

3  Problem Formulation 
 

3.1 State-Space Representation 
In LPV-MPC, the control problem is defined as an 
optimization problem where cost is based on error 
between reference and actual states, subject to 
system dynamics and control action. The derive 
formulation, first of all, Eqs. (7-10) must be 
converted into a general linear form as follows: 
 
�̇� = 𝐴𝒙 + 𝐵𝒖                                                     (12)  

𝒚 = 𝐶𝒙 

 
It is quite difficult to convert nonlinear model in 

linear form defined above and it must be done 
cleverly and carefully. In order to convert the 
nonlinear model into a linear model, the following 
manipulation was proceeded.  
 

𝐴 = [
[𝑀−1𝐴1]6x6 06x3

[03x3 𝐽2(𝜂𝟐)]3x6 03x3
]
9x9

                     (13)  

 
 𝐵 = 𝑀−1𝐵1                                                            (14)  

 
where  
 

𝐴1 = [
𝐴11 𝐴12

𝐴21 𝐴22
]                                                   (15)  

 

𝐴11 = 

[
 
 
 
 
 

𝑋𝐻𝑆

𝑢
+ 𝑋𝑢𝑢|𝑢| (−𝑌�̇� + 𝑚)𝑟 (𝑍�̇� − 𝑚)𝑞

(𝑌𝑢𝑟 − 𝑚)𝑟 + 𝑌𝑢𝑣𝑣 +
𝑌𝐻𝑆

𝑢
𝑌𝑣𝑣|𝑣| (−𝑍�̇� + 𝑚)𝑝

𝐾𝐻𝑆

𝑢
+ 𝑚𝑧𝑔𝑟 + 𝑚𝑦𝑔𝑞 (𝑌�̇� − 𝑚)𝑝 𝑍𝑤𝑤|𝑤| ]

 
 
 
 
 

 

 

𝐴12 = [

−(𝑚𝑦𝑔𝑞 + 𝑚𝑧𝑞𝑟) (𝑍�̇� + 𝑚𝑥𝑔)𝑞 (−𝑌�̇� + 𝑚𝑥𝑔)𝑟

𝑚𝑦𝑔𝑝 (−𝑍�̇� − 𝑚𝑥𝑔)𝑝 − 𝑚𝑧𝑔𝑟 𝑌𝑟𝑟|𝑟| + 𝑚𝑦𝑔𝑟

𝑚𝑧𝑔𝑝 𝑍𝑞𝑞|𝑞| + 𝑚𝑧𝑞𝑞 −𝑚𝑦𝑔𝑞 + (𝑌�̇� − 𝑚𝑥𝑔)𝑝

] 

 

𝐴21 = 

[
 
 
 
 
 

𝐾𝐻𝑆

𝑢
+ 𝑚𝑧𝑔𝑟 + 𝑚𝑦𝑔𝑞 (𝑍�̇� + 𝑌�̇�) − 𝑚𝑦𝑔𝑝 (𝑍�̇� − 𝑌�̇�)𝑣 − 𝑚𝑧𝑔𝑝

𝑀𝐻𝑆

𝑢
+ (𝑀𝑢𝑞 − 𝑚𝑥𝑔)𝑞 + 𝑀𝑢𝑤𝑤 (−𝑌�̇� + 𝑚𝑥𝑔)𝑝 + 𝑚𝑧𝑔𝑟 𝑀𝑤𝑤|𝑤| − 𝑚𝑧𝑔𝑞

𝑁𝐻𝑆

𝑢
+ (𝑁𝑢𝑟 − 𝑚𝑥𝑔)𝑟 + 𝑁𝑢𝑣𝑣 𝑁𝑣𝑣|𝑣| − 𝑚𝑦𝑔𝑟 (𝑍�̇� + 𝑚𝑥𝑔)𝑝 + 𝑚𝑦𝑔𝑞]

 
 
 
 
 

 

 

 
𝐴22 = [

𝐾𝑝𝑝|𝑝| (𝑁�̇� − 𝑀�̇�)𝑟 −(𝑍�̇� + 𝑌�̇�)𝑤 + (𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑞

(𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑟 𝑀𝑞𝑞|𝑞| (𝐾�̇� − 𝑁�̇�)𝑝

(𝑀�̇� − 𝐾�̇�)𝑞 (𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑝 𝑁𝑟𝑟|𝑟|

] 

 
 

                          𝐵1 =

[
 
 
 
 
 
 

0 0 1
0 𝑌𝑢𝑢𝛿𝑟𝑢

2 0

𝑍𝑢𝑢𝛿𝑠
𝑢2 0 0

0 0 −𝑅
𝑀𝑢𝑢𝛿𝑠

𝑢2 0 0

0 𝑁𝑢𝑢𝛿𝑟𝑢
2 0 ]

 
 
 
 
 
 

  

 
Also state vector x, and control input vector u is 
defined as follows: 
 
𝒙 = [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 𝜙 𝜃 𝜓]𝑇                                   (16)  

 𝒖 = [𝛿𝑠 𝛿𝑟  𝑋𝑝𝑟𝑜𝑝] 
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Since LPV-MPC uses a discretized model, these 
equations can be discretized by using the forward-
Euler approximation: 
 
𝒙𝑘+1 = 𝐴𝑑𝑘

𝒙𝑘 + 𝐵𝑑𝑘
𝒖𝑘                                      (17)  

 𝒚𝑘 = 𝐶𝑑𝑘
𝒙𝑘 

 
where 
  
𝐴𝑑𝑘

= 𝐼9x9 + 𝐴. 𝑇𝑠, 𝐵𝑑𝑘
= 𝐵. 𝑇𝑠  𝐶𝑑𝑘

= 𝐶   (18)  

 
Here, 𝑇𝑠 is the sample time of the controller, and 

C determined based on the states that are desired to 
be controlled. As observed, the components of 
matrix A vary with the states of the AUV, which 
change over time. This is why it is referred to as 
linear parameter-varying. It should also be noted 
that some components are divided by the forward 
body velocity, u. While one could choose a different 
variable for these terms, such as v, the same 
differential equations outlined in equations 7 to 10 
must still hold. The primary reason for using u in 
the state-space formulation is that the forward 
velocity cannot be zero or close to zero, except at 
the start when the AUV has no velocity. In contrast, 
other state variables can reach zero, which would 
cause problems during optimization and introduce 
infinity terms in matrix A. Although zero forward 
velocity at the start can also pose an issue, this can 
be managed by either applying a simple PID 
controller or waiting a brief period for the forward 
velocity to increase before activating the LPV-MPC 
controller. 
 
3.2 LPV-MPC Formulation 
The general form of cost function defined for LPV-
MPC is defined as sum of stage costs over a finite 
horizon period as follows: 
 

𝐽 =
1

2
𝒆𝑘+𝑁

𝑇 𝑆𝒆𝑘+𝑁 + 
1

2
 ∑ [𝒆𝑘+𝑖

𝑇 𝑄𝒆𝑘+𝑖 +𝑁−1
𝑖=0

                                 𝒖𝑘+𝑖
𝑇 𝑅𝒖𝑘+𝑖]                             (19) 

 
Here, N represents the prediction horizon, 

indicating how many future time steps the states will 
be forecasted. S,Q, and R are positive-definite 
weighting matrices corresponding to the terminal 
cost, running cost, and input cost, respectively. 
Additionally, e denotes the error between the 
desired and current states, as defined below:  
𝒆𝑘 = 𝒓𝑘  − 𝐶𝒙𝑘                                                          (20) 
 

Here 𝒓𝑘 is desired or reference states and time 
step k. This cost function does not ensure that the 

error will reach zero, as it depends not only on the 
error but also on the control inputs. As a result, even 
at steady-state, the cost function may be minimized 
while the error remains non-zero. To address this 
issue, a change of control input can be used in cost 
and the state vector can be augmented. 
Consequently, the minimization problem can be 
described below. 
 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒      

1

2
𝒆𝑘+𝑁

𝑇 𝑆𝒆𝑘+𝑁 +

              
1

2
 ∑ [𝒆𝑘+𝑖

𝑇 𝑄𝒆𝑘+𝑖 + Δ𝒖𝑘+𝑖
𝑇 𝑅Δ𝒖𝑘+𝑖]

𝑁−1
𝑖=0     (21) 

  
 s.t 

 �̃�𝑘+1 =  �̃�𝑘�̃�𝑘 +  �̃�𝑘𝛥𝒖𝑘 

𝛥𝒖𝑘𝑚𝑖𝑛 
≤ 𝛥𝒖𝑘 ≤ 𝛥𝒖𝑘𝑚𝑎𝑥  

where   
 

�̃�𝑘 =  [
𝐴𝑑𝑘

𝐵𝑑𝑘

0 𝐼
]  , �̃�𝑘 =  [

𝐵𝑑𝑘

𝐼
] 

�̃� = [𝐶𝑑𝑘
         0]                                                        (22)  

 

�̃�𝑘 = [𝒙𝑘    𝒖𝑘−1]
𝑻
 

𝒆𝑘 = 𝒓𝑘 − �̃��̃�𝑘 
 
 
4   Problem Solution  
With the problem defined, the minimization 
problem can be solved analytically in the 
unconstrained case, while the constrained case can 
be formulated into its final form, suitable for solving 
using quadratic programming methods. The primary 
objective is to determine the change in control 
inputs over the entire finite time horizon that 
minimizes the cost function outlined in Eq. (21). 
Mathematically, we need to find following vector: 
 
[𝛥𝒖𝑘      𝛥𝒖𝑘+1     𝛥𝒖𝑘+2  .  .  . 𝛥𝒖𝑘+𝑁−1  ]

𝑻        (23)  
 

At time step k, the change in control inputs is 
determined to minimize the cost over the N step 
horizon. However, instead of applying this result 
across the entire horizon and recalculating after N 
steps, the process is repeated at each time step. Only 
the first control input adjustment is applied to the 
system, and the minimization is performed again at 
the next time step. In summary, this approach can be 
described as follows: 

𝒖𝑘 = [1 0 0…0] 

[
 
 
 
 

Δ𝒖𝑘

Δ𝒖𝑘+1

Δ𝒖𝑘+2

⋮
𝛥𝒖𝑘+𝑁−1]

 
 
 
 

+ 𝒖𝒌−𝟏                   (24) 
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In order to solve this optimization problem, the 

error define in Eq. (22) can be written in the cost 
function and cost can be expanded as follows: 
 

𝐽 =  
1

2
(
𝒓𝑘+𝑁

𝑇 𝑆 𝒓𝑘+𝑁 − 𝟐𝒓𝑘+𝑁
𝑇 𝑆�̃��̃�𝑘+𝑁 

+�̃�𝑘+𝑁
𝑻 �̃�𝑻𝑆�̃��̃�𝑘+𝑁

) +

 
1

2
 ∑ [

𝒓𝑘+𝑖
𝑇 𝑄 𝒓𝑘+𝑖 − 𝟐𝒓𝑘+𝑖

𝑇 𝑄�̃��̃�𝑘+𝑖  +

 �̃�𝑘+𝑖
𝑻 �̃�𝑻𝑄�̃��̃�𝑘+𝑖 + Δ𝒖𝑘+𝑖

𝑇 𝑅Δ𝒖𝑘+𝑖

]

𝑁−1

𝑖=0

       (25)

 

 
Since constant terms do no effect the 

minimization problem, these terms can be 
eliminated and adjusted cost function can be 
rewritten as follows in matrix form: 
 

𝐽′ =
1

2
𝑿𝑮

𝑻�̅�𝑿𝑮 − Г𝑮
𝑻�̅�𝑿𝑮 +

1

2
𝛥𝑼𝑮

𝑻�̅�𝛥𝑼𝑮        (26)  

 
where  
 

�̅� = [

�̃�𝑻𝑄�̃� 0 0 0

0 �̃�𝑻𝑄�̃� 0 0
0 0 ⋱ 0
0 0 0 �̃�𝑻𝑆�̃�

] 

�̅� =  [

𝑄�̃� 0 0 0

0 𝑄�̃� 0 0
0 0 ⋱ 0
0 0 0 𝑆�̃�

] 

�̅� =  [

𝑄�̃� 0 0 0

0 𝑄�̃� 0 0
0 0 ⋱ 0
0 0 0 𝑆�̃�

] 

 
Additionally, 𝑿𝑮, 𝚪𝑮, and Δ𝑼𝑮 are defined as 

the global state vector, global reference vector, and 
global control change vector, respectively, with the 
following expressions: 
 

𝑿𝑮 = [

�̃�𝒌+𝟏

�̃�𝒌+𝟐

⋮
�̃�𝒌+𝑵

],   Г𝑮 = [

𝒓𝒌+𝟏

𝒓𝒌+𝟐

⋮
𝒓𝒌+𝑵

] , 𝛥𝑼𝑮 = [

𝛥𝒖𝒌

𝛥𝒖𝒌+𝟏

⋮
𝛥𝒖𝒌+𝑵−𝟏

] 

 
To find the global control change vector Δ𝑼𝑮 

that minimizes the cost function in equation 26, we 
need to eliminate 𝑿𝑮. This can be done by using the 
system's discrete model provided in equation 21. In 
essence, since the future states of the system cannot 
be known with certainty, they are predicted using a 
mathematical model. This is the fundamental 
concept of model predictive control. The more 
accurate the model, the better the state predictions 
will be, resulting in more reliable control inputs and 

greater efficiency. It should also be noted that a 
traditional model predictive control approach could 
be used, where matrices A and B are constants 
obtained by linearizing the nonlinear model around 
a trim point. However, because the AUV's dynamics 
are highly nonlinear, the system's behavior might 
significantly deviate from the linearized model, 
leading the MPC to generate control inputs that are 
ineffective in controlling the system. That’s why the 
LPV-MPC structure where A and B are updated to 
predict future states is used.  
 
All in all, 𝑿𝑮 can be predicted through the  N 
horizon period as follows: 

�̃�𝑘+1 = �̃�𝑘�̃�𝑘 + �̃�𝑘𝛥𝒖𝑘 

�̃�𝑘+2 = �̃�𝑘+1�̃�𝒌+𝟏 + �̃�𝑘+1𝛥𝒖𝑘+1 =

�̃�𝑘+1�̃�𝑘�̃�𝑘 + �̃�𝑘+1�̃�𝑘𝛥𝒖𝑘 + �̃�𝑘+1𝛥𝒖𝑘+1         (27)
 

⋮ 
�̃�𝑘+𝑁

= �̃�𝑘+𝑁−1�̃�𝑘+𝑁−2 … �̃�𝑘+1�̃�𝑘�̃�𝒌

+ �̃�𝑘+𝑁−1�̃�𝑘+𝑁−2 … �̃�𝑘+1�̃�𝑘𝛥𝒖𝑘

+ �̃�𝑘+𝑁−1�̃�𝑘+𝑁−2 … �̃�𝑘+2�̃�𝑘+1𝛥𝒖𝑘+1  + …
+ �̃�𝑘+𝑁−1𝛥𝒖𝑘+𝑁−1 

 
In matrix form: 
 

𝑿𝑮 = �̂��̃�𝑘 + �̂�𝛥𝑼𝑮                                           (28)  
 
where 
 

�̂� =  

[
 
 
 
 
 

�̃�𝑘

�̃�𝑘�̃�𝑘+1

�̃�𝑘�̃�𝑘+1�̃�𝑘+2

⋮
�̃�𝑘+𝑁−1�̃�𝑘+𝑁−2 … �̃�𝑘+1�̃�𝑘]

 
 
 
 
 

 

�̂�

=  

[
 
 
 
 

�̃�𝑘 0 0 0 0

�̃�𝑘+1�̃�𝑘 �̃�𝑘+1 0 0 0
⋮ ⋮ ⋱ 0 0
⋮ ⋮ ⋮ ⋱ 0

�̃�𝑘+𝑁−1�̃�𝑘+𝑁−2 … �̃�𝑘+1�̃�𝑘 �̃�𝑘+𝑁−1�̃�𝑘+𝑁−2 … �̃�𝑘+2�̃�𝑘+1 ⋯ ⋯ �̃�𝑘+𝑁−1]
 
 
 
 

 

 

It must be emphasized that in order to predict �̃� 
and �̃�, control input change that found one step 
previous can be used, and initially, Δ𝑼𝑮𝟎

 will be 
assumed zero.   

Finally, equation 28 can be used in cost function 
and following expression can be obtained.  

𝐽′ =
1

2
(�̂��̃�𝑘 + �̂�𝛥𝑼𝑮)

𝑇
�̅�(�̂��̃�𝑘 + �̂�𝛥𝑼𝑮) −

Г𝐺
𝑇�̅�(�̂��̃�𝑘 + �̂�𝛥𝑼𝑮) +

1

2
𝛥𝑼𝑮

𝑇�̅�𝛥𝑼𝑮                  (29)

 

 
By eliminating constant terms, final cost can be 
expressed as follows: 
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𝐽′′ =
1

2
𝛥𝑼𝑮

𝑇�̿�𝛥𝑼𝑮 + [�̃�𝑘
𝑇 Г𝐺

𝑇 ]�̿�𝑇𝛥𝑼𝑮            (30)  

 
where 

�̿� = (�̂�𝑇�̅��̂� + �̅�),          �̿�𝑇 = [�̂�
𝑇�̅��̂�

−�̅��̂�
] 

 
This optimization problem can be solved 

analytically if there are no any constraints for 𝛥𝑼𝑮 

as follows: 
𝜕𝐽′′

𝜕𝜟𝑼𝑮
= �̿�𝛥𝑼𝑮 + �̿� [

�̃�𝑘

Г𝐺
] = 0 

→  𝛥𝑼𝑮 = −�̿�−1�̿� [
�̃�𝑘

Г𝐺
]                                         (31)  

 
If there are constraints for 𝛥𝑼𝑮 and states, the 
optimization problem can be written as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝐽′′ =
1

2
𝛥𝑼𝐺

𝑇�̿�𝛥𝑼𝐺 + [�̃�𝑘
𝑇 Г𝐺

𝑇 ]�̿�𝑇𝛥𝑼𝐺 
 
s.t.  

 
𝐺𝛥𝑼𝐺 ≤ 𝒉                                                                  (32)  
 

The G matrix and h vector represent constraints 
on both the control inputs and states, linking the 
control inputs to the system dynamics. To solve this 
quadratic optimization problem, one can use 
MATLAB's quadprog() function or the solve_qp() 
function from Python's qpsolvers library. Once 𝛥𝑼𝐺 
is determined, the first term 𝛥𝒖𝑘 will be used to 
compute the control input applied to the plant. The 
process will be repeated at each time step. 
 
 
5   Simulation Results 
In order to show the effectiveness of the controller, 
simulations are conducted. Table 1 shows all values 
of all constants used.  
 

Table 1. Parameters for LPV-MPC 
Parameter Value Unit Description 

𝑇𝑠 0.01 s  Time step 

𝐻𝑧 10 - Horizon 
period 

𝑄 [
0.1 0 0
0 2 0
0 0 0.2

] - 
Running 

cost weight 
matrix 

𝑆 [
5 0 0
0 10 0
0 0 1

] - 
Terminal 

cost weight 
matrix 

𝑅 [
0.1 0 0
0 0.1 0
0 0 0.1

] - 

Control 
input 

change cost 
weight 
matrix 

Also, change of control inputs are limited as 
follows: 
 

|𝛥𝑢𝑠 | ≤ 1.6𝑜 , |𝛥𝑢𝑟 | ≤ 1.6𝑜, | 𝛥𝑢𝑇 | ≤ 0.48  𝑁 
 

For inner dynamics, u (forward velocity), q 

(pitch rate) and r (yaw rate) are controlled, 
therefore following �̃� matrix is used.   
 

�̃� =  [
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

] (33)  

 
Figure 2, Figure 3 and Figure 4 show the simulation 
results for LPV-MPC and classical PID controller.  
 

 
Fig. 2: LPV-MPC versus PID for forward velocity 
 

 
Fig. 3: LPV-MPC versus PID for pitch rate 
 

 
Fig. 4: LPV-MPC versus PID for yaw rate 

Furthermore, tracking errors for both controllers 
are presented in Figure 5. In addition, the control 
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action over time is demonstrated in Figure 6. The 
simulation results demonstrate that LPV-MPC 
surpasses PID control in both the accuracy of state 
tracking and the efficiency of the control actions 
employed. Linear Parameter-Varying Model 
Predictive Control provides several advantages over 
conventional control methods. It eliminates the need 
for trim, linearization, and linear control analysis 
methods, thereby simplifying the control design 
process.  

 
Fig. 5: Controller errors 

 
Fig. 6: Control actions 

 

6   Conclusions 
The objective of this study is to provide a predictive 
control method for autonomous underwater vehicles 
using a linear parameter-varying model. A 
comparison with traditional PID control methods is 
performed. The LPV-MPC architecture was 
specifically designed to address the challenges 
associated with the highly nonlinear dynamics of 
AUVs. It eliminates the need for gain scheduling 
and model linearization, allowing real-time 
adaptation to changing operating conditions. 

According to the simulation results, LPV-MPC 
performs significantly better than PID control. On 
the other hand, PID control cannot remain accurate 
when circumstances change. However, LPV-MPC 
performs well in various situations, resulting in 
improved control efficiency and stability. 
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