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Abstract: - This study evaluates and compares various spline techniques in the nonparametric regression 

analysis, specifically focusing on the smoothing spline regression, the natural spline regression, the B-spline 

regression, and the penalized spline regression. The dependent variable in this analysis is time series data 

generated by a random walk process, while the independent variable is represented as sequential data. The 

simulation data, derived from a random walk process with diverse variances and sample sizes, ensures an 

absence of fixed patterns in the variable's changes. In addition, real-world data from the monthly trading 

volume of the SET (Stock Exchange of Thailand) index is used for practical application. The criterion for 

model efficiency estimation is based on minimizing the average mean square error for the simulation and SET 

index data. At the same time, predictive performance for future values is assessed through the minimum of 

average mean absolute percentage error. Among the models tested, the natural spline regression achieved the 

minimum average mean square error in all simulations due to SET index data estimation, excelling in model fit. 

However, the B-spline regression proved highly effective for forecasting future values. 
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1  Introduction 
Regression analysis is a foundational tool in 

statistics and data science. Analysts can examine 

relationships between variables, predict future 

outcomes, and make data-driven decisions by 

modeling the association between the independent 

or multiple independent and dependent variables. 

The regression analysis quantifies the strength and 

nature of associations and controls for confounding 

factors, [1]. It forecasts future trends by modeling 

the relationship between an independent or multiple 

independent variables and a dependent variable, [2]. 

While the regression analysis is a powerful tool, 

certain assumptions underlie its validity. Four 

assumptions that govern regression results are 

linearity, Independence, homoscedasticity, and 

normality, [3]. Multicollinearity significantly 

impacts the parameter estimation, resulting in 

unstable and imprecise parameter estimates, [4]. 

When these assumptions are violated, the reliability 

of regression results may be compromised, requiring 

techniques such as transformation [5],  

nonparametric path analysis [6] and spline 

techniques [7].  

The spline techniques are powerful tools in 

nonparametric regression analysis that allow for 

flexible and smooth curve fitting to data, making 

them ideal for capturing complex, nonlinear 

relationships, [8]. Instead of assuming a fixed 

functional form for the entire dataset, splines divide 

the data range into intervals and fit separate 

polynomial functions [9] to each interval. These 

polynomials are then connected at specific points 

called "knots," ensuring a smooth transition between 

segments.  [10] applied the multivariate adaptive 

regression splines technique to assess dimensionless 

parameters' sensitivity to the uplift capacity factor. 

They proposed an empirical design equation for its 

efficient prediction.  

The spline techniques are among the most 

popular methods in nonparametric regression 

analysis for capturing complex, nonlinear 

relationships within data. By allowing flexible, 

piecewise polynomial fit that joins smoothly at 

specific points (knots), splines offer both 
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adaptability and smoothness in model construction 

using a smoothing algorithm, [11]. The most widely 

recognized and influential spline techniques in 

regression analysis are smoothing spline regression 

[12], [13], natural spline regression [14], [15], B-

spline regression [16], [17], and penalized spline 

regression [18], [19]. 

The smoothing spline regression minimizes a 

tradeoff between data fit and curve smoothness. By 

introducing a smoothing parameter, they control the 

amount of flexibility, balancing the fit to the dataset 

with a penalty function for excessive fluctuations. 

They are often used when data contain random 

volatility, as the smoothing parameter allows users 

to adjust the level of detail captured. [20] explored 

the smoothing spline regression method as a 

penalized least squares regression method and 

applied it to a real-world variational dataset. [21] 

proposed an adaptive smoothing spline regression 

estimator for a linear regression model, where the 

full trajectory of the independent variable influences 

the dependent variable at each point in the domain. 

 The natural spline regression is a cubic 

spline with boundary constraints that force the 

function to become the linear function at the edges 

of the data range, reducing boundary effects. The 

linear boundary constraint ensures the curve remains 

well-behaved at the edges, making it an attractive 

option for data with significant variability at the 

endpoints. [22] introduced a longitudinal data 

analysis method using the natural spline regression, 

modeling time as a continuous variable while 

accounting for testing version effects to capture the 

mean trajectory over time. Similarly, [23] provided 

a practical guide for summarizing nonlinear growth 

patterns of measured continuous outcomes using 

linear or natural spline regression. 

The B-spline regression, or the basis splines, is 

a family of spline functions that form a basis 

function as the spline space. They allow for flexible 

fitting through a piecewise polynomial approach. 

The B-spline regression divides data into intervals 

and fits polynomials within each segment, as they 

only require local control over each segment. [24] 

proposed a high-order numerical approach utilizing 

a quintic B-spline regression collocated over the 

finite elements to numerically solve a class of 

nonlinear singular boundary value problems. [25] 

developed a novel differential-recurrence relation 

for the B-spline functions of a given degree, 

determining the coefficients of the B-spline 

functions of various degrees in the Bernstein–Bézier 

form. 

The penalized spline regression, or the P-spline 

regression, is a smoothing spline regression that 

uses penalties to control the wiggle curve. A 

roughness penalty on the differences between 

coefficients in adjacent intervals is applied. The P-

spline regression balances flexibility and control by 

including many knots while avoiding overfitting. 

[26] derived the asymptotic distribution of the 

quantile estimators obtained using the penalized 

spline regression method. [27] introduced a joint 

penalized spline regression model, reparametrizing 

the penalized spline regression as a linear mixed 

model. 

A random walk process is a fundamental 

concept in probability theory and statistical 

modeling, with applications in diverse fields such as 

finance, physics, biology, and economics. It 

describes a sequence of random steps that occur 

over time, often used to model phenomena where 

chance influences outcomes [28]. The time series 

data plays a pivotal role in a random walk process, 

providing a framework for understanding and 

modeling non-stationary behavior in time-dependent 

data.  The current value depends solely on the 

previous value plus a random disturbance, and it 

serves as a cornerstone in statistical and 

econometric modeling, particularly in financial 

markets. [29] examined the random walk process 

depending on the time series and proposed a new 

method for identifying the corresponding 

distributions of ordinal patterns.  

The Stock Exchange of Thailand (SET) index is 

a key financial indicator reflecting the performance 

of the Thai stock market. Given its dynamic and 

often unpredictable nature, the random walk process 

is a suitable framework for analyzing its time series 

behavior. The random walk process offers a 

foundational approach for analyzing the SET Index 

in time series data. It captures the stochastic nature 

of price movements while providing insights into 

market behavior. [30] studied stock price 

forecasting and demonstrated that sentiment 

information hidden in corporate annual reports can 

effectively predict short-run stock price returns. 

This research examines the spline techniques in 

regression analysis, including the smoothing spline 

regression, the natural spline regression, the B-

spline regression, and the penalized spline 

regression. The simulation study uses random walk-

generated time series data to evaluate the average 

mean square error and the average mean absolute 

percentage error based on optimal knot selection. 

Actual data from Thailand's SET index is the 

dependent variable, with time sequence as the 

independent variable. 
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2  Spline Techniques  
A spline is a piecewise polynomial function defined 

over intervals between knots, where each 

polynomial segment is related smoothly. The degree 

of the polynomial, location, and number of knots 

influence the spline's flexibility and smoothness. 

In the nonparametric regression analysis, the spline 

techniques exhibit the relationship between an 

independent ( )ix  and the dependent variable ( )iy

by fitting a spline function ( )ix that minimizes a 

chosen objective function, often balancing data 

fidelity with smoothness. The general form of a 

spline regression model [31] is: 

         ( ) , 1,2,3,..., ,i i iy x i n           (1) 

 

where iy  is the observed value at a point ix , ( )ix

is the unknown spline function, and i  is the error 

term. 

In the spline techniques, the function ( )ix is 

expressed as a weighted sum of the basis functions, 

each associated with a coefficient estimator.  

 

2.1 Smoothing Spline Regression 
The smoothing spline regression is a powerful 

technique that fits a smooth curve through data 

points by balancing data fidelity with a smoothness 

constraint. Unlike the traditional regression models 

that assume a specific functional form, the 

smoothing splines adaptively fit the data with a 

piecewise smooth curve. Write step by step as 

follows. Knots are the specific points in the domain 

of a function where piecewise polynomial segments 

are joined together in spline regression. They serve 

as breakpoints that control the flexibility of the 

spline function. The choice of the number and 

placement of knots affects the smoothness and fit of 

the spline model. Penalty functions are used in the 

spline regression to control overfitting by adding a 

smoothness constraint.  

 

Step 1: Define the smoothing spline regression 

model 

Given data points ( , )i ix y , the main objective of is 

to find a spline function ( )ix   that minimizes the 

following penalized sum of squares:  

   
2 2

1

ˆ ˆ( ) ''( ) ,
n

i i i

i

y x x dx  


                  (2)   

where 0   is a regularization parameter that 

controls the tradeoff between closeness to fit the 

data and ˆ ''( )ix  is the second derivative of ˆ ( )ix . 

Step 2: Represent in matrix form 

The roughness penalty [32] is in the matrix form as: 

  
2

ˆ ˆ ˆ''( ) ,
b

T

i
a

x dx A    

where  1
ˆ ˆ ˆ( ( (),..., )

T

nx x   are the fitted values 

and  A is the basis function. The matrix A depends 

on the configuration of the independent variables as  

n n  matrix that is evaluated by 
1A W    , 

where  is the second difference as ( 2)n n   

matrix with elements: 
, 1

1

1 1 1
, ,ii i i

i i ih h h




        

and 
, 2

1
.

1
i i

ih
 


 The W is the symmetric 

tridiagonal matrix as ( 2) ( 2)n n    matrix with an 

element: 1
1, , 1

( )
, ,

6 3

i i i
i i i i ii

h h h
W W W 

 


   and 

1 ,i ih    the distances between successive 

knots. 

  

Step 3: Solving for the coefficients  

From (2), the penalized sum of squares can be 

rewritten in matrix form as 

       ˆ ˆ ˆ ˆ( ) ( ) ,Ty y A                       (3) 

where .

1( ,..., )T

ny y y . By minimizing over ̂ to 

differentiate with  ̂ that given the results as 

  ˆ ˆ2( ) 2 0,y A                     (4) 

and the smoothing spine estimator is approximated 

by    

                    1ˆ ( ) .I A y 


                              (5) 

 

2.2  Natural Spline Regression  
The natural spline regression is a cubic spline 

regression that not only fits a set of given data 

points smoothly but also has the additional property 

that its second derivative is zero at the endpoints, 

effectively minimizing the curvature at the edges. 

The following steps outline the process. 

 

Step 1: Define the natural spline regression model 

The natural spline as a cubic polynomial is defined 

on each interval  1, i ix x 
as 

2 3( ) ( ) ( ) ( ) ,i i i i i i i ix a b x x c x x d x x         

where , ,i i ia b c and id are the coefficients to be 

determined for each interval. 
 

Step 2: Continuity and smoothness conditions 

To ensure smooth transitions between intervals, the 

following conditions must be met: 
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1. Interpolation: The function passes through 

all given data points [14]  ( , )i ix y as

( )i ix y  , ( )x is a spline function. 

2. First-Derivative Continuity: ' ( )i x is 

continuous at all knots. 

3. Second-Derivative Continuity:  '' ( )i x is 

continuous at all knots. 

4. Natural Boundary Condition: The second 

derivative is zero at the endpoints as

 1'' )   0x  and  '' )   0nx  .  

 

Step 3: Solving for the coefficients  

Using the above conditions, we derive the following 

system of linear equations in terms of second 

derivatives ''( )  i i ix M  : 

1 1 1 1

1 1

2( )

6 .
1

i i i i i i i

i i i i

i i

h M h h M h M

y y y y

h h

   

 

  

  
  

 

                 (6) 

where 1i i ih x x   represents the interval length.   

 
Step 4: Computing in matrix form   

The equations (6)  derived in a tridiagonal matrix 

form as 

                     = ,AM d                                     (7)    

where A is an ( 2) ( 2)n n    tridiagonal matrix 

with entries identified the interval lengths as ih , 

2 3 1= [ , ,..., ]TnM M M M is the vector of unknown 

second derivatives, d is a vector derived from the 

values of  iy and ih . With iM  values can determine 

the coefficients , ,i i ia b c  and id for each interval 

 1, i ix x 
as follows: i ia y ,  

1
1(2 )

6

i i i
i i i

i

y y h
b M M

h





   , 

2

i
i

M
c  , and 1 .

6

i i
i

i

M M
d

h

 
  

 

Step 5: Solved to determine a spline function 

The computation of the matrix is approximated by 
1= 

M A d . Each segment ( )i x can now be 

constructed, providing the natural spline regression 

that smoothly interpolates the given data points. 

 
2.3 B-Spline Regression 

The B-spline regression of basis functions [33] is 

defined over a sequence of knots, { }it , which 

determine the intervals over which the polynomial 

pieces apply. Here are the steps to follow. 

 

Step 1: Define the B-Spline basis functions 

The B-spline (basis spline) are basis functions used 

to construct smooth piecewise polynomials. These 

basis functions are defined recursively. For degree

p ,  the B-spline basis functions are constructed as: 

1. For degree 0p  : 

1

,0

1 , if
( ) .

0 otherwise

i i

i

t x t
B x

 
 


 

2. For degree 0p  : 

1

, , 1 1, 1

1 1

( ) ( ) ( ).
i pi

i p i p i p

i p i i p i

t xx t
B x B x B x

t t t t

 

  

   


 

 
 (8) 

where it   are the knots that are predefined points 

where the polynomial pieces join. 

 

Step 2: Constructing the B-Spline regression model 

The function ( )x is expressed as a linear 

combination of B-spline basis functions: 

 
1

( ) ( ),
m

k k

k

x c B x


                      (9) 

where kc are the coefficients to be estimated and 

( )kB x are B-spline basis functions. 

 

Step 3: The matrix form of the B-Spline regression 

To create a matrix representation, the B-spline 

regression of basis functions is evaluated by  

                        = ,B c                           (10) 

where  1 2( ), ( ),..., ( )
T

nx x x    is the vector 

of the spline values at each ix , B is an n m matrix 

of the evaluated basis functions 
, ( )i pB x as the j -th 

B-spline regression of the basis function of the 

degree p  evaluated at ix , and 

1 2, ,...,
T

mc c c  c =  is the vector of coefficients of 

each basis function. 

 

Step 4: Solve to the coefficient of the B-Spline  

The coefficients c is the best approximate  

 1 2, ,...,
T

ny y yy = by minimizing the squared error 

   
2

min .
c

y -Bc  

 

The solution is given by 

   
1( )T 

c = B B By.                      (11) 
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2.4  Penalized Spline Regression 
The penalized spline regression (P-spline) combines 

the flexibility of splines with a penalty term to 

control smoothness. Introduced by [16] and later 

developed by [34], penalized splines have become a 

standard tool in regression modeling. The following 

steps outline the process. 

 

Step 1: Define the penalized spline regression model 

The model can be expressed as: 

2

0 1

1

( ) , ~ (0, ),
K

i i k i k i i

k

y x u x N     



       (12) 

where   

iy is the dependent variable as the observed data, 

ix is the independent variable as the sequence data, 

0 1 ix  is the linear component model, 

1

( )
K

k i k

k

u x  



 is a truncated power basis: 

 ( ) max (0, ),k kx x     k are the knots,  ku are 

the coefficients for the basis functions and i  the 

random error term. 

 

Step 2: Represent in matrix form 

In matrix form, the model is: 

   ,    y Xβ Zu ε                    (13) 

where y is the 1n vector of dependent variables, 

 X is the n p design matrix for the fixed effects, 

 Z is the  n K matrix of basis functions for the 

random effects, β is the  1p vector of fixed-effect 

coefficients,   u is the  1K  vector of random-effect 

coefficients, and  ε is the  1n vector of errors. 

 

Step 3: Minimize the penalized residual sum of 

squares 

To estimate the coefficients, the penalized residual 

sum of squares (RSS) is minimized: 

        2 2
RSS ,   y Xβ Zu u          (14) 

 

where the first term measures the fit to the data, the 

second term penalizes the roughness of the curve, 

and 

2

2

u





  is the regularization parameter. The 

random effects are defined to follow a Gaussian 

prior as 2(0, I)uN u .  

 

Step 4: Solve the coefficient of penalized spline  

To estimate β and u , the penalized RSS is 

minimized by solving the mixed-model equations as 

  .
T T T

T T TI

 
 

  
   

    

X X X Z X y

Z X Z Z + Z yu


 

 

The coefficients are computed as: 
1

ˆ
.

ˆ

T T T

T T TI



 


 


 

 
   

  

X X X Z X y

Z X Z Z + Z yu

    (15) 

 

 

3   Simulation Study   
To visualize the random walk, the time series data is 

generated from the dependent variables in the 

formula below  

1 , 2,3,...,i i iy y i n   ,                   (16) 

where iy is the value of the time series at the time i ,  

1iy   is the value of the time series at the previous 

time step, i is a random error term, typically 

assumed to be white noise. In this case, a random 

error term is simulated from the normal distribution 

with mean 0  and standard deviation (S.D.) = 1, 

3, 5, and 7. The sample sizes ( n ) are 100 and 200 as 

the independent variables in sequence data.  Figure 

1 and Figure 2 show the time series plot of several 

standard deviations (S.D.) with 100 and 200 sample 

sizes, respectively. 

 

 
Fig. 1: Time series plot illustrating a random walk 

process with 100 sample sizes under different 

standard deviations 
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Fig. 2: Time series plot illustrating a random walk 

process with 200 sample sizes under different 

standard deviations 

 

The R program generates data and repeats the 

model fitting 1,000 times. The performance of the 

estimating spline function is considered the Average 

Mean Square Error (AMSE) computed from the 

Mean Square Error (MSE) for each replication. The 

AMSE and MSE are         

 

1,000

1

MSE

AMSE
1,000

h

h


, and 

10
2

1

1
ˆMSE ( )

10

, 1,2,...,1,000 ; 1,2,..., 10.

n

h i i

i

y y
n

h i n





 


  


. 

 

The effectiveness of the forecasting spline 

function is assessed using the Average Mean 

Absolute Percentage Error (AMAPE) calculated as 

the Mean Absolute Percentage Error (MAPE) across 

all replications. The AMAPE and MAPE are:     
1,000

1

MAPE

AMAPE
1,000

h

h


, and  

10

1

ˆ1
MAPE 100

10

, 1,2,...,1,000; 1,2,...,10.

i i

h

i

y y

y

h i




 

 

 . 

     

After fitting the spline model, Table 1 and Table 

2 present the AMSE and the number of knots of 

various standard deviations via smoothing spline 

regression (SSR), natural spline regression (NSR), 

B-spline regression (BSR), and penalized spline 

regression (PSR) methods for 100 and 200 sample 

sizes. 

 

 

Table 1. Comparing AMSE and the number of knots 

for sample sizes of 100 under different standard 

deviations 
Methods S.D. = 1 S.D. = 3 S.D. = 5 S.D. = 7 

SSR 0.11 

(65) 

0.95 

(65) 

2.65 

(65) 

5.20 

(65) 

NSR 5.07×10-28 

(99) 

4.51×10-27 

(99) 

1.26×10-26 

(99) 

2.47×10-26 

(99) 

BSR 5.23×10-18 

(99) 

4.70×10-17 

(99) 

1.31×10-16 

(99) 

2.56×10-16 

(99) 

PSR 1.12×10-11 

(100) 

1.01×10-10 

(100) 

2.81×10-10 

(100) 

5.50×10-10 

(100) 

 

 

Table 2. Comparing AMSE and the number of knots 

for sample sizes of 200 under different standard 

deviations 
Methods S.D. = 1 S.D. = 3 S.D. = 5 S.D. = 7 

SSR 0.49 

(109) 

0.43 

(107) 

12.3 

(106) 

24.4 

(106) 

NSR 7.37×10-26 

(199) 

7.50×10-26 

(199) 

7.85×10-26 

(199) 

8.46×10-26 

(199) 

BSR 2.31×10-3 

(198) 

2.08×10-2 

(198) 

5.78×10-2 

(198) 

0.11 

(198) 

PSR 2.07×10-10 

(200) 

1.86×10-9 

(200) 

5.17×10-9 

(200) 

1.01×10-8 

(200) 

      

From Table 1 and Table 2, the natural spline 

regression (NSR) outperforms the other methods for 

estimating time series data by a random walk. The 

number of knots is made accurately close to the 

sample sizes. The increasing AMSE makes the 

increasing standard deviation an error. However, 

when the sample sizes are increased, the 

performance of these methods is influenced by the 

rising AMSE. The AMSE can determine which 

spine techniques can be the best estimator.  

The number of knots from small to sample sizes 

is replaced to approximate the smoothing function, 

and a minimum mean square error is selected for the 

optimum knots. Many knots can control the 

smoothing interpolation and use it to trade off the 

goodness of fit. After estimating the parameters and 

knots, the estimated values are used to forecast the 

following ten values to evaluate the forecasting 

performance, as shown in Table 3 and Table 4.  
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Table 3. Forecasting performance evaluation using 

AMAPE for sample sizes of 100 under different 

standard deviations 
Methods S.D. = 1 S.D. = 3 S.D. = 5 S.D. = 7 

SSR   0.598  0.687  0.974 1.014  

NSR  0.024 0.057  0.087  0.098  

BSR  0.0001 0.0004  0.0007  0.0009  

PSR 0.147 0.269 0.498 0.575 

 
 Table 4. Forecasting performance evaluation using 

AMAPE for sample sizes of 200 under different 

standard deviations 
Methods S.D. = 1 S.D. = 3 S.D. = 5 S.D. = 7 

SSR   0.625  0.783  1.140 1.265  

NSR  0.078 0.095  0.168  0.365  

BSR  0.002 0.005  0.008  0.018  

PSR   0.287 0.336 0.593 0.675 

 

For Table 3 and Table 4, the B-spline regression 

(BSR) consistently achieves the lowest AMAPE 

values, indicating the highest accuracy in 

forecasting future values. The natural spline 

regression (NSR) and penalized spline regression 

(PSR) perform moderately, improving over 

smoothing spline Regression (SSR) but not as 

accurately as BSR. The SSR shows the highest 

AMAPE values in all cases, making it the least 

accurate method. The accuracy of all methods 

decreases slightly as S.D. increases, but the rankings 

remain consistent. Overall, BSR is the most reliable 

method for forecasting across sample sizes.  
 

 

4   Application on Actual Data 
The Stock Exchange of Thailand (SET) index is the 

primary benchmark index representing the 

performance of all stocks listed on the Stock 

Exchange of Thailand. The SET index exhibits the 

random walk process behavior due to economic and 

external market factors. We extracted historical 

monthly volume time series from January 2005 to 

October 2024 from http://www.set.or.th/th/market/ 

market_statistics.html. Let iy denote the SET index 

of the month and ix where 1 1x   represents January 

of 2005 and 238 238x  represents October 2024, as 

shown in Figure 3. 

The smoothing spline regression (SSR), the 

natural spline regression (NSR), the B-spline 

regression (BSR), and the penalized spline 

regression (PSR) methods are employed to estimate 

and forecast the time series of the SET index. 

 
Fig. 3: Monthly trading volume of the Stock 

Exchange of Thailand (SET) Index from January 

2005 to October 2024 under a random walk process 

used for time series data 

 

The differences between actual and estimated 

data are computed using the Mean Square Error 

(MSE) from January 2005 to December 2023. In the 

next ten months, the Mean Absolute Percentage 

Error (MAPE) evaluates forecasting accuracy in 

percentage from January 2024 to October 2024. 

Both MSE and MAPE measured the precision of the 

estimated spline function and used the spline 

function to forecast future values, with their 

respective formulas provided below: 
228

2

1

1
ˆMSE ( ) , 1,2,...,228

228
i i

i

y y i

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229
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The actual values are defined iy , and the 

estimated and forecasted values are defined ˆiy . The 

actual SET index ( iy ) and the estimated values ( ˆiy ) 

from four methods are shown in Figure 4 and the 

main result of MSE is approximated in this figure.   

As demonstrated in Figure 4, it is hard to see the 

performance of these methods, and the calculation 

of MSE can indicate the best estimation method. In 

computing, Table 5 shows that the natural spline 

regression method is a minimum of MSE and the 

optimal knots. 
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Fig. 4: Comparison of estimated values obtained 

from different spline regression methods with actual 

SET Index values from January 2005 to December 

2023 

 

Table 5. Comparison of the number of knots and 

MSE of SET index via spline regression methods 

Methods Knots MSE 

SSR 108 631.154 

NSR 227 2.37×10-23 

BSR 226 0.322 

PSR 228 25.062 

 

The future forecasting values are attractive 

because they focus on the performance of spline 

methods in the following ten data points and the 

forecasting data shown in Figure 5 and Table 6. 

Figure 5 shows the forecasting data analysis 

performed for all methods. Some methods are on the 

plot of actual SET Index data, so it is challenging to 

indicate which method to select. Table 6 shows 

approximate forecasting values and MAPE. The 

minimum MAPE will be considered the 

performance method.   In Table 6, the B-spline 

regression obtains the minimum MAPE, the best 

method to forecast future data. The spline regression 

techniques offer flexible modeling approaches but 

come with specific challenges. The smoothing 

spline requires careful tuning of the smoothing 

parameter to avoid overfitting or underfitting. The 

natural spline effectively handles boundary effects 

but may become unstable if knots are not optimally 

placed. The B-spline provides adaptability but needs 

appropriate knots to balance complexity and 

smoothness. The penalized spline helps control 

overfitting but can excessively smooth the data if 

the penalty parameter is misconfigured. Proper 

parameter selection is crucial to achieving optimal 

model performance. 

 

 
Fig. 5: Forecasted values for the SET Index from 

January 2024 to October 2024 using various spline 

regression methods    

     

Table 6. Forecasting the SET index from January 

2024 to October 2024 using spline regression 

techniques with corresponding MAPE 

 

 

5   Conclusion   
The spline techniques benefit the nonparametric 

regression analysis by offering flexibility, smooth 

transitions, and control overfitting.  The spline can 

model simple and complex patterns without 

assuming a strict parametric form, allowing them to 

fit data structures that vary across the data range. 

SET 

Index 

SSR NSR BSR PSR 

1364.52 1383.00 1366.03 1364.42 1363.30 

1370.67 1372.29 1369.57 1370.56 1371.41 

1377.94 1369.52 1378.65 1377.82 1377.50 

1367.95 1365.80 1367.52 1367.91 1368.20 

1345.66 1347.21 1345.88 1345.45 1345.44 

1300.96 1311.93 1300.85 1300.92 1301.38 

1320.86 1306.53 1320.90 1320.77 1319.24 

1359.07 1367.85 1359.05 1359.17 1366.13 

1448.83 1445.38 1448.83 1448.72 1438.52 

1466.40 1466.73 1466.03 1466.03 1470.59 

MAPE 0.5217 0.0304 0.0004 0.1900 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2025.20.10 Autcha Araveeporn, Thanrada Chaikajonwat

E-ISSN: 2224-2856 88 Volume 20, 2025



We evaluated the smoothing estimator of the 

smoothing spline regression, the natural spline 

regression, the B-spline regression, and the 

penalized spline regression techniques through 

simulation studies. Four spline techniques can 

evaluate the smoothing function on time series data 

in a random walk process. The results indicate that 

the natural spline regression performs effectively 

regardless of sample size or standard deviation. The 

natural spline regression shows the estimation 

performance for application in actual data since it is 

an exciting method for interpolating observed data 

using spline techniques. Furthermore, the 

polynomial term can support at some point, making 

the piecewise interpolation helpful with large data 

sets. The natural spline regression is appropriately 

examined in the fitting model on time series data 

studied by [35]. However, the B-spline regression 

outperforms the prediction of future values in short-

term forecasting due to its ability to provide a 

flexible yet smooth approximation of data patterns. 

Its localized control property, where adjustments to 

one part of the spline do not significantly affect 

others, makes it particularly effective for capturing 

short-term trends while avoiding overfitting. Future 

research will extend the methodology to alternative 

nonparametric, multivariate time series analysis, 

apply it to various financial datasets such as 

commodity prices and cryptocurrency trends, and 

explore hybrid models that integrate spline 

techniques with machine learning to enhance 

forecasting accuracy. These advancements will 

improve model adaptability and predictive 

performance in complex financial environments. 
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