
Pole Assignment With Static Output Feedback using Algebrogeometric
Methods

Abstract: In this article a solution to the pole assignment problem with output feedback is proposed. Necessary
and sufficient conditions are derived which are related to the controllability or observability of the initial system.
These arise from the solution of the state-feedback problem using the output or input matrix of the system. For the
initial open loop system a newmatrix is calculated such that under output feedback the new closed loop system has
the desired poles. In the proposed approach, multilineal algebra, algebraic geometry and the theory of generalized
inverse matrices are employed. An illustrative example of the proposed method is also given. The main advantage
of our approach is that it can be used to derive an algorithm which generates the whole family of output feedback
matrices with the required specifications, while avoiding the use of transfer functions.
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1 Introduction
The pole-assignment problem with output feedback
is a fundamental problem in control theory, which
can be employed to develop design methods of
feedback systems which guarantee desired dynamic
behavior. In these systems only partial information
(measured outputs) is available for feedback, rather
than the full state vector. The challenge is to
design feedback laws that assign the poles of the
system in a way that meets performance objectives,
despite limited state information. This problem is
pivotal in modern control applications, ranging from
robotics to aerospace and involves both analytical
and computational approaches for finding effective
solutions. The paper provides an alternative approach
to the solution of the pole assignment problem with
output feedback which relies on necessary and
sufficient controllability and observability conditions
of the initial problem. Firstly, a general description
of the problem is given by assuming that we have the
open loop system of the form:{

x′(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1)

for t ≥ t0, where x(t) ∈ Rn, u(t) ∈ Rl and
y(t) ∈ Rm are the state vector, the input vector
and the output vector respectively. It is assumed that
l ≤ n and m ≤ n . Also, A ∈ Rn×n, B ∈ Rn×l and
C ∈ Rm×n denote the state matrix, the input matrix
and the output matrix, respectively. First we seek a

matrixF ∈ Cl×m such that under the output feedback
of the form:

u(t) = −Fy(t) + v(t) (2)

the closed loop system has the desired poles. Note
that here v(t) ∈ Rl denotes the new reference input
vector. The closed loop dynamics can be written as:

x′(t) = (A−BFC)x(t) +Bv(t) (3)

The studies, [1], [2], [3], have shown independently
that a necessary condition for almost generalized
pole placement of a completely controllable and
observable system is the validity of the inequality:

m+ l ≥ n+ 1

The meaning of the term ”generalized pole
placement”, which we also use in our study, is
that the desired poles are discrete, i.e. λi 6= λj if and
only if i 6= j, while by the term ”almost” we mean
that a very small deviation from the desired pole set
is acceptable. More precisely, this means that the
closed-loop poles are allowed to lie within arbitrarily
tiny discs having at their centers the desired poles.
So, in our study we try to solve the problem of pole
placement via output feedback, under necessary and
sufficient controllability and observability conditions
of the initial system, related to the solution of the
problem via state feedback and the relation between
the applied feedback and the output or input matrix,
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respectively. The relation of the pole placement
problem to the controllability and the observability
of the system is expected, according to past studies,
that the initial system has to be controllable and
observable in order for the new system to have the
desired poles. In our study of the pole assignment
problem under output feedback we use multilineal
algebra and algebraic geometry as well as the theory
of generalized inverse matrices; in this way the use
of transfer functions is avoided.

2 Mathematical Background of Pole

Assignment
Let assume that we have the system (1) for t ≥ t0.
It is mentioned that the dynamical behaviour of the
system is defined by the nature and the position of
the poles of the system, meaning the eigenvalues of
the matrixA, which are the poles of the characteristic
polynomial

ϕ(s) := det(sIn −A) (4)

We aim to change the dynamical behaviour of the
closed-loop system through the pole placement, i.e.
by transferring the poles to appropriate locations of
the complex plane. Thus, the pole placement problem
under output feedback can be formally defined as
follows: For a givenmonic polynomial a(s) of degree
n having the desired poles as roots, find a complex
matrix l × m such that for an input function of the
form (2)

u(t) = −Fy(t) + v(t)

the corresponding closed loop system

x′(t) = (A−BFC)x(t) +Bv(t)

has the desired poles, i.e. its characteristic polynomial

ϕCL(s) := det(sIn −A+BFC) (5)

is equal to a(s). As we have already mentioned the
controllability and the observability of the initial
system are the necessary conditions in order the
problem to be completely solvable [4].

Proposition 1

If for the system of the form (1) and for every
monic polynomial a(s) of degree n there is a complex
l × m matrix F , such that the equation (5) is valid,
then the system (A,B) is completely controllable
and the (A,C) is completely observable.

Proof: Let us select an arbitrary monic polynomial
a(s) of degree n. Then, there is a matrix F ∈ Cl×n

such that equation (5)

ϕCL(s) := det(sIn −A+BFC) = a(s)

is satisfied.

Setting F̃ := FC shows the existence of a state

feedback matrix F̃ such that

ϕCL(s) := det(sIn −A+BF̃ ) = a(s)

and so the system (A,B) is completely controllable.

Similarly, by setting F̃ := BF we conclude that there

exists a matrix F̃ such that

ϕCL(s) := det(sIn −A+ F̃C) = a(s)

and so the system (A,C) is completely observable.

3 Solution of the Problem when the

System is Controllable
Let assume that the system (1) is completely
controllable, meaning that

rank[sIn −A,B] = n,∀s ∈ C

or equivalently

rank[B,AB,A2B, ..., An−1B] = n

Set:

F̃ := FC (6)

By using equation (6), equation (5) can be written
as:

ϕCL(s) = det(sIn −A+BF̃ ) = a(s) (7)

and the initial problem leads to the calculation of

F̃ ∈ Cl×n which satisfies equation (7) for a given
monic polynomial a(s) and then to the solution of
the equation (6) to obtain F .

If

a(s) = a0 + a1s+ ...+ an−1s
n−1 + sn (8)

then by setting

e(s) = [1, s, ..., sn]t, a = [a0, ..., an−1, 1]
t

we get

a(s) = et(s) · a (9)
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Moreover, the characteristic polynomial of the
closed loop system is written:

ϕCL(s) := det(sIn −A+BF̃ )

≡ Cn(sIn −A+BF̃ )

= Cn

[sIn −A,B] ·

 In
. . .
F̃


= Cn ([sIn −A,B]) · Cn

 In
. . .
F̃


(10)

In the above equation we have used the
Binet-Cauchy theorem for complex matrices. We

notice that the matrix Cn ([sIn −A,B]) ∈ C1×(n+l

n
)

has elements polynomials of degree up to n.
Moreover, the first element of the matrix is the
determinant det(sIn − A), in other words the
characteristic polynomial of A. So, there is a matrix

P ≡ P (A,B) ∈ C(n+1)×(n+l

n
) such that:

Cn ([sIn −A,B]) = et(s) · P (11)

The columns of matrix P are the coefficients
of the polynomials which are the elements of
Cn ([sIn −A,B]). In addition, we set that:

g := Cn

 In
. . .
F̃

 , ∈ C(
n+l

n
)×1 (12)

Combining equations (7),(9), (10), (11), (12) we
get equation et(s)Pg = et(s)a which holds for every
s ∈ C if and only if:

Pg = a (13)

The linear system (13) is always solvable,
meaning that for every a ∈ Cn×1 that corresponds
to a given monic polynomial a(s) of degree n, if
and only if the matrix P is full row rank, which is
equivalent to the equation rankP = n + 1. It is
also known that the last equation is equivalent to the
complete controllability of the initial system (1). In
this case, the solutions of the equation (13) consist of
an algebraic multiplicity VL of dimension:

dimVL = k − 1− (n+ 1) = k − n− 2

where k − 1 is the dimension of the projective space

Pk−1(R), k =
(
n+l
n

)
, while n + 1 is the rank of the

matrix P in the equation (13).

Moreover from equation (12), we understand that
we are interested only in solutions of g, that we meet
in equation (13), which can be written in the form of:

g = Cn

 In
. . .
F̃


for a matrix F̃ . Equivalently we are interested
in the solutions of g which are simultaneously
decomposable vectors, meaning that they belong to
the Grassmann variety Ω(n, n+ l). Since

dimVL + dimΩ(n, n+ l) = k − n− 2 + nl ≥ k − 1

= dimPk−1(R)

for every n, l ≥ 1, the algebraic variety VL and the
Grassmann variety Ω(n, n + l) have always a non
empty intersection and consequently there is always
a vector g which is the simultaneous solution of
equations (12) and (13).

In order to calculate the matrices F̃ which will
satisfy equation (12), we determine among all the
solutions of g from the equation (13) only those
that belong to the Grassmann variety Ω(n, n + l),
or equivalently those vectors, from the solutions
of equation (13) whose coordinates satisfy a set
of quadratic Plucker relations which describe
the Grassmann variety Ω(n, n + l). In general, the
Grassmann variety, as we have mentioned previously,
is described by several relatively complex equations,
however in our case a minimum set of Plucker
relations can be calculated, significantly limited
compared to the initial set, while each one of
these relations is much simpler as it is described
by only three terms. The whole procedure of the
determination of the Plucker relations and then
through them the determination of the F̃ matrices is
the same as we have already described previously.

Having determined the F̃ matrices which satisfy
equation (7), the problem reduces to determining
matrix F which satisfies equation (6) and so solves
the initial problem of pole placement with output
feedback, since equation (5) stands. The system
defined in equation (7) with the unknown matrix F ,

for the given matricesC ∈ Cm×n and F̃ ∈ Cl×m, has
solutions if and only if

row-span F̃ ≤ row-span C

This equation has only theoretical importance as a
more applicable necessary and sufficient condition
derives from the notion of the {1}-inverse of a matrix,
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[5].

{1}-Inverse matrices, Moore-Penrose Inverse

Let assume that A ∈ Cm×n, then a matrix X ∈
Cn×m is called the {1}-inverse of matrix A if

AXA = A (14)

It can be shown that there is always at least one
{1}-inverse matrix of A ∈ Cm×n. This can be
calculated by using the following proposition, [5],
[6]:

Proposition 2

Let A ∈ Cm×n and let P and Q be invertible
matrices with P ∈ Cn×n, Q ∈ Cm×m such that

QAP =

 Ir
... 0

. . . · . . .

0
... 0

 (15)

where r = rankA. Then every {1}-inverse matrix X
of A can be written in the form:

X = P

 Ir
... 0

. . . · . . .

0
... L

 ·Q (16)

for an arbitrary matrix L ∈ C(n−r)×(m−r) and P , Q
invertible matrices that satisfy equation (15).

We also have that rankX = r + rankL. It is
noted that for an {1}-inverse matrix of A we use the

symbolism A(1). The most important application of
{1}-inverse matrices is the area of systems of linear
equations. The following result is derived from [5],
[7].

Theorem 1

Let assume that A ∈ Cm×n, B ∈ Cp×q, D ∈
Cm×q. Then the following matrix equation

AXB = D (17)

is consistent, if and only if for some matrices

A(1), B(1) it holds that

AA(1)DB(1)B = D (18)

and in this case the general solution is

X = A(1)DB(1) + Y −A(1)AY BB(1) (19)

for an arbitrary matrix Y ∈ Cn×p.

The following characterization of the set of
{1}-inverse matrices of a matrix A, for a given

{1}-inverse matrix of A(1), is attributed to [8].

Corollary 1

LetA(1) be a {1}-inverse of thematrixA ∈ Cm×n.

Then all {1}-inverses Ā(1) of A are given by:

Ā(1) = A(1) + Z −A(1)AZAA(1) (20)

for Z ∈ Cn×m.

A specific case of the {1}-inverse matrices are
the right/left inverse matrices with full column/row
rank, respectively. Let assume first that A ∈ Cm×n,
with m ≥ n and rankA = n, meaning that A is
full column rank. Then it is proven in [5], that
the {1}-inverse matrices of A identify with its left

inverse matrices A−1
L , i.e. A−1

L A = In.

In this case, if P ∈ Cm×m is an invertible row
permutator such that

PA =

[
A1

. . .
A2

]

where A1 ∈ Cn×n with detA1 6= 0 and A2 ∈
C(m−n)×n, then all left inverses A−1

L of A are given
by the equation

A−1
L = [A−1

1 −BA2A
−1
1

...B]P (21)

for an arbitrary matrix B ∈ Cn×(m−n).

Similarly, if A ∈ Cm×n, it can be shown that
the {1}-inverse matrices of A identify with its right

inverses A−1
R for which AA−1

R = In.
In this case, if Q ∈ Cn×n is an invertible column
permutator such that

AQ = [A3
...A4]

with A3 ∈ Cm×m, detA3 6= 0 and A4 ∈ Cm×(n−m),
then all right inverses A−1

R of A are given by the
equation

A−1
R = Q

 A−1
3 −A−1

3 A4C
. . .
C

 (22)

for an arbitrary matrix C ∈ C(n−m)×m.
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Finally, a special case of {1}-inverses is the

Moore-Penrose inverse matrix A(†) of A. This is
the unique {1}-inverse matrix of A which satisfies in
addition to equation (14) also the following equations:

XAX = X, (AX)∗ = AX, (XA)∗ = XA

The Moore-Penrose inverse matrix A(†) of A ∈
Cm×n, for which rankA = r, r ≥ 1, can be
determined if we can obtain matrices F ∈ Cm×r and
G ∈ Cr×n such that A = FG. Then, A(†) is given
by:

A(†) = G∗(GG∗)−1(F ∗F )−1F ∗ (23)

Now, we can go back to relation (6), i.e. the

relation F̃ = FC. According to the Theorem 1, this
system of linear equations is consistent if and only if

F̃C(1)C = F̃ (24)

for a {1}-inverse matrix C(1) of C. If equation (24)

holds for a C(1) matrix, then it is easily proven using

equation (20) that it holds for all of them. So, if C̃(1)

is a different {1}-inverse matrix of C then,

F̃ C̃(1)C = F̃C(1)C + F̃ZC − F̃C(1)CZCC(1)C =

F̃C(1)C + F̃ZC − F̃ZC = F̃

For a givenmatrix F̃ which satisfies equation (24),
the solutions F of the initial pole placement problem
with output feedback are given by the equation:

F = F̃C(1) + Y − Y CC(1) (25)

where Y ∈ Cl×m is an arbitrary matrix. Thus, we
have the following theorem:

Theorem 2 [5]

For a system of the form (1) and for a choice of
poles corresponding to the monic polynomial a(s) of
degree n, the problem of pole assignment with output
feedback of the form (2) has a solution if and only is

there is a matrix F̃ ∈ Cl×n such that the following
equations are simultaneously satisfied:

det(sIn −A+BF̃ ) = a(s) (26)

and the equation (24)

F̃C(1)C = F̃

with C(1) being any {1}-inverse matrix of matrix C.
In this case, the F solutions of the problem are given
by the equation (25)

F = F̃C(1) + Y − Y CC(1)

Moreover, if the system (1) is completely
controllable, then equation (26) has always a

solution for F̃ for every polynomial a(s).

As matrix C ∈ Cmxn is usually full row rank,
meaning thatm ≤ n and rankC = m, we can find the
form of solutions of the problem in this case, if they

exist. In this case, a matrix C(1) is a right inverse of
matrix C, meaning that

CC(1) = Im (27)

and correspondingly for the relation (25) we have that

F = F̃C(1) + Y − Y Im = F̃C(1) (28)

Corollary 2 [5]

If the matrix C is full row rank then the solution
of the form (28) of our system (1) is independent

from the choice of matrix C(1).

Proof: If C̃(1) is a different right inverse matrix of
C, then from the relation (20), there exists a matrix
Z ∈ Cnxm such that

C̃(1) = C(1)+Z−C(1)CZCC(1) = C(1)+Z−C(1)CZ

and so,

F̃C(1) = F̃C(1) + F̃Z − F̃C(1)CZ =

F̃C(1) + F̃Z − F̃Z = F̃C(1) = F

In the example at the end of the paper we present
a complete application of Theorem 2 and Corollary 1
and 2.

4 Solution of the Problem when the

System is Observable
We assume that the system (1) is completely
observable, meaning that

rank

[
sIn −A

. . .
C

]
= n, ∀s ∈ C

or equivalently,

rank


C
CA
CA2

. . .
CAn−1

 = n

Setting

F̃ := BF (29)
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equation (5) can be written by the form

ϕCL(s) = det(sIn −A+ F̃C) = a(s) (30)

and the initial problem can be formulated as the

problem of finding a matrix F̃ ∈ Cnxm which
satisfies equation (30) for a given polynomial a(s)
and then solving equation (29) in order to find the
matrix F . The above problem is dual with the
problem when the system is controllable.
Write:

a(s) = at · et(s) (31)

Moreover,

det(sIn −A+ F̃C) = Cn(sIn −A+ F̃C)

= Cn

(
[In, F̃ ] ·

[
sIn −A

. . .
C

])

= Cn

(
[In, F̃ ]

)
· Cn

([
sIn −A

. . .
C

])
=: gtP (A,C)e(s)

and consequently (30) holds for every s ∈ C if and
only if gtP (A,C) = at, which is equivalent to:

P t(A,C) · g = a (32)

The system in (32) always has a solution. More
precisely, the system is solvable for any a ∈ Cn+1 if
and only if the matrix P (A,C) is full rank, meaning
that rankP (A,C) = n + 1. It is also known that
relation, [9], is equivalent to complete observability
of the initial system (1). In this case, everything

regarding the solutions of g and F̃ of equations (32)
and (30) follows from the discussion of a previous
section in which the system was assumed to be
controllable. Having calculated the matrices F which
satisfy equation (30), it follows that the system of

linear equations F̃ = BF is solvable if and only if

col-spanF̃ ≤ col-spanB

A more useful necessary and sufficient condition
is obtained by using the {1}-inverse matrices of B.
According to Theorem 1, the system (29), where
matrix B is unknown, is consistent if and only if

BB(1)F̃ = F̃ (33)

for an {1}-inverse matrix B(1) of B. Equation (33)
holds for all {1}-inverse matrices of B, if it holds for

just one of them. So, for a given matrix F̃ which
satisfies equation (33), the solutions for matrix F

of the initial pole-assignment problem with output
feedback, are given by:

F = B(1)F̃ +W −B(1)BW (34)

whereW ∈ Clxm is an arbitrary matrix.
As a consequence, we have the following dual

theorem of the Theorem 2.

Theorem 3
Let assume system (1) and a set of desired
closed-loop poles corresponding to the arbitrary
monic polynomial a(s) of degree n. Then the pole
assignment problem with output feedback of the
form (2) has a solution if and only if there exists a

matrix F̃ ∈ Cnxm which satisfies simultaneously the
equation (30)

det(sIn −A+ F̃C) = a(s)

and the equation (33)

BB(1)F̃ = F̃

where matrixB(1) is any {1}-inverse of the matrixB.
In this case the solutions for matrix F are given by the
equation (34) where

F = B(1)F̃ +W −B(1)BW

withW ∈ Clxm being an arbitrary matrix.

If the system of the form (1) is completely
observable, then the equation (30) is always solvable

for F̃ , for every polynomial a(s).
Usually, matrixB is full column rankwhichmeans

that l ≤ n and rankB = l. Then B(1) is a left-inverse
of the matrix B, i.e.

B(1)B = Im (35)

and the solution for matrix F is given from the
equation (34) and it is:

F = B(1)F̃ (36)

In this case also, the solution of system (1), which
is given by equation (36), is independent of the

choice of the matrix B(1).

5 Example
In order to clarify the proposed method a numerical
example is presented. We consider a system of the
form (1) with matrices A, B and C as follows, [10]
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A =

[
1 0 0
0 2 0
0 0 3

]
, B =

[ −1 −2
0 −1
0 −1

]
, C =

[
1 0 1
0 1 0

]
Suppose we wish to transfer the set of poles of

{1, 2, 3} which are the eigenvalues of the open-loop
system to the set of poles {−1,−2,−3} by using
output feedback of the form u(t) = −Fy(t) + v(t).
Then, the problem is reduced to the calculation of a
matrix F ∈ C2x2 such that for the closed loop system
of the form

x′(t) = (A−BFC)x(t) +Bv(t)

its characteristic polynomial will be

ϕCL(s) := det(sI3 −A+BFC) = a(s) (37)

with

a(s) = 6 + 11s+ 6s2 + s3 = [1, s, s2, s3] ·

 6
11
6
1


Setting

F̃ = FC (38)

and applying the methodology corresponding
to a controllable initial system and reference,

[10], we calculate the solutions F̃ of

det(sI3 − A + BF̃ ) = a(s). In order
to confirm that the system is controllable
we calculate the matric C which is equal to

C = [B AB A2B] =

 −1 −2
... −1 −2

... −2 −2

0 −1
... 0 −2

... 0 −4

0 −1
... 0 −3

... 0 −9


and by computing its compound matrix of 3 we see
that C3(C) 6= 0̄t, so rankC = 3. We obtain according
to reference, [10], that

F̃ =

[
a1 − ba1+a3

c
a2+a1a

c
c −b a

]
(39)

where

a1 := −12−a+b−2c, a2 := −120−2a, a3 := −60−b

with a, b, c ∈ R are arbitrarily assigned apart from the
constraints c 6= 0 and b 6= −60. In order to find the

F solutions of relation (38), matrix F̃ has to satisfy:

F̃C(1)C = F̃ (40)

whereC(1) is a {1}-inverse ofC. Because rankC = 2

matrix C is full row rank, so matrix C(1) will be one
of the right-inverse matrices of C and according to
our approach when the initial system is controllable,

we can easily calculate a (non-unique) right inverse
of the matrix C as

C(1) =

[
1 0
0 1
0 0

]

According to what we have already mentioned, C(1)

can be chosen to satisfy equation F̃C(1)C = F̃ . It
turns out that the parameters a, b, c have to satisfy
the conditions: b ∈ R and a = c = −60. So, the
solutions of the relation (39) are limited to:

F̃ =

[
168 + b b2+167b−60

60 168 + b
−60 −b −60

]
and hence the initial problem has the following
solutions:

F = F̃C(1) =

[
168 + b b2+167b−60

60
−60 −b

]
for an arbitrary b ∈ R. The same result is obtained

if we set F̃ := BF and we apply the methodology
corresponding to the case when the initial system is
observable.

6 Conclusion
The paper has presented a methodology for
designing static output feedback controllers of
linear time-invariant systems. Two dual procedures
are presented corresponding to the cases when
the system matrix pairs (A,B) and (A,C) are
controllable and observable, respectively. The
algorithm relies on multi-linear algebra, algebraic
geometry and generalized-inverse matrix theory
and avoids altogether the calculation of the transfer
function as an intermediate step, which may be
numerically ill-conditioned. An example of a
minimal system (both controllable and observable)
illustrates our approach and shows that in this
case, under the assumption of identical closed-loop
poles, the two sets of output-feedback matrices,
which are obtained when either method is applied
(corresponding to the controllability of the pair
(A,B) or the observability of the pair (A,C)), are
identical.

References:

[1] H. Kimura, Pole assignment by gain output
feedback, IEEE Trans. Automat. Control, Vol.
AC-20, 1975, pp. 509-516.

[2] E. J. Davison and S. H. Wang, On pole
assignment in linearmultivariable systems using
output feedback, Trans. Automat. Control, Vol.
AC-20, 1975, pp. 516-518.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2025.20.8

S. Pantazopoulou, M. Tomas-Rodriguez, 
G. Halikias, G. Kalogeropoulos

E-ISSN: 2224-2856 70 Volume 20, 2025



[3] J. Leventides, Algebrogeometric and
Topological Methods in Control Theory,
PhD Thesis, The City University of London,
U.K., 1993.

[4] J. Leventides, N. Karcanias, A new sufficient
condition for arbitrary pole placement by real
constant output feedback, Systems and Control
Letters, Vol 3, 1992, pp. 191-200.

[5] A. Ben-Israel, T.N.E. Greville, Generalized
inverses: Theory and Applications, John Wiley
and Sons , Inc. New York, 1974.

[6] P. Lancaster, M. Tismenetsky, The Theory of
Matrices, Second Edition, Academic Press,
Orlando, FL, 1985.

[7] R. Penrose, A generalized inverse for matrices,
Proc. Cambridge Philos. Soc., Vol. 51, 1955, pp.
406-413.

[8] A. Bjerhammar, A generalized matrix algebra,
Kungl. Tekn. Högsk. Handl., 124, 1968, pp. 36.

[9] Ch. Giannakopoulos, Frequency Assignment
Problems of Linear Multivariable Problems: An
ExteriorAlgebra andAlgebraic Geometry Based
Approach, PhD Thesis, The City University of
London, U.K., 1984.

[10] G. Kalogeropoulos, D. Kytagias, K. Arvanitis,
On the computation of a reduced set of quadratic
Plucker relations and their use in the solution of
the determinantal assignment problem, Systems
Science, Vol. 26(2), 2000, pp. 5-25.

Contribution of Individual Authors to the 
Creation of a Scientific Article (Ghostwriting 
Policy) 
The authors equally contributed in the present 

research, at all stages from the formulation of the 

problem to the final findings and solution. 

 
   

 

Sources of Funding for Research Presented in a 
Scientific Article or Scientific Article Itself 
No funding was received for conducting this study. 

  
Conflict of Interest
The authors have no conflicts of interest to declare 

that are relevant to the content of this article. 
 
Creative Commons Attribution License 4.0 
(Attribution 4.0 International, CC BY 4.0) 
This article is published under the terms of the 

Creative Commons Attribution License 4.0 

https://creativecommons.org/licenses/by/4.0/deed.en

_US 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2025.20.8

S. Pantazopoulou, M. Tomas-Rodriguez, 
G. Halikias, G. Kalogeropoulos

E-ISSN: 2224-2856 71 Volume 20, 2025


	Introduction
	Mathematical Background of Pole Assignment
	Solution of the problem when the system is controllable
	Solution of the problem when the system is observable
	Example
	Conclusion



