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Abstract: - Optimizing warehouse logistics is a daunting challenge, especially in today's ever-changing 
industrial environment. As warehouses become complex labyrinths with robots dedicated to various tasks, 
heuristic methods become indispensable. Based on experience and intuition, these methods offer shortcuts to 
solving complex challenges, enabling rapid decisions without resorting to exhaustive research. The recent 
research, based on pre-established rules and previous experience, has found that heuristic methods are difficult 
to adapt quickly to frequent changes in logistical fields. The heuristic methods are weak when faced with new 
situations requiring frequent change. These constraints allow us to migrate to reinforcement learning, which 
introduces a dynamic and continuous path in logistics environments, unlike static heuristic methods. In this 
environment, this paper aims to provide agents with intelligent and structured strategies to manage navigation 
efficiently in such dynamic logistic environments, and to meet the challenges of modern warehouses and their 
respective targets in real time. To achieve this, we have hybridized the BAT algorithm of Meta heuristics and 
reinforcement learning algorithms, which will yield remarkable results. 
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1   Introduction 
Optimizing modern warehouse logistics is proving a 
formidable challenge, especially in a constantly 
evolving industrial context. Warehouse management 
is becoming more efficient, with robots dedicated to 
different tasks, enabling rapid decisions to be made 
without the need for exhaustive research [1], like the 
methods heuristic are limited in the face of frequent 
change, especially in the field of modern 
warehouses, this gap has allowed us to converge on 
reinforcement learning, [2]. 

However, the field of reinforcement learning 
(RL) has been evolving rapidly in recent years, 
showing the performance of its ability to solve a 
wide variety of problems. In many fields such as 
telecommunication to natural language processing 
robotics, energy distribution, finance and traffic 
control, using an agent-based trial-and-error process 

to reach the destination in real time and to maximize 
future rewards in modern logistics environments. In 
addition, the continued evolution of multi-agent 
systems (MAS) has become imperative, as MAS 
have proven their performance and ability to solve a 
wide variety of problems. 

On the other hand, some scientific research has 
shown that the direct implementation of RL to an 
SMA presents a number of difficulties, such as the 
fact that the actions of agents can act on the actions 
of other agents, and in particular non-stationarity.   

To meet this challenge, knowing that scalability 
and convergence is becoming a difficulty in the field 
of logistics, we have deployed a new approach to 
extend single-agent RL algorithms and incorporate 
multi-agent approaches. In this context, we 
deployed a new approach to extend single-agent RL 
algorithms and incorporate multi-agent approaches, 
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which in turn require an approach capable of 
handling the complexity and dynamism of multi-
agent environments, [3]. Therefore, we took these 
obstacles into consideration to develop our efficient 
multi-agent reinforcement learning (MARL) 
algorithm for real-world applications. 

 
 

2  Warehouse Logistics 
After an in-depth study of the current situation of 
warehouses. In recent years, researchers have used 
approaches based on rigid heuristic methods, but 
these methods have difficulties in handling frequent 
environments, especially for modern dynamic 
warehouse. 

Heuristic approaches have difficulty in 
efficiently solving logistics flows, whereas 
coordination systems are ready to make the optimal 
division of tasks between optimized route 
calculation and robots. 

A critical analysis of the literature shows the 
obstacles found in traditional methods in logistics 
environments, often resulting in additional costs. 
This rigidity not only leads to delays in reaching the 
destination in real time, but also limits companies 
seeking to optimize the logistics of their warehouses 
and act quickly according to the configuration and 
interim demand in real time, [4].  

Therefore, in this paper, we propose a hybrid 
solution between heuristic methods in terms of 
accuracy, and reinforcement learning methods to 
achieve a significant improvement in logistics 
management within warehouses, in line with our 
fundamental objectives. 
 
 
3  Methodology 
 

3.1  Reinforcement learning Agent  
As mentioned earlier, a reinforcement-learning 
agent engages in sequential decision making 
through its interactions with the environment. The 
environment is often represented as an infinite-
horizon, discounted Markov decision process 
(MDP); and commonly referred to as a Markov 
decision process, [5]. The CDM is used as a 
standard model to characterise the agent's decision-
making process when it has complete knowledge of 
the state of the system s. In this model, at each time 
step t, the agent selects an action at in response to 
the current state of the system, [6].  
 
 

3.2 Multi-Agent Reinforcement Learning 

Framework (MARL)   
In a similar context, multi-agent reinforcement 
learning (MARL) tackles the problems associated 
with sequential decision-making, but with the added 
complexity of the presence of several agents. In this 
scenario, both the evolution of the state of the 
system and the rewards received by each agent are 
influenced by the collective actions of all the agents. 
In particular, each agent strives to optimise its own 
long-term reward, which becomes a function of the 
policies adopted by all the other agents. This general 
model has various applications in practical contexts. 
In essence [7], there are two apparently distinct but 
closely interdependent theoretical frameworks for 
LRA: Markovian/stochastic games and extensive-
form games. 
 
3.3  Sockets 
Sockets are programming interfaces that enable 
bidirectional communication between two distinct 
processes, either on the same machine or across a 
network. First introduced with the BSD distributions 
in 1984 and widely used in UNIX systems, sockets 
act as endpoints, associated with port numbers, and 
facilitate the transfer of software data between 
applications. These interfaces are also characterised 
by their association with specific protocols and are 
fundamental to the establishment of connections and 
the transmission of data flows, thus contributing to 
the implementation of efficient communications 
within a computing environment. 
Sockets offer two distinct modes of communication: 

- Connected mode, similar to telephone 
communication, uses the TCP protocol. In this 
mode, a persistent connection is established 
between the two processes, eliminating the 
need to specify the destination address each 
time data is sent. 

-   The non-connected mode, which resembles a 
mail communication, uses the UDP protocol. 
In this mode, the destination address must be 
provided for each transmission, and no 
acknowledgement of receipt is generated, [8]. 

To simplify handling, sockets are designed to 
preserve the semantics of system input/output 
operations, just like file operations (create, open, 
read, write, close). 

When transmitting data between two sockets in 
connected mode, it is essential to distinguish 
between the socket used by the program requesting 
the connection (client) and that used by the program 
accepting the connections (server), [9]. 

A server, in this context, is a program that waits 
for connections via a socket and then handles all 
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incoming connections. On the other hand, a client is 
a program that associates with a server using a 
socket. 
 
3.4  The Bat Algorithm   
The Bat algorithm, conceived in 2010, [10], 
introduces a contemporary metaheuristic approach 
rooted in swarm intelligence. It derives inspiration 
from the foraging behavior of microbats, 
particularly their variable pulse emission rate and 
loudness. The Bat algorithm's development is 
guided by three fundamental principles: firstly, bats 
employ sound wave (ultrasound) reflection for prey 
detection during flight in darkness; secondly, bats 
engage in a randomized flying pattern for foraging, 
influenced by parameters such as velocity 𝑣𝑖 at 
position (𝑥𝑖), frequency (𝑞𝑖), and loudness (𝐿𝑖); and 
thirdly, loudness varies from a substantial positive 
value (𝐿0) to a consistent minimum (𝐿𝑚𝑖𝑛). To 
approximate the target location, each bat is assigned 
a randomly selected frequency (𝑞𝑖) for emitted 
pulses, uniformly drawn from the interval [𝑞𝑚𝑖𝑛, 
𝑞𝑚𝑎𝑥], with the ability to automatically adjust the 
frequency within the same range. The pulse 
emission rate (𝑟𝑖) can also be tuned within the 
interval [0,1], where 0 signifies no pulse emission, 
and 1 represents the maximum pulse emission rate. 
For a virtual bat and its position updating strategy in 
a D-dimensional search space, the new solution 
(𝑥𝑖

𝑡), frequency (𝑞𝑖
𝑡), and velocity (𝑦𝑖

𝑡),) (for each 
bat in the population) at generation t are determined 
by  Eq. 1, Eq. 2.and Eq. 3 :  

𝑞𝑖
(𝑡)

=  𝑞𝑚𝑖𝑛   + (𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛)𝛽         (1) 
 

𝑣𝑖
(𝑡+1)

=  𝑣𝑖
(𝑡)

+ (𝑥𝑖
(𝑡)

− 𝑥𝐺𝐵𝑒𝑠𝑡) 𝑞𝑖
(𝑡)

    (2) 
 

𝑥𝑖
𝑡+1)

 =  𝑥𝑖
(𝑡)

+ 𝑣𝑖

(𝑡+1)
                              (3) 

 
In this context, the parameter β is confined to 

the interval [0, 1] and is denoted by a randomly 
distributed value following a uniform distribution. 
The expression 𝑥𝐺𝐵𝑒𝑠𝑡, represents the current global 
optimum solution, as determined by the evaluation 
and comparison of all solutions within the 
population of n bats. After the update of velocities 
and positions for the bats, the initiation of the local 
search component occurs only when a randomly 
generated number exceeds the pulse emission rate 
𝑟𝑖. Subsequently, a solution is selected from the 
existing best solutions, and a new position for each 
bat is generated locally through a random walk. This 
random walk is characterized by a process that 
involves by Eq. 4: 

𝑥𝑛𝑒𝑤
(𝑡)

=  𝑥𝐺𝑏𝑒𝑠𝑡 +  𝜀𝐿(𝑡)                     (4) 
 

In this context, the variable ε is constrained 
within the interval [0, 1] and represents a random 
number uniformly distributed. The expression 𝐿𝑡 = { 
𝐿𝑖

𝑡 } signifies the average loudness value calculated 
across the population of n bats at generation t. 
Regarding the selection process, a newly generated 
solution is considered acceptable if a uniformly 
generated random number falls below the current 
loudness 𝐿𝑖, and the fitness value of the current 
solution, denoted as 𝑓(𝑥𝑖), surpasses that of the 
global best solution, f𝑓(𝑥𝐺𝐵𝑒𝑠𝑡).  

To strike a balance between exploration and 
exploitation throughout the search process, 
adjustments to both the loudness 𝐿𝑡 and pulse 
emission rate 𝑟𝑖 occur exclusively when the 
candidate solution demonstrates improvement with 
the progression of iterations, [11]. These 
adjustments unfold through a procedural mechanism 
involving By Eq. 5: 
 
𝐿𝑖

(𝑡+1)
=  𝛼𝐿𝑖

(𝑡)
, 𝑟𝑖

(𝑡)
=  𝑟𝑖

(0)
[1 − exp(−𝛾(𝑡)]   𝐸𝑞. 5  

 
In this scenario, the constants α and γ are 

predefined values. Generally, once a bat 
successfully pinpoints its prey's location, there is a 
decrease in loudness and an escalation in pulse rate.  

The iterative progression of the entire Bat 
algorithm persists until a predefined stopping 
criterion is satisfied. The procedural steps of the 
original Bat algorithm are concisely delineated in 
the pseudo code [10] depicted in Figure 1. 
 

Fig. 1: Bat algorithm 

Population :  
𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2 . . . , 𝑦𝑖𝑑)𝑡 , 𝑓𝑜𝑟 𝑖 = 1,2, . . 𝑁𝑃) 
Rate 𝑟𝑖, 
Frequency 𝑞𝑖  𝑎𝑡 𝑥𝑖 ,  
Number of generation 𝐺𝑚𝑎𝑥 , 
Loudness 𝑧𝑖 
Best solution 𝑥𝐺𝑏𝑠𝑒𝑡 , 
 
If (t < 𝐺𝑚𝑎𝑥 ) do new population 𝑦𝑖  ,  
      If (rand > 𝑟𝑖, ) select best solution 𝑥𝐺𝑏𝑠𝑒𝑡 
      End if  
Generate a new population randomly  
If (rand < 𝑧𝑖 and f (𝑥𝑖) < f(𝑥𝐺𝑏𝑠𝑒𝑡 ,)) 
Add a new solution  
Increase population 
End if  
Update the 𝑥𝐺𝑏𝑠𝑒𝑡 
Increase the generation  
End if  
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3.5  The Q-learning Algorithm 
Q-Learning is a reinforcement learning strategy that 
identifies the optimal next action [12], based on the 
current state, selecting this action randomly with the 
aim of maximizing the reward. This model-free and 
off-policy reinforcement learning approach 
determines the best action for an agent given its 
present state, allowing the agent to decide the 
subsequent action based on its position in the 
environment. The absence of a predefined policy in 
Q-learning means that the model can either establish 
its own rules or operate outside a given policy. 

The model's goal is to identify the most 
favorable action based on its current state, relying 
on predictions of expected responses from the 
environment rather than adhering to a predefined 
policy. An example application of Q-learning is an 
advertisement recommendation system, where 
traditional systems rely on past purchases or visited 
websites to make recommendations, [13]. Key 
concepts essential to Q-learning include states 
(representing the agent's current position), actions 
(the steps taken in a particular state), rewards 
(positive or negative outcomes for each action), 
episodes (concluding when the agent reaches a 
terminal state), Q-values (determining the quality of 
an action in a specific state), and Temporal 
Difference (a formula for computing Q-values based 
on current and previous states and actions). 

The Bellman equation plays a crucial role in Q-
learning [14], helping determine the value of a 
particular state and assessing the significance of 
being in or taking that state. It calculates the agent's 
next state by considering the current state, 
associated reward, expected maximum reward, and 
a discount rate that influences the importance of the 
current state. The learning rate also affects the 
model's learning speed, [15]. 

But, how to create a Q-Table ?. During the 
execution of our algorithm, we encounter multiple 
solutions [16] and the agent traverses various paths. 
The challenge is to identify the optimal path among 
these alternatives, and this task is accomplished 
through the creation of a Q-Table. The Q-Table 
functions as a mechanism to identify the optimal 
action for each state within the environment. By 
applying the Bellman equation at each state, we 
compute the anticipated future state and the 
corresponding reward, preserving these findings in 
the Q-Table for subsequent comparison with other 
states. Let's exemplify the procedure of formulating 
a Q-Table for an agent assigned with the objectives 
of learning to run, fetch an item, and sit on 
command. The stages encompassed in constructing 
a Q-Table are as follows: 

Step 1: Establish an initial Q-Table where all values 
are set to 0. 

At the outset, the initial values assigned to all 
states and rewards are set to 0. Take into account the 
Q-Table presented below, which illustrates the 
learning process of a dog simulator as it undertakes 
various actions as shown in Table 1. 

 
Table 1. Q-Table 1 

 
 
Step 2: Select an action and implement it. Adjust the 
values in the table accordingly. 

This marks the initial phase where no other 
actions have been taken yet. Suppose our initial goal 
is for the agent to sit, which it accomplishes. The 
subsequent table update unfolds as follows in Table 
2. 
 

Table 2. Q-Table 2 

 
 
Step 3: Retrieve the reward value and compute the 
Q-value using the Bellman equation.  

For the action taken, we need to compute the 
actual reward value and the Q-value Q(S,A), as 
represented in Table 3. 
 

Table 3. Q-Table 3 
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Step 4: Continue in the same manner until the table 
is filled or an episode ends. 

The agent keeps taking actions, and for each 
action, the reward and Q-value are computed, and 
the table is updated as shown in Table 4. 
 

Table 4. Q-Table 4 

 
 

In the implementation of our solution, we 
strategically employed an innovative approach by 
separating the reinforcement learning model from 
the multi-agent system. This judicious decision 
provides several key advantages for optimizing the 
overall solution. First and foremost, the clear 
delineation of responsibilities between the 
reinforcement learning model and the multi-agent 
system enhances modularity. This modular design 
enables independent development, testing, and 
enhancement of each component, streamlining the 
maintenance and scalability of the entire system. 

This approach significantly improves resource 
management efficiency by segregating the 
reinforcement learning model as an external entity, 
serving as a server, and positioning the multi-agent 
system as a client. This design allows for effective 
distribution of processing load, mitigating 
bottlenecks and optimizing the overall system 
performance. To gain a comprehensive 
understanding of the system's architecture in Figure 
2, and for a more in-depth understanding of our 
system description, as shown in Figure 3. 
 

 
Fig. 2: System's Architecture 

 
Fig. 3: description of our system  
 
 
4   Discussion and Results 
The environment is intricately characterized by a 
structured grid, spanning dimensions x * y.  
 
Reward Function: 
In this code, the reward function is defined to 
determine the reward a robot receives as a function 
of its current state, the action performed, the next 
state and the target state. The function is structured 
as follows, here's an explanation of the logic: 
 
- If the next state is an obstacle (border or robot), the 
robot receives a penalty of -100. 
- If the next state is the target state, the robot 
receives a reward of 100. 
- Otherwise, the robot receives a default reward of-
1. 
 
Agents (Robots): 

The Robot Agent, a key player in the logistics 
system, plays a central role in carrying out the tasks 
assigned by the Warehouse Management Agent.  
 

Training Process using Q-learning: 
Our iterative learning approach is based on the Q 
learning algorithm, starting with the definition of 
actions and states, as well as size and grid 
parameters, and the creation of robot-specific Q 
tables. These tables are essential because they 
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contain values linked to the robots' states and 
actions so that they can make decisions in the future. 

To assess the effectiveness of our solution, we 
calculate the mean Q-values for each robot, 
providing insights into their learning progress within 
the environment. The graph visually represents this 
performance as shown in Figure 4. 

 

 
Fig. 4: Calculate the average values of Q 
 

In this graph, the x axis represents the different 
states and the y axis represents the Q values. The 
results in Figure 4 show an increase in the average 
Q values for all robots over the episodes. Each 
action (Action 3, Action 2, Action 1, Action 0) is 
represented by a linear plot. Each action (Action 3, 
Action 2, Action 1, Action 0) is represented by a 
linear plot, highlighting the average values of Q 
over the episodes. 

Notably, for all actions, we observe a 
continuous increase in the Q values, which indicates 
that the robots are executing the actions more 
efficiently. 

To showcase the performance and adaptability 
of our algorithms, we conducted tests in two distinct 
environmental dimensions. In the first scenario, 
three robots navigated a 9x9 grid. The graphical 
representation illustrates each robot's successful 
journey from their starting points to their respective 
targets, demonstrating an avoidance of borders and 
other robots. Notably, we applied the Bat algorithm 
to this scenario, yielding identical results as shown 
in Figure 5.  

In the second scenario, as shown in Figure 6, we 
examined the capabilities of our approach with four 
robots operating in a larger 14x14 grid. All robots 
successfully reached their targets without 
encountering obstacles or colliding with other 
robots. However, deploying the Bat algorithm for 

this scenario presented challenges, requiring 
significant adjustments to hyperparameters for 
proper adaptation to the altered environment. 

This highlights the inherent flexibility of 
reinforcement learning compared to heuristic 
methods. 

Our findings strongly support the hypothesis 
that heuristic methods introduce rigidity to the 
system. In contrast, reinforcement learning exhibits 
superior adaptability, enabling effective 
performance across diverse scenarios. 
 
 

 
Fig. 5: Applied Bat algorithm to our scenario 
 
 

 
Fig. 6: Applied Bat algorithm to our scenario with 
four robots 
 

Following a thorough analysis of execution 
times with different algorithms, it is clear that Q-
learning surpasses heuristic methods. The discerned 
trend underscores Q-learning's superior flexibility, 
leading to improved performance and optimization 
in warehouse logistics. This is attributed to our 
approach of implementing the solution separately; 
the reinforcement learning model operates 
independently from the multi-agent system, 
functioning as microservices. This modular setup 
allows each component to operate efficiently in 
tandem as shown in Table 5. 
 

Table 5. Result of simulation 
Solution of Q-learning Solution with BA 
1min 2min 
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5   Conclusion   
The main aim of our project was to optimize 
warehouse logistics using reinforcement learning, 
and to compare it with heuristic methods. To 
achieve this, we adopted an innovative approach by 
separating the reinforcement learning processing 
from the multi-agent system, thus enabling separate 
execution of the different tasks. This approach 
proved to be extremely advantageous, as previously 
demonstrated when comparing it with other 
available methods. The main difficulties lay in 
understanding metaheuristics and reinforcement 
learning, requiring considerable effort to master the 
tools and technologies associated with these fields. 
We are proud to announce that we have fully 
covered the core functionalities of the solution, 
alleviating the rigidity of heuristic methods and 
introducing an innovative approach. In terms of 
future prospects, we plan to enable the solution to be 
implemented in real time in response to frequent 
warehouse changes, introducing the possibility of 
real-time training to maintain the relevance and 
effectiveness of our solution over time. 
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