
Robotic Agents through Scalable Multi-agent Reinforcement Learning

for Optimization of Warehouse Logistics

HALA KHANKHOUR1,*, CHAKIR TAJANI2, NAJAT RAFALIA1, JAAFAR ABOUCHABAKA1

1Department of Computer Science, Faculty of Sciences,
Ibn Tofail University,

Kenitra,
MOROCCO

2SMAD Team, Department of Mathematics,

Polydisciplinary Faculty of Larache,
Abdelmalek Essaidi University,

MOROCCO

*Corresponding Author

Abstract: - Optimizing warehouse logistics is a daunting challenge, especially in today's ever-changing
industrial environment. As warehouses become complex labyrinths with robots dedicated to various tasks,
heuristic methods become indispensable. Based on experience and intuition, these methods offer shortcuts to
solving complex challenges, enabling rapid decisions without resorting to exhaustive research. The recent
research, based on pre-established rules and previous experience, has found that heuristic methods are difficult
to adapt quickly to frequent changes in logistical fields. The heuristic methods are weak when faced with new
situations requiring frequent change. These constraints allow us to migrate to reinforcement learning, which
introduces a dynamic and continuous path in logistics environments, unlike static heuristic methods. In this
environment, this paper aims to provide agents with intelligent and structured strategies to manage navigation
efficiently in such dynamic logistic environments, and to meet the challenges of modern warehouses and their
respective targets in real time. To achieve this, we have hybridized the BAT algorithm of Meta heuristics and
reinforcement learning algorithms, which will yield remarkable results.

Key-Words: - Multi-agent reinforcement Learning, Warehouse-Logistics, Robotic Agents, artificial

intelligence, Bat algorithm, Q-learning Algorithm, Sockets.

Received: October 4, 2024. Revised: November 16, 2024. Accepted: December 19, 2024. Published: March 26, 2025.

1 Introduction
Optimizing modern warehouse logistics is proving a
formidable challenge, especially in a constantly
evolving industrial context. Warehouse management
is becoming more efficient, with robots dedicated to
different tasks, enabling rapid decisions to be made
without the need for exhaustive research [1], like the
methods heuristic are limited in the face of frequent
change, especially in the field of modern
warehouses, this gap has allowed us to converge on
reinforcement learning, [2].

However, the field of reinforcement learning
(RL) has been evolving rapidly in recent years,
showing the performance of its ability to solve a
wide variety of problems. In many fields such as
telecommunication to natural language processing
robotics, energy distribution, finance and traffic
control, using an agent-based trial-and-error process

to reach the destination in real time and to maximize
future rewards in modern logistics environments. In
addition, the continued evolution of multi-agent
systems (MAS) has become imperative, as MAS
have proven their performance and ability to solve a
wide variety of problems.

On the other hand, some scientific research has
shown that the direct implementation of RL to an
SMA presents a number of difficulties, such as the
fact that the actions of agents can act on the actions
of other agents, and in particular non-stationarity.

To meet this challenge, knowing that scalability
and convergence is becoming a difficulty in the field
of logistics, we have deployed a new approach to
extend single-agent RL algorithms and incorporate
multi-agent approaches. In this context, we
deployed a new approach to extend single-agent RL
algorithms and incorporate multi-agent approaches,

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2025.20.5

Hala Khankhour, Chakir Tajani,
Najat Rafalia, Jaafar Abouchabaka

E-ISSN: 2224-2856 42 Volume 20, 2025

which in turn require an approach capable of
handling the complexity and dynamism of multi-
agent environments, [3]. Therefore, we took these
obstacles into consideration to develop our efficient
multi-agent reinforcement learning (MARL)
algorithm for real-world applications.

2 Warehouse Logistics
After an in-depth study of the current situation of
warehouses. In recent years, researchers have used
approaches based on rigid heuristic methods, but
these methods have difficulties in handling frequent
environments, especially for modern dynamic
warehouse.

Heuristic approaches have difficulty in
efficiently solving logistics flows, whereas
coordination systems are ready to make the optimal
division of tasks between optimized route
calculation and robots.

A critical analysis of the literature shows the
obstacles found in traditional methods in logistics
environments, often resulting in additional costs.
This rigidity not only leads to delays in reaching the
destination in real time, but also limits companies
seeking to optimize the logistics of their warehouses
and act quickly according to the configuration and
interim demand in real time, [4].

Therefore, in this paper, we propose a hybrid
solution between heuristic methods in terms of
accuracy, and reinforcement learning methods to
achieve a significant improvement in logistics
management within warehouses, in line with our
fundamental objectives.

3 Methodology

3.1 Reinforcement learning Agent
As mentioned earlier, a reinforcement-learning
agent engages in sequential decision making
through its interactions with the environment. The
environment is often represented as an infinite-
horizon, discounted Markov decision process
(MDP); and commonly referred to as a Markov
decision process, [5]. The CDM is used as a
standard model to characterise the agent's decision-
making process when it has complete knowledge of
the state of the system s. In this model, at each time
step t, the agent selects an action at in response to
the current state of the system, [6].

3.2 Multi-Agent Reinforcement Learning

Framework (MARL)
In a similar context, multi-agent reinforcement
learning (MARL) tackles the problems associated
with sequential decision-making, but with the added
complexity of the presence of several agents. In this
scenario, both the evolution of the state of the
system and the rewards received by each agent are
influenced by the collective actions of all the agents.
In particular, each agent strives to optimise its own
long-term reward, which becomes a function of the
policies adopted by all the other agents. This general
model has various applications in practical contexts.
In essence [7], there are two apparently distinct but
closely interdependent theoretical frameworks for
LRA: Markovian/stochastic games and extensive-
form games.

3.3 Sockets
Sockets are programming interfaces that enable
bidirectional communication between two distinct
processes, either on the same machine or across a
network. First introduced with the BSD distributions
in 1984 and widely used in UNIX systems, sockets
act as endpoints, associated with port numbers, and
facilitate the transfer of software data between
applications. These interfaces are also characterised
by their association with specific protocols and are
fundamental to the establishment of connections and
the transmission of data flows, thus contributing to
the implementation of efficient communications
within a computing environment.
Sockets offer two distinct modes of communication:

- Connected mode, similar to telephone
communication, uses the TCP protocol. In this
mode, a persistent connection is established
between the two processes, eliminating the
need to specify the destination address each
time data is sent.

- The non-connected mode, which resembles a
mail communication, uses the UDP protocol.
In this mode, the destination address must be
provided for each transmission, and no
acknowledgement of receipt is generated, [8].

To simplify handling, sockets are designed to
preserve the semantics of system input/output
operations, just like file operations (create, open,
read, write, close).

When transmitting data between two sockets in
connected mode, it is essential to distinguish
between the socket used by the program requesting
the connection (client) and that used by the program
accepting the connections (server), [9].

A server, in this context, is a program that waits
for connections via a socket and then handles all

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2025.20.5

Hala Khankhour, Chakir Tajani,
Najat Rafalia, Jaafar Abouchabaka

E-ISSN: 2224-2856 43 Volume 20, 2025

incoming connections. On the other hand, a client is
a program that associates with a server using a
socket.

3.4 The Bat Algorithm
The Bat algorithm, conceived in 2010, [10],
introduces a contemporary metaheuristic approach
rooted in swarm intelligence. It derives inspiration
from the foraging behavior of microbats,
particularly their variable pulse emission rate and
loudness. The Bat algorithm's development is
guided by three fundamental principles: firstly, bats
employ sound wave (ultrasound) reflection for prey
detection during flight in darkness; secondly, bats
engage in a randomized flying pattern for foraging,
influenced by parameters such as velocity 𝑣𝑖 at
position (𝑥𝑖), frequency (𝑞𝑖), and loudness (𝐿𝑖); and
thirdly, loudness varies from a substantial positive
value (𝐿0) to a consistent minimum (𝐿𝑚𝑖𝑛). To
approximate the target location, each bat is assigned
a randomly selected frequency (𝑞𝑖) for emitted
pulses, uniformly drawn from the interval [𝑞𝑚𝑖𝑛,
𝑞𝑚𝑎𝑥], with the ability to automatically adjust the
frequency within the same range. The pulse
emission rate (𝑟𝑖) can also be tuned within the
interval [0,1], where 0 signifies no pulse emission,
and 1 represents the maximum pulse emission rate.
For a virtual bat and its position updating strategy in
a D-dimensional search space, the new solution
(𝑥𝑖

𝑡), frequency (𝑞𝑖
𝑡), and velocity (𝑦𝑖

𝑡),) (for each
bat in the population) at generation t are determined
by Eq. 1, Eq. 2.and Eq. 3 :

𝑞𝑖
(𝑡)

= 𝑞𝑚𝑖𝑛 + (𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛)𝛽 (1)

𝑣𝑖
(𝑡+1)

= 𝑣𝑖
(𝑡)

+ (𝑥𝑖
(𝑡)

− 𝑥𝐺𝐵𝑒𝑠𝑡) 𝑞𝑖
(𝑡)

 (2)

𝑥𝑖
𝑡+1)

 = 𝑥𝑖
(𝑡)

+ 𝑣𝑖

(𝑡+1)
 (3)

In this context, the parameter β is confined to

the interval [0, 1] and is denoted by a randomly
distributed value following a uniform distribution.
The expression 𝑥𝐺𝐵𝑒𝑠𝑡, represents the current global
optimum solution, as determined by the evaluation
and comparison of all solutions within the
population of n bats. After the update of velocities
and positions for the bats, the initiation of the local
search component occurs only when a randomly
generated number exceeds the pulse emission rate
𝑟𝑖. Subsequently, a solution is selected from the
existing best solutions, and a new position for each
bat is generated locally through a random walk. This
random walk is characterized by a process that
involves by Eq. 4:

𝑥𝑛𝑒𝑤
(𝑡)

= 𝑥𝐺𝑏𝑒𝑠𝑡 + 𝜀𝐿(𝑡) (4)

In this context, the variable ε is constrained
within the interval [0, 1] and represents a random
number uniformly distributed. The expression 𝐿𝑡 = {
𝐿𝑖

𝑡 } signifies the average loudness value calculated
across the population of n bats at generation t.
Regarding the selection process, a newly generated
solution is considered acceptable if a uniformly
generated random number falls below the current
loudness 𝐿𝑖, and the fitness value of the current
solution, denoted as 𝑓(𝑥𝑖), surpasses that of the
global best solution, f𝑓(𝑥𝐺𝐵𝑒𝑠𝑡).

To strike a balance between exploration and
exploitation throughout the search process,
adjustments to both the loudness 𝐿𝑡 and pulse
emission rate 𝑟𝑖 occur exclusively when the
candidate solution demonstrates improvement with
the progression of iterations, [11]. These
adjustments unfold through a procedural mechanism
involving By Eq. 5:

𝐿𝑖

(𝑡+1)
= 𝛼𝐿𝑖

(𝑡)
, 𝑟𝑖

(𝑡)
= 𝑟𝑖

(0)
[1 − exp(−𝛾(𝑡)] 𝐸𝑞. 5

In this scenario, the constants α and γ are

predefined values. Generally, once a bat
successfully pinpoints its prey's location, there is a
decrease in loudness and an escalation in pulse rate.

The iterative progression of the entire Bat
algorithm persists until a predefined stopping
criterion is satisfied. The procedural steps of the
original Bat algorithm are concisely delineated in
the pseudo code [10] depicted in Figure 1.

Fig. 1: Bat algorithm

Population :
𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2 . . . , 𝑦𝑖𝑑)𝑡 , 𝑓𝑜𝑟 𝑖 = 1,2, . . 𝑁𝑃)
Rate 𝑟𝑖,
Frequency 𝑞𝑖 𝑎𝑡 𝑥𝑖 ,
Number of generation 𝐺𝑚𝑎𝑥 ,
Loudness 𝑧𝑖
Best solution 𝑥𝐺𝑏𝑠𝑒𝑡 ,

If (t < 𝐺𝑚𝑎𝑥) do new population 𝑦𝑖 ,
 If (rand > 𝑟𝑖,) select best solution 𝑥𝐺𝑏𝑠𝑒𝑡
 End if
Generate a new population randomly
If (rand < 𝑧𝑖 and f (𝑥𝑖) < f(𝑥𝐺𝑏𝑠𝑒𝑡 ,))
Add a new solution
Increase population
End if
Update the 𝑥𝐺𝑏𝑠𝑒𝑡
Increase the generation
End if

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2025.20.5

Hala Khankhour, Chakir Tajani,
Najat Rafalia, Jaafar Abouchabaka

E-ISSN: 2224-2856 44 Volume 20, 2025

3.5 The Q-learning Algorithm
Q-Learning is a reinforcement learning strategy that
identifies the optimal next action [12], based on the
current state, selecting this action randomly with the
aim of maximizing the reward. This model-free and
off-policy reinforcement learning approach
determines the best action for an agent given its
present state, allowing the agent to decide the
subsequent action based on its position in the
environment. The absence of a predefined policy in
Q-learning means that the model can either establish
its own rules or operate outside a given policy.

The model's goal is to identify the most
favorable action based on its current state, relying
on predictions of expected responses from the
environment rather than adhering to a predefined
policy. An example application of Q-learning is an
advertisement recommendation system, where
traditional systems rely on past purchases or visited
websites to make recommendations, [13]. Key
concepts essential to Q-learning include states
(representing the agent's current position), actions
(the steps taken in a particular state), rewards
(positive or negative outcomes for each action),
episodes (concluding when the agent reaches a
terminal state), Q-values (determining the quality of
an action in a specific state), and Temporal
Difference (a formula for computing Q-values based
on current and previous states and actions).

The Bellman equation plays a crucial role in Q-
learning [14], helping determine the value of a
particular state and assessing the significance of
being in or taking that state. It calculates the agent's
next state by considering the current state,
associated reward, expected maximum reward, and
a discount rate that influences the importance of the
current state. The learning rate also affects the
model's learning speed, [15].

But, how to create a Q-Table ?. During the
execution of our algorithm, we encounter multiple
solutions [16] and the agent traverses various paths.
The challenge is to identify the optimal path among
these alternatives, and this task is accomplished
through the creation of a Q-Table. The Q-Table
functions as a mechanism to identify the optimal
action for each state within the environment. By
applying the Bellman equation at each state, we
compute the anticipated future state and the
corresponding reward, preserving these findings in
the Q-Table for subsequent comparison with other
states. Let's exemplify the procedure of formulating
a Q-Table for an agent assigned with the objectives
of learning to run, fetch an item, and sit on
command. The stages encompassed in constructing
a Q-Table are as follows:

Step 1: Establish an initial Q-Table where all values
are set to 0.

At the outset, the initial values assigned to all
states and rewards are set to 0. Take into account the
Q-Table presented below, which illustrates the
learning process of a dog simulator as it undertakes
various actions as shown in Table 1.

Table 1. Q-Table 1

Step 2: Select an action and implement it. Adjust the
values in the table accordingly.

This marks the initial phase where no other
actions have been taken yet. Suppose our initial goal
is for the agent to sit, which it accomplishes. The
subsequent table update unfolds as follows in Table
2.

Table 2. Q-Table 2

Step 3: Retrieve the reward value and compute the
Q-value using the Bellman equation.

For the action taken, we need to compute the
actual reward value and the Q-value Q(S,A), as
represented in Table 3.

Table 3. Q-Table 3

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2025.20.5

Hala Khankhour, Chakir Tajani,
Najat Rafalia, Jaafar Abouchabaka

E-ISSN: 2224-2856 45 Volume 20, 2025

Step 4: Continue in the same manner until the table
is filled or an episode ends.

The agent keeps taking actions, and for each
action, the reward and Q-value are computed, and
the table is updated as shown in Table 4.

Table 4. Q-Table 4

In the implementation of our solution, we
strategically employed an innovative approach by
separating the reinforcement learning model from
the multi-agent system. This judicious decision
provides several key advantages for optimizing the
overall solution. First and foremost, the clear
delineation of responsibilities between the
reinforcement learning model and the multi-agent
system enhances modularity. This modular design
enables independent development, testing, and
enhancement of each component, streamlining the
maintenance and scalability of the entire system.

This approach significantly improves resource
management efficiency by segregating the
reinforcement learning model as an external entity,
serving as a server, and positioning the multi-agent
system as a client. This design allows for effective
distribution of processing load, mitigating
bottlenecks and optimizing the overall system
performance. To gain a comprehensive
understanding of the system's architecture in Figure
2, and for a more in-depth understanding of our
system description, as shown in Figure 3.

Fig. 2: System's Architecture

Fig. 3: description of our system

4 Discussion and Results
The environment is intricately characterized by a
structured grid, spanning dimensions x * y.

Reward Function:
In this code, the reward function is defined to
determine the reward a robot receives as a function
of its current state, the action performed, the next
state and the target state. The function is structured
as follows, here's an explanation of the logic:

- If the next state is an obstacle (border or robot), the
robot receives a penalty of -100.
- If the next state is the target state, the robot
receives a reward of 100.
- Otherwise, the robot receives a default reward of-
1.

Agents (Robots):

The Robot Agent, a key player in the logistics
system, plays a central role in carrying out the tasks
assigned by the Warehouse Management Agent.

Training Process using Q-learning:
Our iterative learning approach is based on the Q
learning algorithm, starting with the definition of
actions and states, as well as size and grid
parameters, and the creation of robot-specific Q
tables. These tables are essential because they

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2025.20.5

Hala Khankhour, Chakir Tajani,
Najat Rafalia, Jaafar Abouchabaka

E-ISSN: 2224-2856 46 Volume 20, 2025

contain values linked to the robots' states and
actions so that they can make decisions in the future.

To assess the effectiveness of our solution, we
calculate the mean Q-values for each robot,
providing insights into their learning progress within
the environment. The graph visually represents this
performance as shown in Figure 4.

Fig. 4: Calculate the average values of Q

In this graph, the x axis represents the different
states and the y axis represents the Q values. The
results in Figure 4 show an increase in the average
Q values for all robots over the episodes. Each
action (Action 3, Action 2, Action 1, Action 0) is
represented by a linear plot. Each action (Action 3,
Action 2, Action 1, Action 0) is represented by a
linear plot, highlighting the average values of Q
over the episodes.

Notably, for all actions, we observe a
continuous increase in the Q values, which indicates
that the robots are executing the actions more
efficiently.

To showcase the performance and adaptability
of our algorithms, we conducted tests in two distinct
environmental dimensions. In the first scenario,
three robots navigated a 9x9 grid. The graphical
representation illustrates each robot's successful
journey from their starting points to their respective
targets, demonstrating an avoidance of borders and
other robots. Notably, we applied the Bat algorithm
to this scenario, yielding identical results as shown
in Figure 5.

In the second scenario, as shown in Figure 6, we
examined the capabilities of our approach with four
robots operating in a larger 14x14 grid. All robots
successfully reached their targets without
encountering obstacles or colliding with other
robots. However, deploying the Bat algorithm for

this scenario presented challenges, requiring
significant adjustments to hyperparameters for
proper adaptation to the altered environment.

This highlights the inherent flexibility of
reinforcement learning compared to heuristic
methods.

Our findings strongly support the hypothesis
that heuristic methods introduce rigidity to the
system. In contrast, reinforcement learning exhibits
superior adaptability, enabling effective
performance across diverse scenarios.

Fig. 5: Applied Bat algorithm to our scenario

Fig. 6: Applied Bat algorithm to our scenario with
four robots

Following a thorough analysis of execution
times with different algorithms, it is clear that Q-
learning surpasses heuristic methods. The discerned
trend underscores Q-learning's superior flexibility,
leading to improved performance and optimization
in warehouse logistics. This is attributed to our
approach of implementing the solution separately;
the reinforcement learning model operates
independently from the multi-agent system,
functioning as microservices. This modular setup
allows each component to operate efficiently in
tandem as shown in Table 5.

Table 5. Result of simulation
Solution of Q-learning Solution with BA
1min 2min

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2025.20.5

Hala Khankhour, Chakir Tajani,
Najat Rafalia, Jaafar Abouchabaka

E-ISSN: 2224-2856 47 Volume 20, 2025

5 Conclusion
The main aim of our project was to optimize
warehouse logistics using reinforcement learning,
and to compare it with heuristic methods. To
achieve this, we adopted an innovative approach by
separating the reinforcement learning processing
from the multi-agent system, thus enabling separate
execution of the different tasks. This approach
proved to be extremely advantageous, as previously
demonstrated when comparing it with other
available methods. The main difficulties lay in
understanding metaheuristics and reinforcement
learning, requiring considerable effort to master the
tools and technologies associated with these fields.
We are proud to announce that we have fully
covered the core functionalities of the solution,
alleviating the rigidity of heuristic methods and
introducing an innovative approach. In terms of
future prospects, we plan to enable the solution to be
implemented in real time in response to frequent
warehouse changes, introducing the possibility of
real-time training to maintain the relevance and
effectiveness of our solution over time.

Declaration of Generative AI and AI-assisted

Technologies in the Writing Process

The authors wrote, reviewed and edited the content
as needed and they have not utilised artificial
intelligence (AI) tools. The authors take full
responsibility for the content of the publication.

References:

[1] C. G. Petersen and R. W. Schmenner, “An
evaluation of routing and volume-based
storage policies in an order picking
operation,” Decision Sciences, vol. 30, no. 2,
pp. 481–501, Spring 1999. DOI:
10.1111/j.1540-5915.1999.tb01619.x.

[2] N. P. Karpova, “Modern warehouse
management systems,” In: Digital
Technologies in the New Socio-Economic
Reality. The 9th International Scientific

Conference on Digital Transformation of the

Economy: Challenges, Trends and New

Opportunities, ISCDTE, Samara 27 April, vol.
304, spring 2022. pp. 261-267. DOI:
10.1007/978-3-030-83175-2_34.

[3] P. O. Dusadeerungsikul, X. He, M. Sreeram,
& S. Y. Nof, “Multi-agent system optimisation
in factories of the future: cyber collaborative
warehouse study”. International Journal of

Production Research, 2022, vol. 60, no. 20,
pp. 6072-6086.

[4] P. R. Wurman, R. D’Andrea, and M. Mountz,
“Coordinating Hundreds of Cooperative,
Autonomous Vehicles in Warehouses,” AI

Magazine, vol. 29, no. 1, pp. 9, 2008.
https://doi.org/10.1609/aimag.v29i1.2082.

[5] R. De Koster, T. Le-Duc, and K. J.
Roodbergen, “Design and control of
warehouse order picking: A literature review,”
European Journal of Operational Research,

vol. 182, no. 2, pp. 481–501, 2007. DOI:
10.1016/j.ejor.2006.07.009.

[6] A. Urru, M. Bonini and W. Echelmeyer, "The
STIC analysis: A decision support tool for
technology related investments in
logistics," 2017 IEEE International

Conference on Service Operations and

Logistics, and Informatics (SOLI), Bari, Italy,
2017, pp. 33-38, DOI:
10.1109/SOLI.2017.8120965.

[7] J. Zhao, X. Wang, B. Xie, & Z. Zhang,
“Human-robot kinematics mapping method
based on dynamic equivalent
points”. Industrial Robot: the International

Journal of Robotics Research and

Application, 2023, vol. 50, no 2, pp. 219-233.
DOI: 10.1108/IR-02-2022-0056.

[8] S. Manhas, S. Taterh, Et D. Singh, “Deep Q
learning-based mitigation of man in the
middle attack over secure sockets layer
websites”. Modern Physics Letters B, vol. 34,
no 32, pp. 2050366, 2020. DOI:
10.1142/S0217984920503662.

[9] L. Paternò, M. Ibrahimi, E. Gruppioni, A.
Menciassi, and L. Ricotti, “Sockets for limb
prostheses: a review of existing technologies
and open challenges”. IEEE Transactions on

Biomedical Engineering, vol. 65, no 9, pp.
1996-2010, 2018. DOI:
10.1109/TBME.2017.2775100.

[10] X. S. Yang, X. He. “Bat algorithm: literature
review and applications”. International

Journal of Bio-inspired computation, vol. 5,
no 3, pp. 141-149, 2013. DOI:
10.1504/IJBIC.2013.055093.

[11] M. G. Bellemare, S. Candido, P. S. Castro, J.
Gong, M. C. Machado, S. Moitra, S. S. Ponda,
and Z. Wang, “Autonomous navigation of
stratospheric balloons using reinforcement
learning,” Nature, vol. 588, no. 7836, pp. 77–
82, 2020. DOI: 10.1038/s41586-020-2939-8.

[12] V. Ilin, D. Simić, M. Veličković, N.
Garunović, & N. Saulić, “Machine Learning
in the Last-Mile Delivery: Modified Q-
Learning for the TSP”. In: International

Conference on Soft Computing Models in

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2025.20.5

Hala Khankhour, Chakir Tajani,
Najat Rafalia, Jaafar Abouchabaka

E-ISSN: 2224-2856 48 Volume 20, 2025

https://doi.org/10.1609/aimag.v29i1.2082

Industrial and Environmental Applications.

Cham: Springer Nature Switzerland, 2024. pp.
108-117. DOI: 10.1007/978-3-031-75013-
7_11.

[13] K. Tuyls, K. Verbeeck, and T. Lenaerts. “A
selection-mutation model for q-learning in
multi-agent systems”. In: Proceedings of the

second international joint conference on

Autonomous agents and multiagent systems,

AAMAS 03, pp. 693-700, 2003. DOI:
10.1145/860575.860687.

[14] J. Kim, & I. Yang, “Hamilton-Jacobi-Bellman
equations for Q-learning in continuous time”.
In: Learning for Dynamics and Control.

PMLR, Berkeley, pp. 739-748, 2020.
[15] V. K. Saini, R. Kumar, A. S. Al-Sumaiti, A.

Sujil, and E. Heydarian-Forushani. “Learning
based short term wind speed forecasting
models for smart grid applications: An
extensive review and case study”. Electric

Power Systems Research, vol. 222, pp.
109502, 2023.

[16] T. T. Nguyen, N. D. Nguyen and S.
Nahavandi. “Deep reinforcement learning for
multiagent systems: A review of challenges,
solutions, and applications”. IEEE

Transactions on Cybernetics, vol. 50, no. 9,
pp. 3826-3839, 2020. DOI:
10.1109/TCYB.2020.2977374.

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflicts of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International , CC BY 4.0) This
article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2025.20.5

Hala Khankhour, Chakir Tajani,
Najat Rafalia, Jaafar Abouchabaka

E-ISSN: 2224-2856 49 Volume 20, 2025

https://creativecommons.org/licenses/by/4.0/deed.en%20_US
https://creativecommons.org/licenses/by/4.0/deed.en%20_US

