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Abstract: - The exponentially weighted moving average (EWMA) control chart is frequently employed to monitor 
changes in process parameters. We developed a method to efficiently track minor changes sensitively, particularly 
when the data of the process are correlated. The average run length (ARL)  is an essential metric employed to 
evaluate the efficacy of a control chart. Herein we provide exact formulas for the in-control ARL (ARL0)  and out-
of-control ARL (ARL1) for the mean of a long-memory seasonal fractionally integrated moving average with an 
exogenous variable model order ,  ,  D Q r  ( LSFIMAX( , , )

S
D Q K ) process with exponential white noise on an 

EWMA control chart. The ARL results obtained using the exact formulas method were consistent with those using 
the classical numerical integral equation (NIE) method. The sensitivity of the EWMA control chart to changes in 
the ARL of the mean of a LSFIMAX( , , )

S
D Q K  process using the proposed and NIE methods with a low ARL1 

value and various change levels was assessed in terms of the percentage difference in the expected ARL obtained 
using both methods, while the standard deviation of the RL (SDRL) was employed to assess the detected changes. 
Furthermore, the performances of the methods were evaluated temporally. In contrast, NIE also takes the time to 
display ARL1 results in seconds. The extensive simulation-based results indicate that the exact formulas approach 
performed better than the NIE method for all change levels in the mean of the LSFIMAX( , , )

S
D Q K  process in 

terms of the results delivery time. An illustrative monitoring example using data on electricity production from 
natural gas is also provided to demonstrate the proposed method's practicability. 
 

Key-Words: - Exponentially weighted moving average (EWMA) control chart, average run length (ARL), long-
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S
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1   Introduction 
Control charts employed for monitoring variations in 
process parameters to identify ascertainable process 
improvements comprise a crucial element of 
statistical process control (SPC), [1], [2]. They can 
effectively highlight process deviations, thereby 
aiding in maintaining the underlying process's 
stability. The Shewhart control chart is effective at 
tracking significant process changes whereas the 
cumulative sum (CUSUM) control chart [3] and 
exponentially weighted moving average (EWMA)  
control charts [4] are more capable of detecting 

minor-to-moderate changes in the process mean. In 
particular, the EWMA control chart, which is highly 
advantageous for tracking minor changes in the 
process mean, is of primary interest in the present 
study. 

The design parameters and performance of the 
EWMA control chart are typically determined using 
Monte Carlo simulations [4], [5], the Markov chain 
method [6], the numerical integral equation (NIE) 
method [7], or exact formulas [8], [9]. All of these 
are dependent on the run length (RL), which is 
defined as the average number of sample points 
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plotted on a chart before the first out-of-control 
(OOC) signal is detected. The average RL (ARL)  
and standard deviation of the RL (SDRL)  are 
frequently utilized metrics for developing and 
analyzing the efficacy of control charts. The ARL 
represents the average number of observations before 
an OOC signal manifests. In this context, ARL0 

represents the in-control (IC) state while ARL1 

denotes the OOC state, which is the expected number 
of samples until a control chart signals given that it is 
IC or OOC, respectively. In this article, we propose 
exact formulas for both of these criteria based on 
integral equations to analyze the performance of the 
EWMA control chart. This approach has been used 
several times in various scenarios to assess control 
chart performance, [10], [11]. 

Observations in SPC adhering to a stochastic 
process can be complex in terms of trends, cycles, 
and/or autocorrelation, [12]. Time series models can 
be autoregressive ( AR( )p , where p  denotes the 
AR  order), moving-average ( MA( )q , where q 
denotes the MA  order) or combinations thereof, 
such as AR integrated MA ( ARIMA( ,  ,  )p d q , [13]. 
The time series in these models is restricted to being 
either stationary I(0) or integrated I(d), where d, the 
differencing number, is an integer. Nevertheless, 
differencing using fractions has been explored in 
long-memory processes such as AR fractionally 
integrated MA  ( ARFIMA( ,  ,  )p d q ) [14], which is a 
stationary model with autocorrelation functions that 
decays more slowly than the short-memory ARMA 
model.  

The ARFIMA model has been further extended 
to include a seasonal (S) component, giving rise to 
models such as  (SARFIMA , ),

S
P D Q  with AR order 

,P MA order ,Q  fractional differencing parameter 
,D  and seasonal parameter S . Moreover, The 

ARFIMA  and SARFIMA  models are said to be 
long-memory processes if the fractional differencing 
parameter is in the )0.0,  0.5( interval, [15]. Some 
applications of ARIMA, ARFIMA,  and SARFIMA  
models are price forecasting for agriculture 
commodities such as rice and rubber, network traffic 
prediction, predicting macroeconomic variables, and 
financial time series such as the application to the 
inflation rate, and statistical process control, [16]. 

The SARFIMA model has been enhanced by 
introducing an exogenous factor (i.e., SARFIMAX ) 
for econometric modeling and economic forecasting. 

Government investment plans, currency exchange 
rates, interest rates, and inflation rates are all 
examples of exogenous variables that function 
autonomously from other variables in the system and 
can affect the econometric model's predictive 
accuracy. In the present study [17], we were 
specifically interested in the long-memory (

 LSFIMAX , ,  
S

D Q K ) model, which is based on 
the long-memorySARFIMAX  model in which AR 
order P  is restricted by making it 0.  

Assessing observational errors (the discrepancy 
between the actual and estimated values) is essential 
in model creation. Normally distributed white noise 
refers to errors in a time-series model characterized 
by autocorrelated data, [18], [19], [20]. However, 
white noise can be non-normally distributed, such as 
exponentially, [21], [22,], [23], [24]. 
 

 

2   Problem Formulation 
The objective of this study is to analyze the ARL for 
various memory patterns in a LSFIMAX( , , )

S
D Q K  

model with exponential white noise on an EWMA 
control chart. The following subsections provide the 
EWMA control scheme, the LSFIMAX( , , )

S
D Q K  

model with exponential white noise, and the metrics 
used to evaluate the ARL methods. 
 
2.1  The EWMA Control Chart 
The EWMA control chart is an effective tool with 
memory capabilities. It enables the sensitive 
detection of minor to moderate shifts in a process 
parameter, [25]. Study [26] introduced an extension 
of the EWMA control chart for processes involving 
time series data. In this study, our interest is the
LSFIMAX( , , )SD Q K process, the companion 
EWMA statistic for which is defined recursively as: 

1(1 ) ,  1,2,...    t t tZ Z Y t   (1) 
 
where 0 1   is the smoothing parameter 
constraint and initial value 0 .Z  

 
The expectation and variance of 

tZ  can be 
defined as: 

2 2( ) , ( ) 1 (1 ) ,
2


  


 
       

t

t tE Z V Z   
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respectively. As t  approaches infinity, the estimated 

variance converges to 2( ) .
2





 
  

 
tV Z  The target 

value, which generally equals the mean ( , ), can be 
represented by the center line (CL) of the EWMA 
control chart statistic. The upper control limit (UCL) 
and the lower control limit (LCL) of the EWMA 
control chart statistic can be expressed as: 
 

,
2


 


 


UCL L

 and 
 

,
2

 


LCL L


 


 

where L  is the width of the control limit. A process 
is IC when 0 UCL. tZ and OOC when UCL.tZ

Thus, the stopping time ( )  for tracking when the 
process on the upper-sided EWMA control chart 
becomes OOC is given by: 

  ,inf 0; UCL , for UCL   tt Z   (2) 
 

2.2  The LSFIMAX(P, D, K)s Process 
Let B  be a backward-shift operator (i.e. 

, 0, kS

t t kSB Y Y k ) and let 1  S SB  be a seasonal 
difference operator (i.e. .  S

t t t SY Y Y ). In addition, 
let { }tY  be a generalized LSFIMAX( , , )SD Q K  model 
with K  exogenous variables 

For D-multiple difference operator ,S  
incorporating the original time series .tY , seasonal 
fractional differencing operator D

S  can be expanded 
using a binomial series expansion in the following 
manner: 

 
12

0
(1 ) ( 1)





 
     

 


D S D k k

S
k

D
B B

k
 

12 24( 1)1 ...,
2

D D
DB B


       (3) 

The value of seasonal fractional differencing 
parameter D being a non-integer when 

( 0.5,0.5)D  is essential for characterizing the 
SFIMA process:  
D  < 0.5 reflects stationarity whereas D  > -0.5 
indicates invertibility. tY  is categorized as exhibiting 
long memory (or long-range dependent) when 

0 0.5;D   intermediate memory when 
0.5 0,D   and short memory (or short-range 

dependent) when D  = 0. Our focus in this study is 
exclusively on the long-memory process, so we 
aligned the parameters to ensure consistency with 
this research objective. 

By following [25], the LSFIMAX( , , )SD Q K

model can be written as: 
 

1 2 2 ...D

S t t t S t S Q t QSY             

1 1 2 2 ... ,t t K KtX X X                   (4) 
 
Substituting D

S
 in Equation (3)  into Equation

(4)  gives us: 
 

2 1 2 2.( ( 1) . . )
2

1 t S t S t t t S t SY Y Y
D D

D         


  

1 1 2 2... ... .Q t QS t t K KtX X X           (5) 
 
Simplifying Equation (5) and the generalized 

LSFIMAX( , , )SD Q K  model enables tracking 
changes in the process mean on the EWMA control 
as follows: 

2
1 1

( 1) ... ,
2

Q K

t t i t Si j jt t S t S
i j

Y X Y
D D

D Y    
 


        

(6) 
such that 1i  , where , 1,2,...,i i Q   are the 

coefficients for the seasonal MA; , 1,2,...,j j K   
are coefficients that are influenced by K exogenous 
variables; t is the time; , 1,2,...,jtX j K  are 
exogenous variables; t  is the white noise following 
exponential distribution ( )Exp  ; ( )tE    is the 
mean for the exponential white noise. It is important 
to note that process mean 0  = 1 when process 
{ }tY  is IC whereas 1( ).   when process { }tY  is 
OOC. The process mean is articulated as 

1 0(1 ) ,     where   represents the magnitude of 
the shift in the mean, [27]. 
 
 
3   Problem Solution 

( )L representing the ARL for the 
LSFIMAX( , , )SD Q K  process with initial value .  
can be defined as: 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2025.20.4 Wilasinee Peerajit

E-ISSN: 2224-2856 27 Volume 20, 2025



3.1  The Proposed ARL Method 
( )L representing the ARL for the 

LSFIMAX( , , )SD Q K  process with initial value .  
can be defined as 

0ARL ( ) ( )   ,Z     EL         (7)  
 
In the context of the first observation, 1Y  only has 
two possible outcomes: 
Case 1: When 1Y  is in the OOC state for 1,Z then  

0 0 .(1 ) or ( ) 01t tYbZ Y Z       
 
The RL will be 1 in this case.   
 

 

Case 2: When 1Y  is in the IC state for 1Z , then  

0 .0 (1 ) t bZ Y     
 
Before the OOC signs occur,   observations will be 
performed.  

 
Similarly, for 0 = Z   as the initial value: 

   

o
(1 ) (1 ,

r
)t tY Yb        



     

 


 

where  
 1 1 1 1

1 1
(1 ) ,...

Q K

i t Si j jt t S
i j

X YD            
 

         

 
 1 1 1 1

1 1
(1 ) ....

Q K

i t Si j jt t S
i j

Xb D Y            
 

       

 
Random variable  , which is within the lower 

and upper bounds of the EWMA control chart, can be 
expressed as: 

( ) ( )P f d       

where ( )f   is the probability density function (pdf) 

of random variable ;  1( ) exp .f



 

 
  

 
 

 
Thus, the expression of ( )L  can be 

reformulated using the method established by [7] as 
follows: 

1
(1 ) (1 )( ) 1

 (1 ((1 ) ) ( )

( ) 1  ((1 ) )) ( ) .

t t

t

t

bY Y
P

Y f d

Y f d

     
 

 

    

     

      
     

  

   

  









L

L

L L

 
The integral equation can thus be derived by 

considering only the upper control limit of the 
EWMA control chart and (1 ) tu Y     : 

0

0

1 (1 )( ) 1 ( )

1 1 (1 )1 ( ) exp .exp .

b

t

b
t

u
u f Y du

Yu
u du

 


 

 

    

  
   

 

   
       

    





L L

L

 
Thus, we can use Fredholm’s integral equation of 

the second kind to solve for the ARL as follows: 

0

1 (1 )( ) 1 ( ) exp .exp .
b

tYu
u du

 


   

   
       

    
L L

        (8) 
 

Using the solution for the integral equation in 
Equation 8,  ( ) ( ), T L L we can illustrate the 
existence and uniqueness of the analytical ARL by 
using Banach's fixed point theorem (the details of 
which are elaborated in the appendix): 

 

0

(1 )exp
( ) 1 ( ) exp .

t

b

Y

u
u du

 

 


 

 
 

   
    

  
L L (9) 

 

Since 
0

( ) exp ,
b u

g u du


  
   

  
L we can be compute: 

0

0 0

(1 )exp
exp . exp

exp exp . exp

1 exp exp 1 exp

t

b

b b
t

t

Y

u u
g du g du

Yu g u
du du

Yb g b

 

 

  

   

 
   

 
 

       
         

      

    
        

    

        
              

        



 
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Thus, 

1 exp
 .

11 1 exp exp t

b

g
Yb




  

  
   

  


    
      

    

 

 
By substituting constant g  into Equation (9) , ( )L  
becomes:   
 

(1 )1 exp exp exp
( ) 1 .

1 exp exp

t

t

Yb

Yb

 


  



 

       
       

      
 

    
      

    

L

 
As a result, the analytical ARL derived from exact 
formulas by solving the IE becomes: 
 

(1 )1 exp exp
( ) 1 ,

1 exp exp t

b

Yb

 


 



 

     
     

    
 

    
       

    

L where 

2
1 1

( 1) ... ,
2

Q K

t t i t Si j jt t S t S
i j

Y X Y
D D

D Y    
 


        

 
Therefore, when the process is in the IC state with 

exponential parameter 0 ,  the exact formula for 

0ARL  becomes: 
 

0 0
0

0 0

(1 )1 exp exp
( ) 1 .

1 exp exp t

b

Yb

 


 



 

    
      

    
 

    
        

    

L (10) 

 
Similarly, when the process is in the OOC state,  

exponential parameter 1  is defined as 0(1 ) ,   
where  represents the shift size. Thus, the exact 
formula for 1ARL can be expressed as: 

 

1 1
1

1 1

(1 )1 exp exp
( ) 1 .

1 exp exp t

b

Yb

 


 



 

    
      

    
 

    
        

    

L  (11) 

 

3.2  The NIE Method 

Let ˆ( )L  represent the NIE method. In this case, we 
use the composite midpoint rule to calculate the 
ARL, the integral equation for which is defined as 

0

1 (1 )( ) 1 ( ) .
b

t

u
u f Y du

 


 

  
   

 
L L  

 

Integral 
0

(1 )( )
b

t

u
u f Y du

 



  
 

 
L  represents 

the sum of the areas of m  equivalent rectangles or 

intervals, each having a base of 
0h

b
m


  and heights 

determined by the values of the integrand at the 
midpoints of intervals of length ,b  commencing at 
zero. Using the composite midpoint rule, interval 
[0, ]h is divided into sub-grids 1[ , ]r ru u  with 

midpoint point 1 ; 1,2,...,
2ru b r r m

 
   

 
 and a set 

of constant weights ; 1,2,..., .r

h
w r m

m
    

 
The integral can be approximated as 

10
( ) ( ) ( ).

h m

r r
r

u f u du w f u


L                  (12) 

 
Let ˆ( ); 1,2,...,lu l mL  be an approximation for 

the integral equation evaluated by the solution of a 
system of algebraic linear equations as follows: 

1

(1 )1ˆ( ) 1 ( ) .
m

r l
l r r t

r

u u
u w L u f Y



 

  
   

 
L  (13) 

 
Substituting lu  with   in Equation (13) yields  

1

(1 )1ˆ( ) 1 ( ) .
m

r
r r t

r

u
w L u f Y

 


 

  
   

 
L    (14) 

 
This represents the approximation of ARL using 

the NIE method, which was employed to assess the 
accuracy of the proposed method. 
 

3 .3  Metrics for Evaluating the Efficacy of the 

EWMA Control Chart 
 

3.3.1  SDRL 

The RL distribution properties can be utilized to 
monitor the sensitivity to variations in the mean of 
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the analyzed process. For the IC state, we can 
compute: 

0
0 0 2

0 0

11ARL = and SDRL = ,v

v v

              (15) 

where 0v  denotes the Type I error, which indicates 
that the mean of a long-memory process has not 
changed. In our case, setting the 0ARL  to 370 gives 
us 0v  as 0.0027. Similarly, for the OOC state: 

1
1 1 2

1 1

11ARL = and SDRL = ,v

v v

              (16) 

where 1v is referred to as the Type II error, which 
indicates that the mean of the process has changed.  

 
When testing, the lowest 1 1ARL or SDRL  value 

is the most sensitive to detect each situation, it is 
employed to detect changes in the mean. 

 
3.3.2 The Expected ARL (EARL) and Expected 

 SDRL (ESDRL)  

These are criteria that can be used to evaluate the range 
of change values, specifically min  and max ,  which 
represent the lower and upper bounds of ,
respectively. The pdf of the shift size is ( ).f   
Thereby, we can evaluate the performance of the 
proposed method for a defined range of shifts by 
identifying the lowest EARL or ESDRL values. The 
EARL  and ESDRL  are respectively defined as: 

  
max

min

dEARL ARL . ( )( ) anf d







     

  
max

min

( ) ,ESDRL SDRL . ( )f d







         (17) 

where ( )f   is the pdf of the shift size and ARL( )  
and SDRL( ) represent the ARL and SDRL, 
respectively, as a function of shift size. Thus, 
Equation (17) can be rewritten as: 

  
max

min

EARL ARL and1 ( )


 






  

  
max

min

,E R 1 ( )SD L SDRL


 






   (18) 

where   represents the incrementing value from 
min  to max , by applying the mathematical technique 

for approximating the definite integral of a function 
through the Riemann sum approach. 

3.4 Performance Evaluation of the ARL 

Methods Via a Simulation Study 
Here, we present the details and results of a 
comparative study analyzing the performances of the 
exact formulas alongside the NIE method applied to 
detect changes in the mean of a 

 (LSFIMAX , ), SD Q K  process on the EWMA 
control chart. We considered positive and negative 

 (LSFIMAX , ), SD Q K  processes, so both the MA 
values of the parameters and the corresponding OOC 
state (ARL1) for 12LSFIMAX , 1,  1( )D and 

12LSFIMAX , 1,  2( )D processes were of interest. 
Although positive MA is the most common in 
manufacturing processes, negative MA is equally 
interesting. To this end, the ARL  values based on 
the exact formulas and NIE  methods were computed 
for several parameter combinations using 
Mathematica 8. 

Table 1 (Appendix) provides the chart 
parameters with various combinations of ( ),  b

and corresponding OOC  state (ARL1) for 
12LSFIMAX , 1,  1( )D and 12LSFIMAX , 1,  2( )D  

processes:  D = 0.125, 0.25, 0.375, 
1 1 ,0.1, 0.1    and 2 0.2  when the 

0ICARL (ARL )  was 370. The computed values for 
b  for a fixed value of the smoothing constant ( )  
can be seen in columns 6 and 7. For illustration, 
when 12LSFIMAX(0.125,  1,  1) for 1 0.1,  1 0.1,   
( ),  b   (0.05, 0.0.0000000834678) attained the 
desired 0ARL 370.  

The ARL results for 0.125 1  are reported in 
Appendix in Table 2, Table 3, Table 4 and Table 5; 
the decrease in both ARL  and SDRL  as   
increased is evident, which implies that tracking 
more significant shifts can be expedited, thereby 
reducing ARL  dispersion. Furthermore, the results 
indicate that the ARL and SDRL values for the 
EWMA control chart decreased as the smoothing 
value was increased ( 0.05,  0.1,  and 0.3  ) for the 
same mean shift value .   

The ARL1 results using both methods for 
LSFIMAX( , , )

S
D Q K processes on a one-sided 

EWMA control chart were similar for all process 
mean shifts. Moreover, the sensitivity of the EWMA 
control chart to issue an OOC signal was better when 
tracking minor process mean changes 
(0.125 0.375)   compared to significant changes 
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(0.375 1).   This means that its ability to detect 
small changes is excellent. When considering SDRL1 
as a performance metric, it yielded lower results than 
ARL1. 

EARL and ESDRL were used to measure the 
performance of the EWMA control chart for shift 
sizes that fall in the interval min max( 0, 1)   . The 
EARL values obtained using the exact formulas 
method were larger than the corresponding EARL 
values using the NIE method for all 
LSFIMAX( , , )

S
D Q K   processes with combinations 

of 1 2o, r, Q K KD and S , as reported in Table 6 
(Appendix);  0.05( )   provided the smallest 
EARL and SDRL values (boldfaced in the table). The 
results enabled us to ascertain the optimal parameters 
for the LSFIMAX( , , )

S
D Q K  processes on the 

EWMA control chart based on the ARL from the 
exact formulas. 

As can be seen in Table 6 (Appendix), the 
computational time for calculating the OOC ARL 
results only took a fraction of a second when using 
the exact formulas, while it took around 12–13 
seconds using the NIE method. Thus, the shorter 
computation time using the proposed ARL method 
makes it superior to using the NIE method. 
 
3.5 Application of the Exact Formulas 

Approach to Real Data 
The first dataset comprising monthly electricity 
production from natural gas from January 1, 1987, to 
December 1, 1995 (exogenous variable  1X  was 
found fit well to a 12LSFIMAX( , 1, 1)D  process, the 
estimated coefficients for which were D̂ = 0.169122, 

1̂ = 0.470586, and 1̂  = 0.102217. The white noise 
from the process was subsequently analyzed using 
the Kolmogorov-Smirnov test, revealing that it 
followed an exponential distribution (KS = 0.865; p-
value = 0.443 > 0.05). The exponential parameter 

0( )   was 76.0421 (Table 7 and Table 8).  
The second dataset comprising electricity exports 

from April 1, 1994, to August 1, 2004 (exogenous 
variable  2X ) was found to fit well to a 

12LSFIMAX( , 1, 2)D model with coefficients D̂ = 

0.1645, 1̂ = 0.5756, and 1̂  = 0.0985, 2̂  =.45.4324. 
The parameter value for the exponential white noise 
was 157.0983. The appropriateness of the fitted 

models was then evaluated by plotting the graph 
shown in Figure 1. The values obtained from the 
estimation were similar to the actual values. 

 
Table 7. Parameter estimation for the 

LSFIMAX( , , )
S

D Q K  processes based on the two 
real datasets 

Parameters Estimate Std.Error p-value 

First dataset: 12L ,SFI ( 1,AX 1)M D  

D 0.1691 0.0464 0.0004* 
SMA 12 0.4706 0.1013 0.0000* 
X1: Natural gas quantities 0.1022 0.0013  
R2 0.9221   
Adjusted R2 0.9206   
Second dataset: 12L ,SFI ( 1,AX 2)M D  

D 0.1645 0.0487 0.0009* 
SMA 12 0.5756 0.0769 0.0000* 
X1: Natural gas quantities 0.0985 0.0027 0.0000* 
X2: Electricity export 45.4324 8.7513 0.0000* 
R2 0.9662   
Adjusted R2 0.9655   
* significance level of 0.05  
ns non-significance level of 0.05. 

 
Table 8. Testing the distributions of the white noise 

in the real datasets 
 Residuals 

First dataset: 12SFIMAX 0.16 1( , 1, 1)9  

Exponential parameter 76.0421 
Kolmogorov-Smirnov  0.865 
Asymptotic Significance (2-Sided) 0.443ns 
Second dataset: 12SFIMAX 0.16 5( , 1, 2)4  

Exponential parameter 157.0983 
Kolmogorov-Smirnov  1.319 
Asymptotic Significance (2-Sided) 0.062ns 
* significance level of 0.05  
ns non-significance level of 0.05. 

 
For the first dataset, the 12L ,SFI ( 1,AX 1)M D process 
is: 

12 12 24

1

0.0703
... ,

0.4706 0.1691
0.1022

   



 



t t t t tY Y Y

X

 
 

 
where .76.0421( )t Exp  
 
For the second dataset, the 12L ,SFI ( 1,AX 2)M D  

process is: 
12 12 24

1 2

0.6872
... ,

0.5756 0.1645
0.0985  45.4324

    

 

t t t t tY Y Y

X X

 
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.157.0983( )t Exp  

 
(a) 12L ,SFI ( 1,AX 1)M D  process 

 
(b) 12L ,SFI ( 1,AX 2)M D  process 

Fig. 1: Graphs of the fitted models to the real 
datasets. 

 

 

From Equations (10) and (11), we derived the 
ARL values using the exact formulas in Equations 
(19) and (20), specifically for the IC  state predefined 
as 0ARL 370  to calculate the b = 3.8772974, 
11.3758767 values when 0.05,  (the optimal 
EWMA control chart parameter values from the 
simulation study results). 

For the two real datasets, one must respectively 

substitute 0v v  for IC  and 1v v  for OOC  in the 

following manner: 

 

12 12 24 10.4706 0.1691 0.

(1 )( )

0

1 1 exp exp 1 exp

0.0703 ...exp 1 22
  

         
             

        

    
  

 


t t t

b b

Y Y X

 
 

  






L

 
        (19) 

and 

12 12 24

1 21

(1 )( ) 1 1 exp exp 1 exp

0.6872 ...exp

.

0.5756 0.1645

0.0985 45.4324

  

         
             

        

 
 







 




t t t

b b

Y Y

v

X X

 
 

  






L

       (20) 
 

The results in Table 9 (Appendix) provide 
information on the ARL1 and SDRL1 for a range of 
shifts    in the process mean. The results derived 
using the exact formulas and NIE methods were 
identical when applied to electricity production from 
natural gas using one or two exogenous variables. 
Moreover, SDRL1 yielded results similar to ARL1, 
exhibiting a decreasing pattern as the mean shift size 
increased in these real-world scenarios. However, in 
terms of computational time, the exact formulas 
method required mere fractions of a second in 
contrast to the NIE method, which required a waiting 
period of approximately 1–2 seconds. These results 
are the same as those from the simulation study.  

For electricity production from natural gas in 
conjunction with natural gas quantities, a change in 
the electricity production process can be detected 
efficiently by using the EWMA control chart and 
applying the exact formulas method. 
 

 

4   Conclusion  
We proposed a method using exact formulas for the ARL 
to evaluate the efficacy of the EWMA control chart to 
detect changes in the mean of a long-memory
LSFIMAX( , , )

S
D Q K  process with exponential white 

noise. We validated the exact formulas approach by 
comparing its performance with that of the standard NIE 
method. We found that both methods produced 
comparable results but the proposed method significantly 
reduced the CPU time. Subsequently, the ARL derived 
using exact formulas was compared with the SDRL for 
various magnitudes of changes in the process mean. 
Moreover, every range of control chart changes was 
evaluated using the EARL and the ESDRL.  

The proposed EWMA control chart design 
parameters were computed for various 
LSFIMAX( , , )

S
D Q K processes, and the optimum 

was 0.05. The numerical findings based on the 
performance evaluation revealed that the exact 
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formulas method is excellent for detecting minor 
shifts in the process mean on the EWMA control 
chart. 
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APPENDIX 

 
 

Theorem 1 (Banach’s fixed-point theorem).  
Suppose that  ,d.M  is a complete metric space, then 
mapping : T M M  represents  a contraction 
mapping on M  if there exists real number ; 0 1    
such that 

   1 2 1 2( ), ( ) ,d dT L T L L L  for 1 2,  .L L M  
Consequently, T  has a fixed point that is precisely 
unique, such as a unique (.)L M  that satisfies 

( ) T L L.. 
Equation (9) presents the ( )L of Fredholm’s integral 
equation of the second kind for various memory 
patterns in a LSFIMAX( , , )

S
D Q K  model with 

exponential white noise on an EWMA control chart. 

0

1 (1 )( ) ( ) exp .exp 1,
   

       
    


b

tYu
u du

 


   
L L  

where 1 (1 )( , ) exp .exp   
     

   

tYu
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 


   

denotes a kernel function, [0, ] [0) : , ]( b bL
represents an unknown function, and the mapping T  
is defined as 

 
0

(1 )exp
( ) 1 ( ) exp .

 
 

   
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  

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b
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u du

 

 


 
T L L

 
 

Theorem 2 ( )L  representing the ARL for the
LSFIMAX( , , )

S
D Q K  model with exponential white 

noise on a EWMA control chart has existence and 
uniqueness.  
Proof: To prove the existence of the ARL.  
Let T  be a contraction in complete metric space 
  ,, , [0 ]d bCM .  be a set of continuous functions of 
the ( )L  on [0, ],b  0 [0, ],( ) b CL and   0n n

L  be a 
Cauchy’s sequence of ( )L that satisfies  

 1 1 . n nL T L   
Hence, 
           1 1 1, , , ,   n n n n n nd d T T d T TL L L L L L

 
where 0 1.   
Iteratively       1 1, , ,  n

n n n nd d T TL L L L for 0.n  

Applying the triangle inequality to this formula 
repeatedly when n m implies that 

  1 1

1
1 0

, ( , ) ... ( , )

( ... ) ( , )
 



  

  

n m n n m m

n m

d d d

d 

L L L L L L

L L
 

By applying the property of the sum of a geometric 
series in the set of , we derive 

  1 0, ( , ),
1




m

n md d



L L L L  

Therefore,   0n n
L  is a Cauchy sequence, and 

 lim .


n

n
n

T L L  Hence, there exists a unique point 

L M  such that   .T L L . . 
This completes the proof.  
 
Proof: To prove the uniqueness of the ARL.  
Let T  be a contraction mapping on the complete 
metric space  .[0, ], .


bC A set of continuous 

functions of the ARL defined on [0, ],b and [0, ]bC  
becomes a normed space if we define 

[0, ] 0
sup ( , ) ,




 
b

b

k u du


L  
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is a continuous functions of the ( )L  on [0, ],b

where 
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where 
[0, ] 0

sup ( , ) 1.


 
b

b

k u du


   Hence, T  is a 

contraction mapping.  
This completes the proof.  
 

Consequently, analytical ARL using the exact 
formula for various memory patterns in an FF model 
with exponential white noise on an EWMA control 
chart is both existent and unique.  
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Table 1. The parameter values for LSFIMAX( , , )
S

D Q K processes for an EWMA control chart 

LSFIMAX( , , )
S

D Q K  
Coefficient parameters  In-control ARL value equal to 370  

1  1  2   0.05   0.10   0.3   
(0.125, 1, 1)12 0.1 0.1   0.0000000834678 0.003577620 0.27082758 

 -0.1 0.1   0.0000000683377 0.002919921 0.21570576 
(0.250, 1, 1) 12 0.1 0.1   0.0000000694004 0.002965980 0.21947581 

 -0.1 0.1   0.0000000568202 0.002422030 0.17576348 
(0.375, 1, 1) 12 0.1 0.1   0.0000000593033 0.002529172 0.18423551 

 -0.1 0.1   0.0000000485534 0.002066130 0.14808628 
(0.125, 1, 2)12 0.1 0.1 0.3  0.0000000618345 0.002638508 0.19294930 

 -0.1 0.1 0.3  0.0000000506258 0.002155240 0.15494992 
(0.250, 1, 2) 12 0.1 0.1 0.3  0.0000000514130 0.002189103 0.15757003 

 -0.1 0.1 0.3  0.0000000420934 0.001788856 0.12700185 
(0.375, 1, 2) 12 0.1 0.1 0.3  0.0000000439330 0.001867740 0.13295859 

 -0.1 0.1 0.3  0.0000000359692 0.001526680 0.10743461 
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Table 2. Comparison of the ARL1 values derived using the exact formulas and NIE methods for 
LSFIMAX( , , )

S
D Q K  processes on an EWMA control chart when 0.05.   

Models 
LSFIMAX (D, 1, 1)12 with 1 = 0.1, 1 = 0.1 

D = 0.125 D = 0.250 D = 0.375 
  ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL 

0.125 39.789 39.789 39.286 39.002 39.002 38.499 38.344 38.344 37.841 
0.250 7.327 7.327 6.809 7.098 7.098 6.579 6.909 6.909 6.389 
0.375 2.422 2.422 1.856 2.352 2.352 1.783 2.296 2.296 1.725 
0.500 1.407 1.407 0.757 1.383 1.383 0.728 1.363 1.363 0.703 
0.625 1.140 1.140 0.399 1.131 1.131 0.385 1.123 1.123 0.372 
0.750 1.056 1.056 0.243 1.052 1.052 0.234 1.048 1.048 0.224 
0.875 1.025 1.025 0.160 1.023 1.023 0.153 1.021 1.021 0.146 
1.000 1.012 1.012 0.110 1.011 1.011 0.105 1.010 1.01 0.100 

Expected 441.42  396.96 432.42  387.73 424.91  380.00 

Models 
LSFIMAX (D, 1, 1)12 with 1 = - 0.1, 1 = 0.1 

D = 0.125 D = 0.250 D = 0.375 
  ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL 

0.125 38.937 38.937 38.434 38.167 38.167 37.664 37.523 37.523 37.020 
0.250 7.079 7.079 6.560 6.859 6.859 6.339 6.678 6.678 6.158 
0.375 2.347 2.347 1.778 2.281 2.281 1.709 2.227 2.227 1.653 
0.500 1.381 1.381 0.725 1.358 1.358 0.697 1.340 1.340 0.675 
0.625 1.130 1.130 0.383 1.121 1.121 0.368 1.114 1.114 0.356 
0.750 1.051 1.051 0.232 1.047 1.047 0.222 1.044 1.044 0.214 
0.875 1.023 1.023 0.153 1.021 1.021 0.146 1.02 1.02 0.143 
1.000 1.011 1.011 0.105 1.01 1.01 0.100 1.009 1.009 0.095 

Expected 431.67  386.96 422.91  377.96 415.64  370.51 

Models 
LSFIMAX (D, 1, 2)12 with 1 = 0.1, 1 = 0.1, 2 = 0.3 

D = 0.125 D = 0.250 D = 0.375 
  ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL 

0.125 38.517 38.517 38.014 37.756 37.756 37.253 37.119 37.119 36.616 
0.250 6.959 6.959 6.440 6.743 6.743 6.223 6.565 6.565 6.044 
0.375 2.310 2.310 1.740 2.246 2.246 1.673 2.194 2.194 1.619 
0.500 1.368 1.368 0.710 1.346 1.346 0.682 1.329 1.329 0.661 
0.625 1.125 1.125 0.375 1.116 1.116 0.360 1.11 1.11 0.349 
0.750 1.049 1.049 0.227 1.045 1.045 0.217 1.042 1.042 0.209 
0.875 1.022 1.022 0.150 1.02 1.02 0.143 1.019 1.019 0.139 
1.000 1.011 1.011 0.105 1.01 1.01 0.100 1.009 1.009 0.095 

Expected 426.89  382.09 418.26  373.21 411.10  365.86 

Models 
LSFIMAX (D, 1, 2)12 with 1 = - 0.1, 1 = 0.1, 2 = 0.3 

D = 0.125 D = 0.250 D = 0.375 
  ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL 

0.125 37.693 37.693 37.190 36.948 36.948 36.445 36.326 36.326 35.823 
0.250 6.725 6.725 6.205 6.518 6.518 5.997 6.347 6.347 5.826 
0.375 2.241 2.241 1.668 2.18 2.18 1.604 2.130 2.13 1.551 
0.500 1.344 1.344 0.680 1.324 1.324 0.655 1.307 1.307 0.633 
0.625 1.116 1.116 0.360 1.108 1.108 0.346 1.101 1.101 0.333 
0.750 1.045 1.045 0.217 1.042 1.042 0.209 1.039 1.039 0.201 
0.875 1.020 1.020 0.143 1.018 1.018 0.135 1.017 1.017 0.131 
1.000 1.010 1.010 0.100 1.009 1.009 0.095 1.008 1.008 0.090 

Expected 417.55  372.50 409.18  363.89 402.20  356.70 
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Table 3. Comparison of the ARL1 values derived using the exact formulas and NIE methods for 
LSFIMAX( , , )

S
D Q K  processes on an EWMA control chart when 0.10.   

Models 
LSFIMAX (D, 1, 1)12 with 1 = 0.1, 1 = 0.1 

D = 0.125 D = 0.250 D = 0.375 
  ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL 

0.125 118.348 118.348 117.847 115.836 115.836 115.335 113.746 113.746 113.245 
0.250 47.419 47.419 46.916 45.654 45.654 45.151 44.209 44.209 43.706 
0.375 22.54 22.54 22.034 21.435 21.435 20.929 20.542 20.542 20.036 
0.500 12.275 12.275 11.764 11.574 11.574 11.063 11.014 11.014 10.502 
0.625 7.479 7.479 6.961 7.017 7.017 6.498 6.652 6.652 6.132 
0.750 5.007 5.007 4.479 4.691 4.691 4.161 4.443 4.443 3.911 
0.875 3.630 3.630 3.090 3.406 3.406 2.863 3.230 3.230 2.684 
1.000 2.812 2.812 2.257 2.647 2.647 2.088 2.519 2.519 1.956 

Expected 1,756.08  1,722.78 1,698.08  1,664.70 1,650.84  1,617.38 

Models 
LSFIMAX (D, 1, 1)12 with 1 = - 0.1, 1 = 0.1 

D = 0.125 D = 0.250 D = 0.375 
  ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL 

0.125 115.629 115.629 115.128 113.185 113.185 112.684 111.149 11.149 110.648 
0.250 45.51 45.51 45.007 43.825 43.825 43.322 42.444 42.444 41.941 
0.375 21.346 21.346 20.840 20.307 20.307 19.801 19.466 19.466 18.959 
0.500 11.518 11.518 11.007 10.867 10.867 10.355 10.346 10.346 9.833 
0.625 6.980 6.980 6.461 6.557 6.557 6.036 6.220 6.220 5.698 
0.750 4.666 4.666 4.136 4.378 4.378 3.846 4.152 4.152 3.618 
0.875 3.388 3.388 2.844 3.185 3.185 2.638 3.026 3.026 2.476 
1.000 2.634 2.634 2.075 2.486 2.486 1.922 2.371 2.371 1.803 

Expected 1,693.37  1,659.98 1,638.32  1,604.83 1,593.39  1,559.81 

Models 
LSFIMAX (D, 1, 2)12 with 1 = 0.1, 1 = 0.1, 2 = 0.3 

D = 0.125 D = 0.250 D = 0.375 
  ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL 

0.125 114.298 114.298 113.797 111.885 111.885 111.384 109.876 109.876 109.375 
0.250 44.588 44.588 44.085 42.941 42.941 42.438 41.591 41.591 41.088 
0.375 20.775 20.775 20.269 19.767 19.767 19.261 18.952 18.952 18.445 
0.500 11.160 11.160 10.648 10.532 10.532 10.020 10.03 10.03 9.517 
0.625 6.747 6.747 6.227 6.340 6.340 5.819 6.018 6.018 5.495 
0.750 4.507 4.507 3.976 4.232 4.232 3.698 4.016 4.016 3.480 
0.875 3.275 3.275 2.730 3.082 3.082 2.533 2.931 2.931 2.379 
1.000 2.552 2.552 1.990 2.411 2.411 1.844 2.302 2.302 1.731 

Expected 1,663.22  1,629.78 1,609.52  1,575.98 1,565.73  1,532.08 

Models 
LSFIMAX(D, 1, 2)12 with 1 = - 0.1, 1 =0.1, 2 = 0.3 

D = 0.125 D = 0.250 D = 0.375 
  ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL 

0.125 111.686 111.686 111.185 109.337 109.337 108.836 107.379 107.379 106.878 
0.250 42.806 42.806 42.303 41.231 41.231 40.728 39.940 39.940 39.437 
0.375 19.686 19.686 19.179 18.737 18.737 18.230 17.968 17.968 17.461 
0.500 10.482 10.482 9.969 9.898 9.898 9.385 9.431 9.431 8.917 
0.625 6.308 6.308 5.786 5.934 5.934 5.411 5.637 5.637 5.113 
0.750 4.211 4.211 3.677 3.960 3.960 3.424 3.762 3.762 3.223 
0.875 3.067 3.067 2.518 2.892 2.892 2.339 2.755 2.755 2.199 
1.000 2.400 2.400 1.833 2.273 2.273 1.701 2.176 2.176 1.600 

Expected 1,605.17  1,571.60 1,554.10  1,520.43 1,512.38  1,478.62 
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Table 4. Comparison of the ARL1 values derived using the exact formulas and NIE methods for 
LSFIMAX( , , )

S
D Q K  processes on an EWMA control chart when 0.3.   

Models 
LSFIMAX (D, 1, 1)12 with 1 = 0.1, 1 = 0.1 

D = 0.125 D = 0.250 D = 0.375 
  ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL 

0.125 39.614 39.614 39.111 35.286 35.286 34.782 32.372 32.372 31.868 
0.250 18.196 18.196 17.689 16.056 16.056 15.548 14.618 14.618 14.109 
0.375 11.103 11.103 10.591 9.773 9.773 9.260 8.877 8.877 8.362 
0.500 7.769 7.769 7.252 6.842 6.842 6.322 6.216 6.216 5.694 
0.625 5.909 5.909 5.386 5.216 5.216 4.689 4.746 4.746 4.216 
0.750 4.756 4.756 4.227 4.212 4.212 3.678 3.843 3.843 3.305 
0.875 3.988 3.988 3.452 3.547 3.547 3.006 3.246 3.246 2.700 
1.000 3.448 3.448 2.905 3.080 3.08 2.531 2.829 2.829 2.275 

Expected 758.26  724.90 672.10  638.53 613.98  580.23 

Models 
LSFIMAX (D, 1, 1)12 with 1 = - 0.1, 1 = 0.1 

D = 0.125 D = 0.250 D = 0.375 
  ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL 

0.125 34.973 34.973 34.469 31.669 31.669 31.165 29.342 29.342 28.838 
0.250 15.902 15.902 15.394 14.272 14.272 13.763 13.13 13.13 12.620 
0.375 9.677 9.677 9.163 8.661 8.661 8.146 7.950 7.950 7.433 
0.500 6.775 6.775 6.255 6.065 6.065 5.542 5.567 5.567 5.042 
0.625 5.166 5.166 4.639 4.633 4.633 4.103 4.26 4.26 3.727 
0.750 4.173 4.173 3.639 3.754 3.754 3.215 3.461 3.461 2.918 
0.875 3.514 3.514 2.972 3.174 3.174 2.627 2.935 2.935 2.383 
1.000 3.053 3.053 2.504 2.769 2.769 2.213 2.57 2.571 2.009 

Expected 665.86  632.28 599.98  566.19 553.72  519.76 

Models 
LSFIMAX (D, 1, 2)12 with 1 = 0.1, 1 = 0.1, 2 = 0.3 

D = 0.125 D = 0.250 D = 0.375 
  ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL 

0.125 33.093 33.093 32.589 30.146 30.146 29.642 28.038 28.038 27.533 
0.250 14.974 14.974 14.465 13.524 13.524 13.014 12.492 12.492 11.982 
0.375 9.099 9.099 8.584 8.195 8.195 7.679 7.553 7.553 7.035 
0.500 6.371 6.371 5.850 5.739 5.739 5.215 5.29 5.29 4.764 
0.625 4.863 4.863 4.334 4.389 4.389 3.857 4.052 4.052 3.517 
0.750 3.935 3.935 3.398 3.562 3.562 3.021 3.298 3.298 2.753 
0.875 3.321 3.321 2.776 3.017 3.017 2.467 2.802 2.802 2.247 
1.000 2.892 2.892 2.339 2.638 2.638 2.079 2.459 2.459 1.894 

Expected 628.38  594.68 569.68  535.79 527.87  493.80 

Models 
LSFIMAX(D, 1, 2)12 with 1 = - 0.1, 1 =0.1, 2 = 0.3 

D = 0.125 D = 0.250 D = 0.375 
  ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL ARLExact ARLNIE SDRL 

0.125 29.925 29.925 29.421 27.515 27.515 27.010 25.746 25.746 25.241 
0.250 13.416 13.416 12.906 12.237 12.237 11.726 11.377 11.377 10.866 
0.375 8.128 8.128 7.612 7.394 7.394 6.876 6.861 6.861 6.341 
0.500 5.692 5.692 5.168 5.179 5.179 4.652 4.807 4.807 4.278 
0.625 4.353 4.353 3.820 3.969 3.969 3.433 3.691 3.691 3.152 
0.750 3.534 3.534 2.993 3.233 3.233 2.687 3.014 3.014 2.464 
0.875 2.995 2.995 2.444 2.749 2.749 2.193 2.572 2.572 2.011 
1.000 2.619 2.619 2.059 2.415 2.415 1.849 2.267 2.267 1.695 

Expected 565.30  531.38 517.53  483.41 482.68  448.38 
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Table 5. The ARL1 computation time using the exact formulas and NIE methods. 

EWMA δ 
 ARLExact  ARLNIE  ARLExact  ARLNIE 
 LSFIMAX (D, 1, 1)12 with 1 = 0.1, 1 =0.1  LSFIMAX (D, 1, 2)12 with 1 = 0.1, 1 = 0.1, 2 = 0.3 
 0.125, 0.250,0.375 0.125 0.250 0.375  0.125, 0.250,0.375  0.125 0.250 0.375 

λ = 0.05 0.125  <0.01  12.235 12.564 12.463  <0.01  13.015 12.546 12.865 
 0.250  <0.01  11.721 12.795 12.353  <0.01  12.064 12.793 12.546 
 0.375  <0.01  12.151 12.953 12.564  <0.01  12.355 12.635 12.793 
 0.500  <0.01  12.138 13.017 12.785  <0.01  11.946 12.454 12.872 
 0.625  <0.01  12.065 12.653 12.135  <0.01  12.035 12.335 11.897 
 0.750  <0.01  13.578 11.976 11.985  <0.01  12.765 12.986 12.035 
 0.875  <0.01  12.796 12.356 12.032  <0.01  12.119 12.565 12.465 
 1.000  <0.01  12.235 12.956 12.563  <0.01  12.265 12.135 12.597 

λ = 0.1 0.125  <0.01  11.985 11.946 12.855  <0.01  12.796 12.562 12.035 
 0.250  <0.01  12.387 12.035 13.006  <0.01  11.974 12.253 12.765 
 0.375  <0.01  12.065 12.765 12.865  <0.01  12.465 12.462 12.119 
 0.500  <0.01  11.786 12.119 12.446  <0.01  12.635 13.015 12.635 
 0.625  <0.01  12.974 12.265 12.945  <0.01  12.454 12.356 12.454 
 0.750  <0.01  12.864 12.546 12.468  <0.01  12.335 12.103 12.335 
 0.875  <0.01  12.554 12.466 12.846  <0.01  12.986 11.953 12.986 
 1.000  <0.01  12.015 12.478 12.795  <0.01  12.201 12.036 12.565 

λ = 0.3 0.125  <0.01  12.560 13.012 12.466  <0.01  12.633 12.462 12.265 
 0.250  <0.01  13.012 12.984 12.643  <0.01  12.465 13.015 12.065 
 0.375  <0.01  12.896 12.544 12.568  <0.01  12.765 12.356 12.793 
 0.500  <0.01  12.703 12.597 12.865  <0.01  13.011 11.956 12.872 
 0.625  <0.01  11.985 12.492 12.656  <0.01  12.466 12.235 11.897 
 0.750  <0.01  12.065 12.765 12.458  <0.01  12.855 12.564 12.035 
 0.875  <0.01  12.564 12.545 12.235  <0.01  13.006 12.795 12.465 
 1.000  <0.01  12.358 12.354 12.186  <0.01  12.865 12.865 12.597 

EWMA δ 
 LSFIMAX (D, 1, 1)12 with 1 = - 0.1, 1 =0.1  LSFIMAX (D, 1, 2)12 with 1 = - 0.1, 1 =0.1, 2 = 0.3 
 0.125, 0.250,0.375 0.125 0.250 0.375  0.125, 0.250,0.375 0.125 0.250 0.375 

λ = 0.05 0.125  <0.01  12.864 12.154 13.013  <0.01  12.103 12.235 12.531 
 0.250  <0.01  12.132 12.785 12.565  <0.01  12.465 12.465 12.152 
 0.375  <0.01  11.985 13.013 12.456  <0.01  12.635 12.866 12.235 
 0.500  <0.01  12.031 11.956 12.865  <0.01  12.454 13.013 12.465 
 0.625  <0.01  12.598 12.103 12.546  <0.01  12.335 12.565 12.866 
 0.750  <0.01  12.687 12.465 12.793  <0.01  12.986 12.456 13.013 
 0.875  <0.01  13.015 12.635 12.872  <0.01  12.562 12.865 12.565 
 1.000  <0.01  12.981 12.454 11.897  <0.01  12.253 12.346 12.456 

λ = 0.1 0.125  <0.01  12.355 12.531 12.046  <0.01  12.567 12.896 12.981 
 0.250  <0.01  11.958 12.152 11.596  <0.01  12.262 12.703 11.978 
 0.375  <0.01  13.044 12.235 12.201  <0.01  13.051 12.465 12.746 
 0.500  <0.01  12.983 12.465 12.022  <0.01  12.945 12.597 13.015 
 0.625  <0.01  12.546 12.866 12.559  <0.01  12.359 11.975 12.843 
 0.750  <0.01  12.793 13.013 13.012  <0.01  12.795 13.154 12.987 
 0.875  <0.01  12.872 12.565 12.896  <0.01  12.496 12.562 12.752 
 1.000  <0.01  11.897 12.456 12.703  <0.01  12.667 12.015 11.866 

λ = 0.3 0.125  <0.01  12.358 12.456 12.598  <0.01  12.865 12.335 12.562 
 0.250  <0.01  12.125 12.356 12.687  <0.01  12.381 12.986 12.253 
 0.375  <0.01  13.023 12.567 13.015  <0.01  12.569 12.562 12.462 
 0.500  <0.01  12.866 12.262 12.981  <0.01  12.896 12.253 13.015 
 0.625  <0.01  12.985 13.051 11.978  <0.01  11.055 12.462 12.356 
 0.750  <0.01  12.468 12.945 12.746  <0.01  11.985 13.015 11.956 
 0.875  <0.01  12.789 12.359 13.015  <0.01  12.387 12.356 12.235 
 1.000  <0.01  13.022 12.795 12.843  <0.01  12.065 11.956 12.564 

The CPU time is in seconds. 
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Table 6. The EARL and ESDRL values for LSFIMAX( , , )
S

D Q K processes on an EWMA control chart when

min 0  and max 1.   

LSFIMAX( , , )
S

D Q K  

Coefficient parameters  EWMA 

1  1  2   0.05   0.10   0.3   
 EARL ESDRL EARL ESDRL EARL ESDRL 

(0.125, 1, 1)12 0.1 0.1   441.42 396.96 1,756.08 1,722.78 758.26 724.90 
 -0.1 0.1   431.67 386.96 1,693.37 1,659.98 665.86 632.28 

(0.250, 1, 1) 12 0.1 0.1   432.42 387.73 1,698.08 1,664.70 672.10 638.53 
 -0.1 0.1   422.91 377.96 1,638.32 1,604.83 599.98 566.19 

(0.375, 1, 1) 12 0.1 0.1   424.91 380.00 1,650.84 1,617.38 613.98 580.23 
 -0.1 0.1   415.64 370.51 1,593.39 1,559.81 553.72 519.76 

(0.125, 1, 2)12 0.1 0.1 0.3  426.89 382.09 1,663.22 1,629.78 628.38 594.68 
 -0.1 0.1 0.3  417.55 372.50 1,605.17 1,571.60 565.30 531.38 

(0.250, 1, 2) 12 0.1 0.1 0.3  418.26 373.21 1,609.52 1,575.98 569.68 535.79 
 -0.1 0.1 0.3  409.18 363.89 1,554.10 1,520.43 517.53 483.41 

(0.375, 1, 2) 12 0.1 0.1 0.3  411.10 365.86 1,565.73 1,532.08 527.87 493.80 
 -0.1 0.1 0.3  402.20 356.70 1,512.38 1,478.62 482.68 448.38 

 
Table 9. The 1ARL  1, EARL and ESDRLSDRL  values are derived using the exact formulas and NIE  methods for 

the two processes on a EWMA  chart when 0.05.   

  
First dataset with b = 3.8772974 

 

Second dataset with b =11.3758767 
Exact formulas NIE method SDRL Exact formulas NIE method SDRL ARL CPU time ARL CPU time ARL CPU time ARL CPU time 

0.125 7.729 <0.01 7.729   1.908  7.212  8.956 <0.01 8.956 1.781 8.441 
0.250 4.445 <0.01 4.445   1.856  3.913  5.135 <0.01 5.135 1.751 4.608 
0.375 3.332 <0.01 3.332  1.832 2.788  3.835 <0.01 3.835 1.889 3.297 
0.500 2.770 <0.01 2.770  1.912 2.214  3.175 <0.01 3.175 1.735 2.628 
0.625 2.430 <0.01 2.430  1.795 1.864  2.775 <0.01 2.775 1.735 2.219 
0.750 2.202 <0.01 2.202  1.803 1.627  2.504 <0.01 2.504 1.875 1.941 
0.875 2.038 <0.01 2.038  1.778 1.454  2.309 <0.01 2.309 1.766 1.739 
1.00 1.915 <0.01 1.915  1.901 1.324  2.160 <0.01 2.160 1.843 1.583 

The CPU time is in seconds. 
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