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Abstract: Let {Y (t), t ≥ 0} be a controlled geometric Brownian motion and X(t) be the integral of Y (t). The
problem of minimizing the expected time that the ratioX(t)/Y (t)will spend between two constants is considered.
The optimal control is obtained explicitly in terms of special functions. A risk-sensitive version of the cost criterion
is also proposed.
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1 Introduction
We consider the two-dimensional controlled
degenerate diffusion process (X(t), Y (t)) defined
by the system of stochastic differential equations

dX(t) = Y (t)dt, (1)
dY (t) = b0Y (t)u[X(t), Y (t)]dt+ Y (t)dt

+ {2Y 2(t)}1/2dW (t), (2)

where {W (t), t ≥ 0} is a standard Brownian
motion, b0 ̸= 0 is a constant and the control
u(·, ·) is assumed to be continuous. The stochastic
process {Y (t), t ≥ 0} is a controlled geometric
Brownian motion, and {X(t), t ≥ 0} is therefore an
integrated (controlled) geometric Brownian motion.
Geometric Brownian motion is a very important
diffusion process for applications, notably in financial
mathematics. Because Y (t) > 0 for all values of
t (when Y (0) > 0), the two-dimensional process
(X(t), Y (t)) could also serve as a model for the wear
of a machine, [1].

Let (X(0), Y (0)) = (x, y) and define

τ(x, y) = inf{t > 0 : X(t) = v1Y (t) or v2Y (t)},
(3)

where x, y, v1 and v2 are all positive and are such that
v1 < x/y < v2. The randomvariable τ(x, y) is called
a first-passage time in probability theory.

The aim is to find the control u∗[X(t), Y (t)] that
minimizes the expected value of the cost function

J(x, y) =

∫ τ(x,y)

0

{
1

2
q0u

2[X(t), Y (t)] + λ

}
dt+ c

X(τ)

Y (τ)
,

(4)

where q0, λ and c are positive constants.
The above problem is a particular homing

problem, [2]. In this type of problem, the optimizer
controls a stochastic process until a given event
occurs. Therefore, the final time in the cost
function J(x, y) is neither fixed nor infinite, as
is the case in other papers on optimal control
of diffusion processes. In, [2], the controlled
process is an n-dimensional diffusion process. The
author has extended homing problems to the case
of other stochastic processes, such as jump-diffusion
processes, [3]. Other papers on homing problems are,
[4], [5] and, [6].

Next, we define the value function

F (x, y) = inf
u[X(t),Y (t)], 0≤t<τ(x,y)

E[J(x, y)]. (5)

In the next section, we will give the dynamic
programming equation (DPE) satisfied by the
function F (x, y). We will also express the optimal
control in terms of F (x, y).

2 Dynamic Programming Equation
Using Bellman’s principle of optimality, [7] and
standard arguments, we can show that the value
function satisfies the following equation:

0 = inf
u(x,y)

{
1

2
q0u

2(x, y) + λ+ yFx(x, y)

+ b0yu(x, y)Fy(x, y) + yFy(x, y)

+ y2Fyy(x, y)

}
, (6)
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where Fx(x, y) = ∂F (x, y)/∂x, etc. Hence,
differentiating with respect to u(x, y), we can state
that the optimal control is given by

u∗(x, y) = −b0y

q0
Fy(x, y). (7)

Next, substituting the above expression for the
optimal control into the DPE 6, we find that
F (x, y) satisfies the second-order non-linear partial
differential equation (PDE)

y2Fyy + yFy + yFx −
1

2

b20y
2

q0
F 2
y + λ = 0. (8)

Moreover, we have the boundary conditions

F (x, y) = cvi if x/y = vi, for i = 1, 2. (9)

Now, Eq. 8 can be linearized. Indeed, let

M(x, y) := exp {−F (x, y)/k} , (10)

where

k :=
2q0
b20

(11)

is a positive constant. We then find that the function
M(x, y) satisfies the PDE

y2Myy + yMy + yMx = αM, (12)

where

α :=
λ

k
, (13)

subject to the boundary conditions

M(x, y) = e−cvi/k if x/y = vi, for i = 1, 2. (14)

Remark. The function M(x, y) can be interpreted as
follows:

M(x, y) = E(x,y)

[
exp

{
−ατ0 −

c

k

X(τ0)

Y (τ0)

}]
,

(15)
where τ0(x, y) is the random variable that
corresponds to τ(x, y) in the case of the uncontrolled
process (X0(t), Y0(t)) obtained by setting
u[X(t), Y (t)] ≡ 0 in Eq. (2). Moreover, Eq. (12)
is the Kolmogorov backward equation satisfied by
M(x, y).

In the next section, Eq. (12 will be solved
explicitly by making use of the method of similarity
solutions.

3 Explicit Solution
Let z := x/y and define

N(z) = M(x/y). (16)

The function N satisfies the ordinary differential
equation (ODE)

z2N ′′(z) + (1 + z)N ′(z) = αN(z), (17)

subject to the boundary conditions

N(vi) = e−cvi/k for i = 1, 2. (18)

The general solution of Eq. (17) is in terms of
the modified Bessel functions Iν(·) and Kν(·), [8,
p. 374]:

N(z) = c1
e1/(2z)√

z

[
I√α+ 1

2

(
− 1

2z

)
+ I√α− 1

2

(
− 1

2z

)]
+ c2

e1/(2z)√
z

[
K√

α+ 1
2

(
− 1

2z

)
−K√

α− 1
2

(
− 1

2z

)]
.(19)

When α = 1, the solution can be expressed as
elementary functions:

N(z) = c1 (1 + z) + c2ze
1/z. (20)

When λ = 0, the function N(z) becomes

N0(z) = c1 + c2Ei1(−1/z), (21)

where Ei1(z) is an exponential integral function
defined by

Ei1(z) =
∫ ∞

1

e−wz

w
dw. (22)

Once the function N(z) has been computed
explicitly, the value function F (x, y) is given by

F (x, y) = −k ln[N(z)] = −k ln[M(x/y)], (23)

and the optimal control is deduced from Eq. (7).
Let us consider a particular case: assume that b0 =

q0 = 1, so that k = 2. Moreover, let us choose c =
λ = 2. It follows that α = 1.

Assume that v1 = 1 and v2 = 2. Then, N(z)
becomes

N(z) =
e−5/2

3e1/2 − 4

[(
e− 2e3/2

)
(1 + z) + (3e− 2)z e1/z

]
.

(24)
It is now possible to compute the value function
F (x, y) and hence the optimal control u∗(x, y). We
obtain that

F (x, y) = 5 + 2 ln
(
3e1/2 − 4

)
− 2 ln

{
(3e− 2)(x/y)ey/x

+
(
e− 2e3/2

)
[1 + (x/y)]

}
(25)
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and

u∗(x, y) = −yFy(x, y)

= −2
(3e− 2)(x− y)ey/x +

(
e− 2e3/2

)
x

(3e− 2)xey/x + (e− 2e3/2) (x+ y)
. (26)

Now, let F0(x, y) denote the value function when
λ = 0. We find that

F0(x, y) = 2 + 2 ln [Ei1(−1/2)− Ei1(−1)]

− 2 ln[
(
e−1 − 1

)
Ei1(−y/x)

− e−1Ei1(−1) + Ei1(−1/2)]. (27)

It follows that the corresponding optimal control is

u∗
0(x, y) =

2(1− e)ey/x

(e− 1)Ei1(−y/x) + Ei1(−1)− eEi1(−1/2)
.

(28)
The functions F (x, y) and F0(x, y) are shown in

Figure 1 in terms of x/y, while the optimal controls
u∗(x, y) and u∗0(x, y) are presented in Figure 2 when
x = 1.

Figure 1: Functions F (x, y) (solid line) and F0(x, y)
for z := x/y ∈ [1, 2].

Figure 2: Functions u(1, y) (solid line) and u0(1, y)
for y ∈ [0.5, 1].

4 Risk-sensitive Formulation
The results presented in the previous section can be
generalized by considering a risk-sensitive version of
the cost function J(x, y) defined in Eq. (4). Let θ be
a real constant and define

C(x, y) = −1

θ
ln (E [exp {−θJ(x, y)}]) . (29)

If θ is positive, the optimizer is said to be risk-seeking,
while when θ is negative, the optimizer is risk-averse,
[9] and, [10]. The case when θ tends to zero
corresponds to the risk-neutral case considered in the
preceding sections.

We can show that the value function then satisfies
the DPE

0 = inf
u(x,y)

{
1

2
q0u

2(x, y) + λ+ yFx(x, y)

+ b0yu(x, y)Fy(x, y) + yFy(x, y)

− θy2F 2
y (x, y) + y2Fyy(x, y)

}
. (30)

Thus, the optimal control is still given by Eq. (7).
Let

β :=
b0
2q0

+ θ. (31)

We assume that β ̸= 0 and we define

H(x, y) = exp {−βF (x, y)} . (32)

We find, [9], that the function H(x, y) satisfies the
linear PDE

y2Hyy + yHy + yHx = βλH. (33)

The boundary conditions are

H(x, y) = e−cβvi if x/y = vi, for i = 1, 2. (34)

Proceeding as in Section 3, we can find the function
H(x, y), and hence the value function F (x, y). Then,
we can compute the optimal control u∗(x, y).

In Figure 3, we present the optimal control when
x = 1 and y ∈ [−0.5, 1] with the choices made for
the various constants in Section 3, for θ = 0,−1 and
1. We can clearly see the effect of the risk parameter
θ on the optimal control.

5 Conclusion
In this note, a new homing problem for a (degenerate)
two-dimensional diffusion process has been solved
explicitly and exactly. To do so, we had first to
linearize the DPE satisfied by the value function, and
then make use of the method of similarity solutions
to reduce the linear PDE to an ODE. The solution of
the ODE was expressed in terms of modified Bessel
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Figure 3: Optimal control u(1, y) for y ∈ [0.5, 1]
when θ = 0 (solid line), θ = −1 (dotted line) and
θ = 1 (dashed line).

functions. In particular cases, these Bessel functions
become elementary functions.

The two-dimensional diffusion process considered
was a geometric Brownian motion and its integral. As
mentioned in the Introduction, geometric Brownian
motions are among the most important diffusion
processes for applications. Moreover, its integral
X(t) can be used as a model for the wear of a machine
(or for its remaining lifetime when the derivative of
X(t) is multiplied by a negative constant).

In Section 4, the cost function J(x, y) defined in
Eq. (4) was generalized by considering a cost criterion
that takes the risk-sensitivity of the optimizer into
account. In an example, we saw the effect of the risk
parameter on the optimal control.

Finally, in cases when it is not possible to linearize
the PDE satisfied by the value function, we can
still try to use the method of similarity solutions to
transform this non-linear PDE into an ODE. This
ODE will generally be non-linear as well. Therefore,
obtaining explicit solutions to such problems is a
difficult task. However, it is at least possible to use
numerical methods to solve any particular problem.
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