
References:
[1] S. Even, A. Itai and A. Shamir, On the
complexity of time table and multi-
commodity flow problems, SIAM Journal on
Computing, Vol.5, No.4, 1976, pp. 691-703,
doi: 10.1137/0205048.
[2] A. Schaerf, A survey of automated
timetabling, Artificial intelligence review,
Vol.13, No.2, 1999, pp. 87-127, doi:
10.1023/A:
1006576209967.
[3] U. Thanawat and L. Dome, An Outperforming
Hybrid Discrete Particle Swarm Optimization
for Solving the Timetabling Problem,
Proceedings of 12th International Conference
on Knowledge and Smart Technology
(KST2020), Pattaya, Thailand, 2020, pp. 18-
23, doi: 10.1109/KST48564.2020.9059349.
[4] J. Sawaphat and L. Dome, A Hybrid Multi-
objective Genetic Algorithm with a New
Local Search Approach for Solving the Post
Enrolment Based Course Timetabling
Problem, Proceedings of the 12th
International Conference on Computing and
Information Technology (IC2IT2016), Khon
Kaen, Thailand, 2016, pp. 195-206, doi:
10.1007/978-3-319-40415-8.
[5] K. Socha, J. Knowles and M. Sampels, Ant
algorithms, Springer Berlin Heidelberg, 2002,
doi: 10.1007/3-540-45724-0_1.
[6] V. Amandeep and K. Sakshi, A hybrid multi-
objective Particle Swarm Optimization for
scientific workflow scheduling, Parallel
Computing, Vol.62, No.C, 2017, pp. 1–19,
doi: 10.1016/j.parco.2017.01.002.
[7] K. Deb, S. Agrawal, A. Pratap and T.
Meyarivan, Parallel Problem Solving from
Nature PPSN VI, Springer Berlin Heidelberg,
2000, doi: 10.1007/3-540-45356-3_83.
[8] S. Abdullah, H. Turabieh, B. McCollum and
P. McMullan, A multi-objective post
enrolment course timetabling problems, a new
case study, Proceedings of the IEEE Congress
on Evolutionary Computation (CEC2010),
Barcelona, Spain, 2010, pp. 1-7, doi:
10.1109/CEC.2010.5586227.
[9] S.N. Jat and S. Yang, Evolutionary
Computation in Combinatorial Optimization,
Springer Berlin Heidelberg, 2011, doi:
10.1007/978-3-642-20364-0_1.
[10] J. Sawaphat and L. Dome, A Hybrid Genetic
Algorithm with Local Search and Tabu Search
Approaches for Solving the Post Enrolment
Based Course Timetabling Problem:
Outperforming Guided Search Genetic
Algorithm, Proceedings of the 7th
International Conference on Information
Technology and Electrical Engineering
(ICITEE2015), Chiang Mai, Thailand, 2015,
pp. 29-34, doi:
10.1109/ICITEED.2015.7408907.
[11] M. A. Al-Betar and A. T. Khader, A harmony
search algorithm for university course
timetabling, Annals of Operations Research,
Vol.194, No.1, 2012, pp. 3-31, doi:
10.1007/s10479-010-0769-z.
[12] S. N. Jat and S. Yang, A guided search
genetic algorithm for the university course
timetabling problem, Proceedings of the 4th
Multidisciplinary International Scheduling
Conference: Theory and Applications (MISTA
2009), Dublin, Ireland, 2009, pp. 180-191.
[13] R. Qu and E. K. Burke, Hybridizations within
a graph-based hyper-heuristic framework for
university timetabling problems, Journal of
the Operational Research Society, Vol.60,
No.9, 2009, pp. 1273-1285, doi: 10.1057/jors.
2008.102.
[14] S. N. Jat and S. Yang, A Memetic Algorithm
for the University Course Timetabling
Problem, Proceedings of the 20th IEEE
International Conference on Tools with
Artificial Intelligence (ICTAI2008), Dayton,
OH, USA, 2008, pp. 427-433, doi:
10.1109/ICTAI.2008.126.
[15] S. Abdullah and H. Turabieh, Generating
university course timetable using genetic
algorithms and local search, Proceedings of
the 3rd International Conference on
Convergence and Hybrid Information
Technology (ICCIT2008), Busan, Korea
(South), 2008, pp. 254-260, doi:
10.1109/ICCIT.2008.379.
[16] S. Abdullah, E. K. Burke, and B. McCollum,
A hybrid evolutionary approach to the
university course timetabling problem,
Proceedings of the IEEE Congress on
Evolutionary Computation (CEC2007),
Singapore, Singapore, 2007, pp. 1764-1768,
doi: 10.1109/CEC.2007.4424686.
[17] E. K. Burke, B. McCollum, A. Meisels, S.
Petrovic, and R. Qu, A graph-based hyper-
heuristic for educational timetabling
problems, European Journal of Operational
Research, Vol.176, No.1, 2007, pp. 177-192,
doi: 10.1016/j.ejor.2005.08.012.
[18] S. Abdullah, E. K. Burke, and B. McCollum,
Metaheuristics: Progress in Complex Systems
Optimization, Springer US, 2007, doi:
10.1007/978-0-387-71921-4_8.
WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2024.19.42