
6 Conclusion
An innovative NMI-based observer design for a
broader class of nonlinear systems is presented in
this study. Leveraging the one-sided Lipschitz
condition and the quadratic inner-boundedness
property, combined with the fractional-order
extension of Lyapunov's direct method, sufficient
conditions for the applicability of the proposed
observer are established. The stability analysis
ensures that the observation error converges
asymptotically to the origin. The effectiveness of the
proposed technique is validated through the state
estimation of a fractional-order nonlinear system.
References:
[1] G. Ciccarella, M. Dalla Mora and A. Germani,
A Luenberger-like observer for nonlinear
systems. International Journal of Control,
1993, vol. 57, no 3, pp. 537-556.
https://doi.org/10.1080/00207179308934406.
[2] Y. Songand, J. W. Grizzle, The extended
Kalman filter as a local asymptotic observer
for nonlinear discrete-time systems. In: 1992
American control conference. IEEE, Chicago,
IL, USA, 1992, pp. 3365-3369.
https://doi.org/10.23919/ACC.1992.4792775.
[3] K. Reifand, R. Unbehauen, The extended
Kalman filter as an exponential observer for
nonlinear systems. IEEE Transactions on
Signal processing, 1999, vol. 47, no 8, pp.
2324-2328.
https://doi.org/10.1109/78.774779.
[4] M. A. Hammami, Global convergence of a
control system by means of an observer.
Journal of Optimization Theory and
Applications, 2001, vol. 108, no 2, pp. 377-
388.
https://doi.org/10.1023/A:1026442402201.
[5] X. Zhou, Y. Dai, E. Ghaderpour, A.
Mohammadzadeh, P. D'Urso, A novel
intelligent control of discrete-time nonlinear
systems in the presence of output saturation,
Heliyon, vol. 10, no. 19, 2024, e38279.
https://doi.org/10.1016/j.heliyon.2024.e38279.
[6] L. Jing, A new method of parameter
estimation and adaptive control of nonlinear
systems with filterless least-squares, Asian
Journal of Control, vol. 26, no. 3, 2024, pp.
1339-1345. https://doi.org/10.1002/asjc.3256.
[7] X.-H. Xiaand W.-B. Gao, Nonlinear observer
design by observer error linearization. SIAM
Journal on Control and Optimization, 1989,
vol. 27, no 1, pp. 199-216.
https://doi.org/10.1137/0327011.
[8] M. Arcakand, P. Kokotović, Nonlinear
observers: a circle criterion design and
robustness analysis. Automatica, 2001, vol.
37, no 12, pp. 1923-1930.
https://doi.org/10.1016/S0005-
1098(01)00160-1.
[9] A. Zemouche, M. Boutayeb and G. I. Bara,
Observers for a class of Lipschitz systems
with extension to H∞ performance analysis.
Systems & Control Letters, 2008, vol. 57, no
1, pp. 18-27.
https://doi.org/10.1016/j.sysconle.2007.06.012
[10] A. Zemouche and M. Boutayeb, On LMI
conditions to design observers for Lipschitz
nonlinear systems. Automatica, 2013, vol. 49,
no 2, pp. 585-591.
https://doi.org/10.1016/j.automatica.2012.11.0
29.
[11] D. Ichalal, B. Marx, S. Mammar, D. Maquin,
J. Ragot. Observer for Lipschitz nonlinear
systems: mean value theorem and sector
nonlinearity transformation. In: IEEE Multi-
Conference on Systems and Control, MSC
2012, Oct 2012, Dubrovnik, Croatia.
https://doi.org/10.1109/ISIC.2012.6398269.
[12] A.M. Pertew, H.J. Marquez and Q. Zhao,
H/sub /splinfin// observer design for lipschitz
nonlinear systems, IEEE Transactions on
Automatic Control, vol. 51, no. 7, 2006, pp.
1211-1216,
https://doi.org/10.1109/TAC.2006.878784.
[13] R. Rajamani, Observers for Lipschitz
nonlinear systems. IEEE transactions on
Automatic Control, 1998, vol. 43, no 3, pp.
397-401. https://doi.org/10.1109/9.661604.
[14] A. Farhangfar and R.J. Shor, State Observer
Design for a Class of Lipschitz Nonlinear
System with Uncertainties, IFAC-
PapersOnLine, vol. 53, no. 1, 2020, pp. 283-
288.
https://doi.org/10.1016/j.ifacol.2020.06.048.
[15] M. Abbaszadeh and H. Marquez, J. Nonlinear
observer design for one-sided Lipschitz
systems. In: Proceedings of the 2010
American control conference. IEEE, 2010.
Baltimore, MD, USA, pp. 5284-5289.
https://doi.org/10.1109/ACC.2010.5530715.
[16] W. Zhang, H.-S. SU, Y. Liang. Non-linear
observer design for one-sided Lipschitz
systems: an linear matrix inequality approach.
IET control theory & applications, 2012, vol.
6, no 9, pp. 1297-1303.
https://doi.org/10.1049/iet-cta.2011.0386.
[17] I. Podlubny, Fractional differential equations:
an introduction to fractional derivatives,
WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2024.19.41
Mohsen Mohamed Hadji, Samir Ladaci