
Applications-P1376.aspx (Accessed Date:
September 30, 2024).
[5] U. Arumugam, N. M. Nor and M. F.
Abdullah, A Brief Review on Advances of
Harmonic State Estimation Techniques in
Power Systems, International Journal of
Information and Electronics Engineering, vol.
1(3), pp. 217-222, 2011, DOI:
http://dx.doi.org/10.7763/IJIEE.2011.V1.34.
[6] G. Wang, S. S. Ge, R. Xue, J. Zhao, C. Li,
Complex-valued Kalman filters based on
Gaussian entropy, Signal Processing 160,
178–189, 2019, DOI:
http://dx.doi.org/10.1016/j.sigpro.2019.02.024
[7] M. H. Terra, J. Y. Ishihara, A. C. Padoan,
Information filtering and array algorithms for
descriptor systems subject to parameter
uncertainties. IEEE Transactions on Signal
Processing, 55(1), pp. 1-9, 2007,
https://doi.org/10.1109/TSP.2006.885747.
[8] D. W. Casbeer, R. Beard, R., Distributed
information filtering using consensus filters,
2009 American Control Conference, St.
Louis, MO, USA, pp. 1882-1887, 2009, DOI:
http://dx.doi.org/10.1109%2FACC.2009.5160
531.
[9] C. Cadena, J. Neira, J., SLAM in O (log n)
with the Combined Kalman-Information
Filter, Robotics and Autonomous Systems,
58(11), 1207-1219, 2010, DOI:
10.1109/IROS.2009.5354521.
[10] R. Verma, L. Shrinivasan and K.
Shreedarshan, GPS/INS integration during
GPS outages using machine learning
augmented with Kalman filter, WSEAS
Transactions on Systems and Control (16), pp.
294-301, 2021,
DOI: https://doi.org/10.37394/23203.2021.16.
25.
[11] Y. Li, Q. Gui, S. Han, Y. Gu, Tikhonov
Regularized Kalman Filter and its
Applications in Autonomous Orbit
Determination of BDS, WSEAS Transactions
on Mathematics, (16), pp. 187-196, 2017.
[12] A. Mohammadi, K.N. Plataniotis, Structure-
induced complex Kalman filter for
decentralized sequential Bayesian estimation,
IEEE Signal Process. Lett. 22 (9), 1419–1423,
2015, DOI:
http://dx.doi.org/10.1109/LSP.2015.2407196.
[13] D. Borio, M. Susi, M., Bicomplex Kalman
Filter Tracking for GNSS Meta-Signals, In
Proceedings of the 36th International
Technical Meeting of the Satellite Division of
The Institute of Navigation (ION GNSS+
2023), Denver, Colorado, pp. 3353-3373,
2023, DOI:
http://dx.doi.org/10.33012/2023.19233.
[14] P. K. Dash, R. K. Jena, G. Panda, A. Routray,
An extended complex Kalman filter for
frequency measurement of distorted signals,
IEEE Transactions on instrumentation and
measurement, 49(4), 746-753, 2000, DOI:
http://dx.doi.org/10.1109/19.863918.
[15] M. El-Nagar, K. Ahmed, E. Hamdan, A. S.
Abdel-Khalik, M. S. Hamad, S. Ahmed,
Modified extended complex Kalman filter for
DC offset and distortion rejection in grid-tie
transformerless converters, Applied Sciences,
13(15), 2023,
https://doi.org/10.3390/app13159023.
[16] E. T. Andrew, K. H. Ahmed, D. Holliday, A
new model predictive current controller for
grid-connected converters in unbalanced
grids, IEEE Transactions on Power
Electronics, 37(8), pp. 9175-9186, 2022, DOI:
10.1109/TPEL.2022.3158016.
[17] X. Zhang, Y. Xia, C. Li and L. Yang,
Unscented Kalman Filter With General
Complex-Valued Signals, IEEE Signal
Processing Letters, 29, pp. 2023-2027, 2022,
DOI:
http://dx.doi.org/10.1109/LSP.2022.3207414.
[18] N. Petukhov, V. Zamolodchikov, E.
Zakharova and A. Shamina, Synthesis and
Comparative Analysis of Characteristics of
Complex Kalman Filter and Particle Filter in
Two-dimensional Local Navigation
System, 2019 Ural Symposium on Biomedical
Engineering, Radioelectronics and
Information Technology (USBEREIT),
Yekaterinburg, Russia, pp. 225-228, 2019,
DOI: 10.1109/USBEREIT.2019.8736595.
[19] W. Dang, L. L. Scharf, Extensions to the
theory of widely linear complex Kalman
filtering. IEEE Transactions on Signal
Processing, 60(12), pp. 6669-6674, 2011,
DOI:
http://dx.doi.org/10.1109/TSP.2012.2214213.
WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2024.19.34
Athanasios Polyzos, Christos Tsinos,
Maria Adam, Nicholas Assimakis